Neues Antibiotikum treibt Bakterien in den Selbstmord

Pressemitteilung der Universität Bonn vom 04.10.2011

Wissenschaftler der Universitäten Bonn und Düsseldorf entdecken die Wirkweise einer neuartigen Substanz

Multiresistente Keime sind in Kliniken ein großes Problem, weil viele Erreger inzwischen unempfindlich gegen Antibiotika geworden sind. Wissenschaftler suchen deshalb fieberhaft nach neuen Wirkstoffen. Ein Forscherteam unter Federführung der Universitäten Bonn, Düsseldorf und Newcastle hat nun die Wirkweise eines neuartigen Antibiotikums entschlüsselt, das selbst multiresistente Keime abtötet. Die Ergebnisse sind jetzt in den Proceedings of the National Academy of Sciences USA (PNAS) erschienen.

Gefährliche bakterielle Infektionen wie eine Lungenentzündung oder eine Tuberkulose sind in der Regel mit Antibiotika gut in den Griff zu bekommen. „Allerdings sind so genannte multiresistente Keime auf dem Vormarsch“, berichtet Erstautor Dr. Peter Sass vom Institut für Medizinische Mikrobiologie, Immunologie und Parasitologie der Universität Bonn. „Bewährte Substanzen entfalten oft nicht mehr ihre Wirkung, weil die Bakterien gegen diese Waffen unempfindlich geworden sind.“ In ihren Laboren suchen Forscher weltweit deshalb nach neuen Antibiotika, um gefährliche Infektionskrankheiten zu bekämpfen.

So auch Dr. Sass, der zu einer gemeinsamen Forschergruppe der Universitäten Bonn und Düsseldorf gehört, die von der Deutschen Forschungsgemeinschaft gefördert wird. „Wir haben bereits in verschiedenen Studien gezeigt, dass so genannte Acyldepsipeptide gegen grampositive Bakterien wirken, darunter auch der gefürchtete human-pathogene und multiresistente Erreger Staphylococcus aureus“, sagt Projektleiterin Prof. Dr. Heike Brötz-Oesterhelt vom Institut für Pharmazeutische Biologie der Universität Düsseldorf. „Allerdings war bislang unbekannt, wo genau diese Substanzen angreifen und ihre antibiotische Wirkung entfalten.“

Neues Antibiotikum führt zur Fehlsteuerung eines wichtigen Enzyms

Während herkömmliche Antibiotika normalerweise bestimmte Reaktionen in Bakterienzellen hemmen, greifen die Acyldepsipeptide (ADEPs) an einer ganz anderen Schlüsselstelle in den Stoffwechsel der Bakterien ein. Sie führen zu einer Fehlsteuerung eines wichtigen Enzyms. „Diese ClpP-Protease bewirkt normalerweise das Recycling von defekten Proteinen des Bakteriums, welches ein ganz strikt kontrollierter Prozess ist“, berichtet Prof. Brötz-Oesterhelt. „Die ADEPs setzen diese strikte Kontrolle der ClpP-Protease außer Kraft, wodurch nun auch bestimmte gesunde Proteine abgebaut werden“, sagt Dr. Sass. „Die Bakterien begehen regelrecht Selbstmord, da die eigene ClpP-Protease nun das für die Zellteilung wichtige FtsZ-Protein zerschneidet und verdaut.“ Dadurch gerät die normale Steuerung außer Rand und Band, die Zellteilung und dadurch die Vermehrung der Erreger wird verhindert.

Die Wissenschaftler nutzten für ihre Untersuchungen eine auf ihrem Forschungsgebiet neue Methode aus der Grundlagenforschung. Dr. Sass machte am Zentrum für Bakterielle Zellbiologie an der Universität Newcastle (England) mit einem extrem hoch auflösenden Fluoreszenzmikroskop Aufnahmen von Bakterien. „Wir markierten das FtsZ-Protein und viele weitere Proteine in den Bakterien mit einem grün fluoreszierenden Farbstoff und machten dann Echtzeitaufnahmen von den mit ADEPs behandelten und auch von unbehandelten Erregern“, berichtet Dr. Sass. Durch diesen Vergleich konnten die Forscher beobachten, was im Stoffwechsel der gefährlichen Bakterien anders lief, wenn sie mit dem neuartigen Antibiotikum behandelt waren. „Nach der Gabe von ADEP gelangten im Bakterium wichtige Proteine nicht mehr zu der Stelle im Stoffwechsel, wo sie für die Zellteilung gebraucht werden“, ergänzt Prof. Brötz-Oesterhelt.

