Quantenteilchen tunneln Gegner gleich mehrfach

Medieninformation der Universität Innsbruck vom 12.06.2014

Tunneleffekte sind in der Physik allgegenwärtig und werden für viele technische Anwendungen ausgenutzt. Nun haben Physiker der Universität Innsbruck erstmals im Experiment beobachtet, wie wechselwirkende Quantenteilchen durch eine ganze Reihe von Barrieren tunneln. Die in der Fachzeitschrift Science veröffentlichte Arbeit eröffnet neue Einblicke in dieses weitverbreitete physikalische Phänomen.

Er erklärt den radioaktiven Alphazerfall mancher Atomkerne, macht Sterne zu Fusionskraftwerken und ermöglicht die Supraleitung: der Tunneleffekt. Einzelne Quantenteilchen können eine Barriere auch dann überwinden, wenn sie die dafür notwendige Energie nicht besitzen. Das ist eine der bemerkenswerten Konsequenzen aus den Regeln der Quantenmechanik. Technisch wird dieses Phänomen bei zahlreichen Anwendungen ausgenutzt, so beim Rastertunnelmikroskop und Flash-Speichermedien. Nun haben Forscher um Hanns-Christoph Nägerl vom Institut für Experimentalphysik der Universität Innsbruck im Labor Quantenteilchen erstmals dabei beobachtet, wie diese eine Reihe von bis zu fünf Barrieren hintereinander durchdringen. Dabei ist entscheidend, dass die Teilchen miteinander wechselwirken und sich gegenseitig mit einer Art Räuberleiter helfen, um zusammen ans Ziel zu kommen.

Wechselspiel der Kräfte

In ihrem Experiment kühlen die Innsbrucker Physiker eine Gaswolke aus bosonischen Cäsiumatomen bis nahe an den absoluten Nullpunkt ab. Diese Atome platzieren sie in einer Potentiallandschaft, die mit Hilfe von Laserstrahlen geschaffen wird. Dieses sogenannte optische Gitter zwingt die Teilchen in eine regelmäßige Struktur. Die Potentialwände hindern anfänglich die stark abgekühlten Teilchen daran, ihren Platz zu verlassen. „Die Atome können die Hürden nicht überspringen, weil ihnen dazu die Energie fehlt“, erklärt Hanns-Christoph Nägerl. „Es bleibt ihnen nur die Möglichkeit, die Barrieren mit Hilfe des quantenphysikalischen Tunneleffekts zu durchdringen.“ Doch auch das geht nicht, wenn die Nachbarplätze schon besetzt sind und dadurch eine Wechselwirkungsblockade besteht. Um trotzdem ein Quantentunneln zu ermöglichen, kippen die Forscher die Reihen der Teilchen mit einer äußeren Kraft. So verändert sich die potentielle Energie der Teilchen. Im Zusammenspiel mit den benachbarten Teilchen können die Atome dann eine oder mehrere Barrieren durchdringen, so das auch für die Forscher überraschende Ergebnis. „Jetzt helfen sich die Teilchen gegenseitig, anstatt sich zu blockieren, wie in einer Räuberleiter. Es ist entscheiden für das Experiment, dass wir das Zusammenspiel der Wechselwirkung zwischen den Teilchen und der äußeren Kraft genau kontrollieren“, sagt Nägerl. „Denn tunnelnde Atome müssen potentielle Energie abgeben, und das können sie in unserem System nur über die Wechselwirkung mit den benachbarten Atomen.“ So können die Physiker über die Anpassung von potentieller Energie und Wechselwirkungsenergie genau bestimmen, wie viele Barrieren ein Teilchen durchdringt. Interessant ist, dass die Quantenräuberleiter besser funktioniert als eine gewöhnliche Räuberleiter. Da die Cäsiumatome ununterscheidbare Quantenteilchen sind, die der Bose-Statistik gehorchen müssen, kommt es nicht darauf an, welches der Atome ins Ziel kommt, sondern nur, dass eines der Atome ins Ziel kommt. Das Mehr an Wahrscheinlichkeit erhöht folglich die Geschwindigkeit des Tunnelprozesses.