Wirkung gegen mehrere gefährliche Bakterienarten

Das neuartige Antibiotikum wirke nicht nur gegen den gefürchteten multiresistenten Erreger Staphylococcus aureus (MRSA), sondern auch gegen Streptokokken, die etwa Mittelohr-, Lungen-, oder Hirnhautentzündungen auslösen können, so die Forscher. Außerdem stoppt es die Vermehrung von Enterokokken, die zum Beispiel für Harnwegsinfekte, Blutvergiftung oder eine Entzündung der Herzinnenhaut verantwortlich gemacht werden. „Die ADEPs befinden sich allerdings zurzeit noch im Stadium der Grundlagenforschung“, erklärt Prof Brötz-Oesterhelt. In der Regel benötigt eine Substanz noch etwa acht bis zehn Jahre, um von diesem Stadium bis zur Markteinführung zu gelangen. „Allerdings sehen wir in den ADEPs noch mehr als ein neues Antibiotikum zur Bekämpfung von Infektionskrankheiten. Da sie gegen Bakterien mit Hilfe eines neuartigen Mechanismus wirken, können sie uns auch helfen, die Lebensweise der Bakterien besser zu verstehen“, meint Dr. Sass. „Wir müssen wissen, wie pathogene Bakterien ticken, damit wir sie erfolgreich bekämpfen können.“ (Johannes Seiler)

Publikation:
Antibiotic acyldepsipeptides activate ClpP peptidase to degrade the cell division protein FtsZ. Proceedings of the National Academy of Sciences (PNAS).

Externer Link: www.uni-bonn.de

Exotische Quantenzustände: Neuer Forschungsansatz

Presseinformation der Universität Innsbruck vom 03.10.2011

Ein neues Konzept zur Erzeugung exotischer, sogenannter topologischer Quantenzustände in Vielteilchensystemen schlagen Theoretiker der Universität Innsbruck in der Fachzeitschrift Nature Physics vor. Sie verbinden Ideen aus der Quantenoptik mit Konzepten der Festkörperphysik und liefern damit einen neuen Ansatz für den Bau eines störungsunempfindlichen Quantencomputers.

Vor drei Jahren hat ein Team um Sebastian Diehl und Peter Zoller einen ganz neuen Weg zur Herstellung von Quantenzuständen in Vielteilchensystemen präsentiert. Sie bedienten sich dazu eines physikalisches Phänomens, das normalerweise den Grad der Unordnung in einem System dramatisch erhöht: Dissipation. In der klassischen Physik beschreibt Dissipation beispielsweise die Bildung von Wärmeenergie durch Reibung, sie bringt also Unordnung in ein System. Überraschender Weise lässt sich in der Quantenwelt damit auch Ordnung herstellen und ein perfekt reiner Vielteilchenzustand erzeugen. Im Frühjahr haben Experimentalphysiker um Rainer Blatt im Labor in Innsbruck gezeigt, dass sich mit diesem Ansatz bestimmte Quanteneffekte gezielt erzeugen und verstärken lassen. Nun machen die Theoretiker des Instituts für Theoretische Physik der Universität Innsbruck und des Instituts für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften einen neuen Vorschlag, wie Dissipation vielversprechend eingesetzt werden könnte. Sie schlagen dabei eine Brücke von der Quantenoptik zur Festkörperphysik.