Neue Einsichten möglich

„In diesem Experiment haben wir erstmals beobachtet, wie Teilchen in einem stark wechselwirkenden System mehrere Barrieren hintereinander durchdringen“, sagt Hanns-Christoph Nägerl. Solche langreichweitigen Tunnelprozesse wurden in der Forschung bisher wenig beachtet, auch weil sie experimentell nicht zugänglich waren. Der ERC-Preisträger erwartet sich, dass die aktuellen Ergebnisse das Interesse daran rasch wachsen lassen werden. „Die Zukunft wird zeigen, welche Einsichten für molekulare, biologische oder elektronische Systeme daraus gewonnen werden können“, meint der Physiker. „Auch Anwendungen in der Quanteninformationsverarbeitung oder Quantensimulation sind denkbar.“

An der Arbeit beteiligt war der Theoretiker Andrew Daley, der 2010 aus Innsbruck an die University of Pittsburgh, USA, berufen wurde und mittlerweile an der University of Strathclyde in Schottland forscht und lehrt. Finanziell unterstützt wurden die Forscher unter anderem vom Europäischen Forschungsrat ERC und der National Science Foundation NSF.

Publikation:
Observation of many-body dynamics in long-range tunneling after a quantum quench. Florian Meinert, Manfred J. Mark, Emil Kirilov, Katharina Lauber, Philipp Weinmann,  Michael Gröbner, Andrew J. Daley, Hanns-Christoph Nägerl. Science am 13. Juni 2014 DOI: 10.1126/science.1248402 (arXiv:1312.2758)

Externer Link: www.uibk.ac.at

Eine Betonkuppel zum Aufblasen

Presseaussendung der TU Wien vom 03.06.2014

Die meisten Beton-Schalen muss man mit komplizierten Holzkonstruktionen stützen, eine revolutionäre Bautechnik der TU Wien verwendet stattdessen aufblasbare Luftpolster.

Große Schalenbauten aus Beton oder Stein werden heute kaum noch errichtet. Das liegt daran, dass man für den Bau von Kuppeln normalerweise aufwändige, teure Stützkonstruktionen aus Holz benötigt. An der TU Wien wurde nun allerdings ein neues Bauverfahren entwickelt, das ganz ohne Holzgerüst auskommt: Eine Betonplatte wird flach am Boden ausgehärtet, danach bläst man einen Luftpolster unter der Betonplatte auf, und der Beton krümmt sich in kurzer Zeit zu einer belastbaren, stabilen Schale. Ganze Veranstaltungshallen kann man in diesem Verfahren bauen. Auf den Aspanggründen in Wien wurde nun ein Kuppelgebäude mit dieser neuen Technik errichtet.

„Man kann sich das so ähnlich vorstellen wie eine Orangenschale, die man regelmäßig einschneidet, und dann flach auf dem Tisch ausbreitet“, sagt Prof. Johann Kollegger. „Wir machen es eben umgekehrt, wir beginnen in der Ebene und stellen daraus eine gekrümmte Schale her.“ Johann Kollegger und Benjamin Kromoser (beide vom Institut für Tragkonstruktionen, TU Wien) entwickelten die neue Schalenbautechnik, die nun in den Aspanggründen in Wien mit großem Erfolg getestet wurde.

Die „Pneumatic Wedge Methode“

Zunächst wird mit gewöhnlichem Beton eine ebene Betonfläche gegossen. Dabei muss die geometrische Form genau stimmen: Die Platte ist in mehrere Segmente unterteilt. Abhängig von der Form, die letztendlich entstehen soll, müssen bei der Herstellung der Betonfläche genau passende keilförmige Stücke ausgespart werden.