Gegenüber Störungen unempfindlich

In der Festkörperphysik gewinnt in jüngster Zeit ein neues Paradigma für die Beschreibung von Ordnung in Vielteilchensystemen zunehmend an Bedeutung: die topologische Ordnung. Beispiele für topologische Phänomene sind der in den 1980er-Jahren nachgewiesene Quanten-Hall-Effekt sowie topologische Isolatoren, die sich im Inneren als elektrischer Isolator verhalten während sie gleichzeitig auf ihrer Oberfläche die Bewegung von Ladungen erlauben. Die Innsbrucker Theoretiker um Sebastian Diehl und Peter Zoller schlagen nun vor, mit einer dissipativen Dynamik in einem Quantensystem sogenannte Majorana-Fermionen zu erzeugen. Dieses nach dem italienischen Physiker Ettore Majorana benannte topologische Phänomen beschreibt Teilchen, die gleichzeitig ihre eigenen Antiteilchen sind. „Wir zeigen nun einen neuen Weg auf, wie solche Majorana-Fermionen in einem Quantensystem gezielt erzeugt werden können“, erklärt Sebastian Diehl, „und nutzen dazu eine dissipative Dynamik, die das System gerichtet in diesen Zustand treibt und bei jeder Störung wieder dahin zurückzwingt.“ Durch diesen Ansatz verbinden Diehl und sein Team die Vorteile der Dissipation mit jenen der topologischen Ordnung, denn beide Ansätze zeichnen sich durch hohe Robustheit gegenüber kleinen Störungen aus. Ihr Vorschlag, in einem atomaren Quantendraht Majorana-Fermionen mittels Dissipation zu erzeugen, ist deshalb für die experimentelle Umsetzung von besonderem Interesse und könnte beim Bau eines zukünftigen Quantencomputers zum Einsatz kommen, bei denen die elementaren Recheneinheiten aus den Majorana-Fermionen bestehen. In den Quantendrähten sind einzelne Atome nebeneinander aufgereiht und werden von einem mit Laserlicht erzeugten optischen Gitter daran gehindert, aus der Reihe zu tanzen. Die Majorana-Fermionen werden an den beiden Enden der atomaren Kette erzeugt.

Checkliste abgearbeitet

START-Preisträger Sebastian Diehl und sein Team verbinden in diesem Konzept das Wissen der Festkörperphysik mit jenem der Quantentheorie. „Wir arbeiten hier an der Schnittstelle zwischen diesen beiden Disziplinen, was aufregende neue Möglichkeiten schafft“, sagt Diehl. Dazu war es notwendig, zweifelsfrei nachzuweisen, dass sich das Konzept der topologische Ordnung überhaupt auf den dissipativen Kontext übertragen lässt. „Wir haben die vollständige topologische Checkliste abgearbeitet und gezeigt, dass deren Voraussetzungen auch in einem System mit dissipativer Dynamik gelten.“ Den mathematischen Nachweis haben die Physiker nun in der Fachzeitschrift Nature Physics veröffentlicht.

Publikation:
Topology by Dissipation in Atomic Quantum Wires. S. Diehl, E. Rico, M. A. Baranov, P. Zoller. Nature Physics. 2. Oktober 2011 DOI: 10.1038/nphys2106

Externer Link: www.uibk.ac.at

Der kürzeste Film der Welt

Presseaussendung der TU Wien vom 27.09.2011

Teilchenphysiker der Technischen Universität (TU) Wien forschen an ultraheißen Materiezuständen und visualisieren ihre Ergebnisse in einem Video, das Abläufe auf unvorstellbar kurzen Zeitskalen darstellt.

Hunderttausend mal heißer als das Zentrum der Sonne ist Quark-Gluon-Plasma – ein Materiezustand, bei dem selbst Protonen und Neutronen in ihre Bestandteile aufgeschmolzen werden. An der TU Wien wurden in aufwändigen Computersimulationen nun einige der Geheimnisse dieses exotischen Materiezustandes untersucht. Die Ergebnisse lassen das Phänomen der sogenannten „Plasma-Instabilitäten“ sichtbar und sogar hörbar werden. In Originalgeschwindigkeit abgespielt würde der Film nur einige Quadrilliionstel Sekunden dauern.

Berechnungen zu Experimenten am CERN

Sekundenbruchteile nach dem Urknall bestand das gesamte Universum aus Quark-Gluon-Plasma. Selbst für Protonen und Neutronen war es noch zu heiß. Die Elementarteilchen, aus denen sie aufgebaut sind – Quarks und Gluonen – konnten sich frei untereinander bewegen. Heute lässt sich dieser Materiezustand im Miniaturformat an großen Teilchenbeschleunigern reproduzieren. Nach wie vor gibt das Quark-Gluon-Plasma der Wissenschaft große Rätsel auf: So ist bis heute nicht genau geklärt, warum ein Quark-Gluon-Plasma gewissermaßen eine perfekte Flüssigkeit darstellt. Seine Viskosität – ein Maß für die Zähigkeit einer Substanz – ist niedriger als bei allen Flüssigkeiten, die wir kennen. Außerdem ist unklar, wie die Teilchen ihre Geschwindigkeiten und Richtungen in kürzester Zeit ganz ungeordnet untereinander verteilen, auch wenn ihnen anfangs eine bevorzugte Startrichtung vorgegeben wird.

Videoclip in Yoctosekunden-Länge

Ein Schlüssel zum Verständnis dieses exotischen Materiezustands könnten die „Plasma-Instabilitäten“ sein – spontan auftretende Ströme im Plasma: „Man kann sich das vorstellen wie elektrische Ströme – allerdings gibt es im Quark-Gluon-Plasma gleich acht verschiedene Sorten davon“, erklärt Andreas Ipp vom Institut für Theoretische Physik der TU Wien, der gemeinsam mit  Professor Anton Rebhan und dem amerikanischen Physiker Mike Strickland (Gettysburg) an Quark-Gluon-Plasma forscht. Ähnlich wie elektrischer Strom mit elektromagnetischen Feldern zusammenhängt, sind die Ströme im Plasma mit Gluonen-Feldern gekoppelt. In aufwändigen Computersimulationen konnten die TU-Forscher nun erstmals visualisieren, wie sich  „gluonische“ Plasma-Instabilitäten entwickeln. „Die Computersimulation, die wir hier bei uns am Vienna Scientific Cluster durchführen konnten, nahmen Wochen an Rechenzeit in Anspruch – der simulierte Prozess selbst dauert nur einige Yoctosekunden“, erkärt Andreas Ipp. Eine Yoktosekunde (10^-24 Sekunden) ist ein Millionstel eines Milliardstels einer Milliardstelsekunde.

Der dumpfe Sound des Quark-Gluon-Plasmas

Die Ergebnisse der Simulation wurden  zur Unterstützung der mathematischen Analysen auch als Video mit Ton aufbereitet: Die Stärke der Gluonen-Felder sind graphisch durch Pfeile dargestellt, ihre verschiedenen Ladungen durch Farben dargestellt, und die Wellenlängen wurden in hörbaren Ton umgewandelt. Ließe man das Video in Originalgeschwindigkeit laufen, würde man freilich nichts hören: Frequenzen im Yoctosekunden-Bereich lägen mindestens 71 Oktaven über dem Kammerton a‘ – und wären daher um viele Größenordnungen höher als alles, was wir wahrnehmen können.

Am Anfang des Videos bauen sich die Plasma-Instabilitäten auf – benachbarte Feld-Pfeile zeigen meist in dieselbe Richtung, die langen Wellenlängen der Plasma-Instabilität sind als tiefes Brummen hörbar. Später führen komplizierte Wechselwirkungen der Gluonen dazu, dass sich Turbulenzen ausbilden, die die Regelmäßigkeit auflösen, wodurch die Felder an unterschiedlichen Orten in völlig unterschiedliche Richtungen zeigen und der gleichmäßige Ton zum wirren Rauschen wird. Von der detaillierten Analyse dieser Turbulenzen erhoffen sich die Physiker Erklärungen für die experimentellen Beobachtungen, die bei Schwerionenkollisionen am CERN gemacht werden. (Florian Aigner)

Externer Link: www.tuwien.ac.at

Krebsstammzellen – Kurze RNA spielt eine wichtige Rolle

Pressemitteilung der Universität Regensburg vom 23.09.2011

Regensburger Forscher entdecken neuen Tumorhemmer

Krebsstammzellen sind besonders heimtückisch. Im Unterschied zu normalen Krebszellen überstehen Stammzellen eine Chemo- oder Strahlentherapie häufig unbeschadet. Sie verkriechen sich in Nischen und können dort für längere Zeit in einer Art Ruhezustand verharren, bevor sie irgendwann wieder erwachen, sich teilen und neues Tumorwachstum anregen. So sind sie mitunter dafür verantwortlich, dass der Krebs nach einer ersten erfolgreichen Behandlung wiederkehrt. Seit einigen Jahren sind Krebsstammzellen deshalb in den Blickpunkt der Forschung gerückt. Denn sie sind der zentrale Gegner im Kampf gegen Krebs. Die Ausschaltung von Stammzellen könnte ein Ansatz für die Entwicklung neuer Krebstherapien sein. Allerdings gibt es eine Reihe offener Fragen, gerade was die Zusammenhänge auf molekularer Ebene angeht.