Wenn die Betonplatte ausgehärtet ist, wird ein darunterliegender Pneu aus zwei miteinander verschweißten Kunststoffolien aufgepumpt. Gleichzeitig wird ein außen um die Betonplatte verlaufendes Stahlseil zusammengezogen, sodass der Beton innen gehoben und außen zusammengedrückt wird. Um sicherzustellen, dass sich alle Teile der Betonplatte gleichmäßig heben, sind die Segmente der Betonplatte mit Metallschienen verbunden. Im Experiment an der TU Wien war dieser Arbeitsschritt nach etwa zwei Stunden abgeschlossen, die Betonschale hatte dann eine Innenhöhe von 2.90m.

Während sich der Beton verbiegt, entstehen unzählige kleine Risse – doch für die Stabilität der Schale ist das kein Problem. „Man kennt das ja von alten Steinbögen“, erklärt Johann Kollegger. „Wenn die Form stimmt hält jeder Stein den anderen fest und die Konstruktion hält.“ Am Ende wird das Bauwerk noch verputzt, danach hält es genauso großen Belastungen stand wie eine auf herkömmliche Weise errichtete Kuppel.

Neue Methode bietet vielfältige architektonische Möglichkeiten

„Wir haben uns ganz bewusst dafür entschieden, nicht bloß eine einfache, rotationssymmetrische Halbkugel zu bauen“, erklärt Benjamin Kromoser. „Unser Bauwerk ist langgezogen, sie lässt sich geometrisch gar nicht so leicht beschreiben. Damit wollten wir beweisen, dass sich mit unserer Technik auch komplexere Freiformen herstellen lassen.“ In der Architektur spielen spielerische freie Formen heute eine wichtige Rolle. Durch eine sorgsame Planung der Betonplatte und des aufblasbaren Pneus ist bei der „Pneumatic Wedge Methode“ eine große Vielfalt von Formen möglich.

„Kuppeln mit 50 Metern Durchmesser wären auf diese Weise problemlos machbar“, sagt Johann Kollegger. Die wahre Herausforderung liegt eher bei komplizierten Formen mit engen Krümmungsradien. Im Versuchslabor an der TU Wien wurde getestet, wie sehr sich Beton im Extremfall mit dieser Methode verformen lässt – lokale Krümmungsradien von bloß drei Metern lassen sich realisieren.

Das Team hofft, dass sich die neue Betonbaumethode nun bald durchsetzt – mit Unterstützung des Forschungs- und Transfersupports der TU Wien wurde die Technik bereits patentiert. Wenn für den Schalenbau keine Holzgerüste mehr notwendig sind, spart das nicht nur viel Zeit und Ressourcen, sondern auch eine Menge Geld: Etwa die Hälfte der Baukosten können durch die Luftpolstertechnik eingespart werden, schätzt Benjamin Kromoser – bei besonders großen Bauten sogar noch mehr. (Florian Aigner)

Externer Link: www.tuwien.ac.at

Weg von der Insel

Presseinformation der LMU München vom 28.05.2014

Ein Forscherteam stellt erstmals die Desorption von Sauerstoff auf einer Silberoberfläche bildlich dar. Die gezeigten Effekte widerlegen bisherige einfache Vorstellungen von Desorptionsprozessen.

Bei heterogen katalysierten Reaktionen, die an der Grenzfläche zwischen einem Festkörper und der Gasphase ablaufen, müssen die gebildeten Produkte am Ende von der Oberfläche des Festkörpers desorbieren. Dies ist zum Beispiel beim Abgaskatalysator eines Autos der Fall. Einer Gruppe von Wissenschaftlern um Professor Joost Wintterlin von der LMU, Professor Sebastian Günther von der TUM und Dr. Andrea Locatelli vom Syncrotron Elettra in Triest ist es erstmals gelungen, einen solchen Desorptionsvorgang mikroskopisch sichtbar zu machen. Ihre Ergebnisse erklären, warum bisherige Berechnungen von Desorptionsraten häufig fehlerhaft sind. Darüber berichten sie aktuell in der Fachzeitschrift Nature Communications.