Einem Forscherteam der Universität Regensburg gelang es nun, über die Untersuchung der Bedeutung von kleinen RNA-Molekülen für die Entwicklung von Stammzellen des Glioblastoms – des häufigsten bösartigen Hirntumors bei Erwachsenen – etwas Licht ins Dunkel zu bringen. Die sogenannten MikroRNAs (miRNAs) sind kleinste Formen der Ribonukleinsäure, die wesentliche Funktionen bei der Genregulation in Zellen erfüllen. Die Wissenschaftler um Prof. Dr. Gunter Meister vom Institut für Biochemie, Genetik und Mikrobiologie konnten nachweisen, dass miRNAs auch in den Stammzellen des Glioblastoms produziert werden. Mehr noch: einzelne miRNA-Typen finden sich nach der Analyse der Forscher sogar in einer sehr großen Zahl in den Tumorstammzellen und scheinen auch deren Eigenschaften als Stammzellen zu festigen.

Vor diesem Hintergrund analysierten die Forscher die Funktionsweise dieser bestimmten miRNA-Typen. Als Zielmolekül der miRNA identifizierten die Wissenschaftler das Protein CAMTA1. Die miRNA-Moleküle regulieren demnach die Zahl der CAMTA1-Proteine in den Zellen. Je weniger miRNA-Moleküle existieren, desto mehr CAMTA1-Proteine liegen vor. Über Versuche mit Nacktmäusen konnten die Forscher zudem klären, dass eine erhöhte Zahl von CAMTA1-Proteinen das Wachstum von Glioblastom-Tumoren im Allgemeinen hemmt – CAMTA1 tritt also als Tumorsuppressor bzw. -hemmer auf. Entsprechend geht eine verstärkte Produktion von CAMTA1 in den Zellen mit einer erhöhten Überlebenschance von Patienten mit Glioblastom-Erkrankung einher. Die Untersuchungen der Regensburger Forscher könnten die Grundlage für neue Behandlungsmöglichkeiten bei der Bekämpfung des Glioblastoms darstellen.

Die Ergebnisse des Teams um Gunter Meister sind vor kurzem in der international renommierten Fachzeitschrift „EMBO Journal“ veröffentlicht worden, die von der „Nature Publishing Group“ herausgegeben wird (DOI: 10.1038/emboj.2011.301). (Alexander Schlaak)

Externer Link: www.uni-regensburg.de

Wie Fische auf Wellen: Elektronen surfen

Presseinformation der Ruhr-Universität Bochum vom 22.09.2011

RUB-Forscher in Nature: Transport einzelner Elektronen geglückt

Auf dem Weg zum komplexen Quantenbit und dem Computer von morgen

Ein entscheidender Schritt zu erheblich leistungsfähigeren Computern ist Physikern der RUB zusammen mit Forschern aus Grenoble und Tokyo gelungen: Aus dem Schwarm an Elektronen in elektrischen Leitern und Halbleitern konnten sie mit Hilfe einer Schallwelle ein einzelnes Elektron herauspicken und transportieren. Wie ein Fisch auf einer Welle „surft“ das Elektron von einem Quantenpunkt zum nächsten. Ein einzelnes Elektron auf diese Weise zu manipulieren erlaubt es in Zukunft, statt klassischer Bits („0“- und „1“-Zustände) auch die wesentlich komplexeren Quantenbits zu kombinieren. Über ihre Ergebnisse berichten die Forscher in der internationalen Top-Zeitschrift „Nature“.

Halbleiterphysik: Der Traum eines Anglers

Elektronen sind in elektrischen Leitern (Metallen) und Halbleitern wie Silizium (Si) oder Galliumarsenid (GaAs) frei beweglich wie Fische im Wasser. Allerdings können sie nicht von selbst „schwimmen“, sondern bewegen sich durch elektrische Spannungen (Felder). In einem Metall kommen sie als gewaltiger Fischschwarm vor, der das gesamte Wasservolumen ausfüllt. In Halbleitern sind diese Schwärme weniger dicht, die Abstände zwischen den Fischen sind viel größer. Der Schwarm lässt sich durch äußere elektrische Spannungen zu einer dünnen Schicht nahe der Oberfläche zusammenziehen. Dieser „Traum eines Anglers“ geht für Halbleiterphysiker jetzt in Erfüllung, möglich macht das die neue Methode, die das internationale Forscherteam entwickelt hat: Die Elektronen“fische“ liegen alle in einer Ebene und sind von der Oberfläche aus gut einzeln zugreifbar.