Bei der heterogenen Katalyse werden Moleküle durch eine chemische Reaktion auf der Oberfläche eines Metalls, eines Oxids oder eines anderen Festkörpers gebildet und verlassen dann die Oberfläche. Bisher galt dieser letzte Schritt, im Gegensatz zu den komplizierten anderen Oberflächenprozessen, als relativ einfach. Die Moleküle nehmen demnach thermische Energie vom Festkörper auf und desorbieren, sobald diese Energie die Bindungsenergie an die Oberfläche übersteigt, in einem rein statistischen Prozess, der nur von der Anzahl der Moleküle abhängt. „In einer Vielzahl von Fällen stimmen die nach diesem Modell berechneten Desorptionsraten aber nicht mit den gemessenen überein“, sagt Joost Wintterlin.

Darstellung im Nanometerbereich

Günther, Wintterlin und ihre Kollegen konnten mit ihren Untersuchungen nun zeigen, dass die räumliche Verteilung der Moleküle bei der Desorption wichtig ist. Für ihre Experimente nutzte das Forscherteam ein sogenanntes LEEM (LEEM steht für „low energy electron microscopy“), mit dem Oberflächen mit einer Auflösung im Nanometerbereich abgebildet werden können. Das LEEM funktioniert ähnlich wie ein normales Elektronenmikroskop, nur werden die energiereichen Elektronen, kurz bevor sie auf die Probenoberfläche treffen, auf niedrige Energien abgebremst. Mit dieser Mikroskopietechnik gelang es den Forschern, die Desorption von Sauerstoff von einer Silberoberfläche zu verfolgen.

„Es zeigte sich, dass die Sauerstoffschicht bei der Desorption in viele kleine Inseln zerfällt“, sagt Sebastian Günther. Die Atome desorbieren ausschließlich von den Rändern dieser Inseln, deren Größenverteilung von der Vorbehandlung des Silberkristalls abhängt. „Solche Effekte erklären die scheinbar unverständliche Desorptionsrate. Sie spielen vermutlich auch bei vielen anderen Desorptionsprozessen von Oberflächen eine Rolle und könnten unsere Vorstellungen von den Vorgängen auf Katalysatoroberflächen verändern“, sagt Günther. (nh)

Publikation:
Nature Communications Mai 2014

Externer Link: www.uni-muenchen.de

Was Papierfasern zusammenhält: TU-Forscher lüften viele Geheimnisse um die Festigkeit des Papiers

Pressemitteilung der TU Graz vom 28.04.2014

Pionierarbeit: Sieben Jahre lang untersuchten Forscher der TU Graz jene Wechselwirkungen, die für den Zusammenhalt der Fasern im Papier sorgen. Ihre Entdeckungen ermöglichen es der Industrie, die Reißfestigkeit von Papier bei gleicher Stärke zu erhöhen. Nun läuft das von der Christian Doppler Forschungsgesellschaft und Industriepartnern initiierte und finanzierte Projekt aus.

Wegen des großen Erfolges geschlossen – so könnte man das Ende des „Christian Doppler Labor für oberflächenphysikalische und chemische Grundlagen der Papierfestigkeit“ an der TU Graz bezeichnen. Von Anfang an auf sieben Jahre befristet hat das Projekt Ergebnisse gebracht, die der Industrie völlig neue Dimensionen in der Papierproduktion eröffnet haben. „Bevor wir am 1. März 2007 unsere Arbeit aufgenommen haben, hatte niemand konkrete Vorstellungen, welche Wechselwirkungen für den Zusammenhalt von Papierfasern verantwortlich sind“, erinnert sich Robert Schennach an den Start des von ihm geleiteten CD-Labors. Viele Dinge hatte man als gegeben hingenommen, über andere nur eine vage Vorstellung oder bloß Vermutungen angestellt.

Wasserbrücken als bindende Wechselwirkung

Nachdem sich die Grazer Forscher nun sieben Jahre lang dem Thema gewidmet haben, sind viele Geheimnisse gelüftet. Konkret sind es sechs Wechselwirkungen, die Papierfasern – jede ist zwischen 0,5 und 3 Millimeter lang und bloß 20 Tausendstelmillimeter dick – aneinander binden. Über fünf von ihnen hatte man vor sieben Jahren eine vage Vorstellung. Darunter fallen mechanische Wirkungen wie sich ineinander verhakende Oberflächen wie bei einem Klettverschluss, elektrostatische Anziehung und verschiedene chemische Bindungen. Der sechsten kamen erst die Grazer Forscher auf die Spur: Wasserbrücken, die sich auf Grund der Oberflächenspannung bilden (Kapillarkraft).

Diese Erkenntnis ermöglicht es den Papierherstellern, den Materialeinsatz, die Papierdicke und die Reißfestigkeit ihrer Produkte optimal auf den späteren Einsatzzweck abzustimmen. Als Beispiel nennt Schennach Papiersäcke für die Zementindustrie. Diese müssen eine gewisse Luftdurchlässigkeit haben, da der Zement bei der Abfüllung innerhalb von drei Sekunden mit Druckluft in den Sack geblasen wird. Zugleich muss das Papier jedoch auch dicht halten, auf Grund des hohen Gewichtes des Zementes sehr stabil und außerdem noch reißfest sein. Zeitungspapier wiederum muss vor allem in jene Richtung, in der es durch die Druckmaschine läuft, hohe Zugfestigkeit aufweisen. Und Karton kann je nach Anwendung unterschiedlich stark ausgelegt werden. „Mit unseren Erkenntnissen kann die Produktion nun optimiert und auf den jeweiligen Verwendungszweck des Produktes sehr genau abgestimmt werden“, sagt Schennach.

Ausgezeichnete Forschung aus Graz

Aber nicht nur die Industriepartner profitieren von den Erkenntnissen – den beteiligten Forschern und Studenten brachte die Arbeit viel Ruhm ein: mehrere Auszeichnungen, darunter den 2. Preis beim Forschungspreis der Industriellenvereinigung. Außerdem sind aus der Arbeit im CD-Labor zwölf Diplomarbeiten und neun Dissertationen hervorgegangen sowie 49 wissenschaftliche Veröffentlichungen – eine enorm hohe Zahl, zumal die ersten drei Jahre lang erst einmal grundlegende Messmethoden entwickelt werden mussten, um überhaupt richtig mit der Forschung loslegen zu können. „Dieser hohe Output ist auch der guten Zusammenarbeit mit unseren Industriepartnern Mondi, Lenzing und Kehlheim Fibers zu verdanken“, betont Schennach. „Sie haben uns den Spielraum gelassen, nicht nur angewandte Forschung zu betreiben, sondern auch sehr viel Grundlagenforschung.“

Externer Link: www.tugraz.at

Von Blut bis Papier: Fundamentale Erkenntnis im Bereich der Partikelströmungen

Pressemitteilung der TU Graz vom 18.03.2014

Forscher aus Graz, Princeton und Zürich beobachten entscheidendes Phänomen in T-förmigen Abzweigungen

Alles fließt in der Strömungslehre: Ein Forscher der TU Graz ist in Zusammenarbeit mit Kollegen der Princeton University und der ETH Zürich auf ein bisher unentdecktes Phänomen im Strömungsverhalten von Partikeln gestoßen. Partikel, etwa Blutzellen, Gasbläschen oder Zellstoff-Fasern, häufen sich unter bestimmten Voraussetzungen in T-förmigen Abzweigungen an. Entscheidend sind Strömungsgeschwindigkeit, Partikeldichte und Partikelgröße. Mit der Beschreibung dieser Parameter können Partikelansammlungen an den T-förmigen Abzweigungen nicht nur verhindert, sondern künftig auch gezielt hervorgerufen werden – weitreichende Auswirkungen, beispielsweise für die Papierindustrie, könnten sich daraus ergeben. Das grundlegende Ergebnis wurde in der aktuellen Ausgabe des renommierten PNAS Journal veröffentlicht.