Einen aus der Masse fischen

„Allerdings gibt es keine ‚dicken‘ Fische, denn alle Elektronen sind genau gleich groß und sogar prinzipiell identisch“, erläutert Prof. Dr. Andreas Wieck, Physiker an der RUB. Das Verfahren der Forscher aus Deutschland, Frankreich und Japan ermöglicht es dennoch, aus dem Schwarm einzelne Elektronen „herauszufischen“, über eine bestimmte Strecke zu bewegen und sie dann am Zielpunkt wieder nachzuweisen. Die Strecke betrug im Experiment vier Mikrometer (μm) – das ist zwanzigmal länger als ein hochintegrierter Transistor. Der gezielte Transport einzelner Elektronen trotz der Masse des Schwarms gelingt, indem zuerst zwischen den Spitzen von vier Elektroden ein kleiner Schwarm zu einem nulldimensionalen Objekt, einem „Quantenpunkt“, eingepfercht wird. Dann senden die Wissenschaftler durch eine ineinandergreifende Doppelkamm-Elektrode, an die sie Radiofrequenz anlegen, eine Welle durch den Halbleiterkristall – der ist vergleichbar mit dem Wasser für die Fische. Das Verfahren funktioniert umgekehrt wie der Spannungsblitz in einem „Piezo“-Feuerzeug: Dort wird ein Kristall deformiert, um eine Spannung zu erzeugen; hier deformieren die Forscher den Kristall durch das Anlegen der Spannung, was bei regelmäßiger Wiederholung zu einer Welle führt.

Der Fisch surft auf der Welle

Diese Welle fegt in einer vorgefertigten Probe beispielsweise von links nach rechts mit Schallgeschwindigkeit durch den Mini-Schwarm im Quantenpunkt – im Kristall mit drei Kilometern pro Sekunde. In ihrer Höhe wird sie so eingestellt, dass sie nur genau einen „Fisch“ daraus mitnimmt, der dann auf der Welle im eindimensionalen Kanal „surft“. 4μm rechts davon entfernt befindet sich ein weiterer Quantenpunkt, in dem der „Fisch“ ankommt. Durch die Wiederholung von Wellenpaketen und Messungen konnten die Forscher eine gute Statistik aufbauen, um die Sicherheit des Verfahrens zu messen. Ein einzelnes Elektron mit der Welle herauszupicken, funktionierte in den ersten Experimenten mit einer Wahrscheinlichkeit von 96 Prozent; es wiederzufinden mit 92 Prozent.

Der Clou: Die Ausrichtung der Fische

Die Elektronen“fische“ sind zwar nicht unterscheidbar, können aber ausgerichtet werden, weil sie wie kleine Kreisel eine Drehrichtung („Spin“) haben. Das ist so, als ob man einen Fisch zum Beispiel mit „Kopf nach oben“ ausrichtet, ihn von der Welle mitreißen lässt und ihn im Ziel-Quantenpunkt auch mit „Kopf nach oben“ wiederfindet. Dadurch, dass die Überlebenszeit dieser Spin-Orientierung länger ist als die Surf-Zeit auf der Welle, geschieht das mit hoher Sicherheit. Auch die Quantenbits der Zukunft bestehen aus solchen spin-polarisierten Elektronen. Ihre Forschungsergebnisse erzielten die Wissenschaftler mit Proben, die am Lehrstuhl für Angewandte Festkörperphysik der Ruhr-Universität Bochum durch so genannte Molekularstrahl-Epitaxie hergestellt, in Tokyo strukturiert und schließlich in Grenoble vermessen wurden. Nicht nur die Proben, sondern auch die Konzepte kommen aus Bochum: Prof. Wieck hat bereits vor 21 Jahren die Vision eines Elektronen-Richtkopplers publiziert, den die Forschergruppe jetzt realisiert hat. Dazu erscheint in Kürze eine weitere Veröffentlichung. (Jens Wylkop)

Titelaufnahme:
Sylvain Hermelin, Shintaro Takada, Michihisa Yamamoto, Seigo Tarucha, Andreas D. Wieck, Laurent Saminadayar, Christopher Bäuerle and Tristan Meunier: Electrons surfing on a sound wave as a platform for quantum optics with flying electrons. DOI: 10.1038/nature10416

Externer Link: www.ruhr-uni-bochum.de