Von Blutgefäßen bis zu industriellen Großanlagen: T-förmige Abzweiger spielen als universelle geometrische Einheit in der Natur und technischen Anwendungen eine wichtige Rolle und sind beispielsweise in unseren Blutgefäßen zu finden. Stefan Radl vom Institut für Prozess- und Partikeltechnik der TU Graz hat gemeinsam mit der „Strömungsmechanik-Koryphäe“ Howard Stone von der University of Princeton und Daniele Vigolo von der ETH Zürich erstmals beobachtet, dass Partikel unter bestimmten Voraussetzungen in den T-Abzweigern „gefangen“ werden und sich ansammeln. „Wie so oft in der Forschung war die Beobachtung ein Zufall – wir hatten eigentlich einen anderen Aspekt der Partikelströmung im Fokus“, erklärt Stefan Radl. Die drei Forscher haben daraufhin in Simulationen und praktischen Experimenten untersucht, wann und warum die Partikel an der T-förmigen Weggabelung hängen bleiben. „Drei Faktoren spielen eine Rolle: die Strömungsgeschwindigkeit, die Partikeldichte und die Partikelgröße. Für alle drei Parameter konnten wir Grenzwerte theoretisch ableiten, und mit experimentellen Daten hinterlegen“, so Radl.

Partikel gezielt durchlassen oder „einfangen“

Das beobachtete Phänomen gilt als grundlegender Puzzlestein in der klassischen Strömungsmechanik und wurde vom angesehenen Fachjournal PNAS in der aktuellen Ausgabe publiziert. Mit den drei beschriebenen Parametern, die für das Durchkommen oder Hängenbleiben von Partikeln in T-Abzweigern ausschlaggebend sind, könnten sich Partikelansammlungen künftig gezielt vermeiden lassen. Praktisches Beispiel aus der Medizin: die Gasembolie. „Kommt ein Taucher zu schnell an die Wasseroberfläche, können sich Gasbläschen an den Abzweigungen im Blutgefäß ansammeln, es verstopfen und so zum Tod führen. Auch Gasbläschen verhalten sich wie Partikel, und mit unseren Beobachtungen lässt sich die Entstehung des Gasembolismus und die Vermeidung desselben nun besser erklären“, erläutert Stefan Radl. Aber nicht nur das: „In anderen Fällen kann es wünschenswert sein, bestimmte Partikel gezielt aufzuhalten und aus einer Flüssigkeit herauszutrennen, beispielsweise in der Papierindustrie“, führt Radl weiter aus. Im Rahmen des FFG-Projekts „FLIPPR – Future Lignin and Pulp Processing Research” untersuchen Forscher vom Institut für Papier-, Zellstoff- und Fasertechnik und vom Institut für Prozess- und Partikeltechnik der TU Graz, gemeinsam mit Kollegen der Uni Graz und der BOKU, die Möglichkeiten der gezielten Partikelseparierung. Auch namhafte Partner aus der Papierindustrie unterstützen FLIPPR, und hoffen auf eine baldige Umsetzung der Forschungsergebnisse von Stefan Radl.

Die nächsten Schritte

Bislang haben die Forscher die Experimente zur Partikelströmung in T-Abzweigern in kleinem Maßstab durchgeführt, wo die Erdanziehungskraft noch keine Rolle spielt. „Nun gilt es, die Untersuchungen auf den nächsten Level zu heben und im größeren Maßstab zu wiederholen. In Zukunft wollen wir untersuchen, ob weitere Parameter das Strömungsverhalten der Partikel in Industrieanlagen beeinflussen“, gibt Stefan Radl einen Ausblick.

Originalpublikation:
Daniele Vigolo, Stefan Radl, Howard A. Stone: Unexpected trapping of particles at a T junction. PNAS Early Edition, March 2014.

Externer Link: www.tugraz.at