Blitzkuriere in der Zelle

Pressemitteilung der TU München vom 20.05.2010

Warum Motorproteine eine Bremse haben

Jede einzelne unserer Zellen enthält so genannte Motorproteine, die wichtige Substanzen von einem Ort zum anderen transportieren. Doch darüber wie diese Transportvorgänge genau ablaufen ist bisher nur wenig bekannt. Biophysiker der Technischen Universität München (TUM) und der Ludwig Maximilians Universität München (LMU) konnten nun grundlegende Funktionen eines besonders interessanten Motorproteins aufklären. In der aktuellen Ausgabe der Proceedings of the National Academy of Sciences (USA) berichten sie über ihre Ergebnisse.

Motorisierte Transportproteine sind einer der Schlüssel zur Entwicklung höherer Lebewesen. Erst durch ist es der Zelle möglich, wichtige Substanzen gezielt und schnell an einen bestimmten Ort in der Zelle zu liefern. Bakterien besitzen keine solchen Transportproteine, sie sind daher nicht in der Lage größere Zellen oder sogar große Organismen mit vielen Zellen zu bilden. Ganz besonders wichtig sind Transportproteine in den primären Zilien, den Antennen der Zellen, mit denen sie Informationen aus der Umgebung in die Zelle leiten.

Wie kleine Lastwagen auf einer Autobahn transportieren Kinesine zelluläre Materialien entlang von Proteinfasern, so genannten Mikrotubuli, die die gesamte Zelle durchziehen. Die Kinesine bestehen aus zwei langen, miteinander verdrillten Eiweißketten. Am einen Ende trägt jedes Protein einen Kopf, der an bestimmte Strukturen auf der Oberfläche der Mikrotubuli andocken kann, am anderen Ende wird die Fracht angehängt.

In den Zilien des Fadenwurms Caenorhabditis elegans sind ganz besondere Kinesine am Werk: Sie bestehen aus zwei unterschiedlichen Eiweißketten und eignen sich daher für die Untersuchung der Transportmechanismen besonders gut. Als Fracht hängten die Forscher kleine Kunststoffperlen an die Enden dieser Motorproteine. Mit einer „optischen Pinzette“, einem speziell profilierten Laserstrahl, können sie diese Perlen manipulieren.

Ein Ende des Proteinmoleküls wurde mit der optischen Pinzette fixiert, das andere konnte auf Mikrotubuli laufen. Auf diese Weise maßen die Wissenschaftler die Kraft, mit der das Motorprotein ziehen kann. In winzigen, acht Nanometer großen Schritten läuft das Kinesin-2 in dieser Versuchsanordnung mit seiner Fracht bis zu 1500 Nanometer weit. „Wenn wir es nicht festhalten würden, käme es vermutlich noch sehr viel weiter,“ sagt Zeynep Ökten, vom Institut für Zellbiologie der LMU.

Das untersuchte Kinesin-2 besteht aus einem KLP11- und einem KLP20-Protein. Indem sie die Köpfe der Ketten austauschten, konnten die Forscher zeigen, dass es sich bei KLP11, um ein nicht laufendes Motorprotein handelt. Erst in der Kombination mit dem KLP20 wird daraus ein Transportprotein. Bei weiteren Versuchen konnten sie klären, warum die Natur diese ungewöhnliche Kombination wählt: KLP20-Proteine haben keine „Bremse“. Ein Transportprotein aus zwei KLP20-Einheiten würde permanent laufen und Energie verbrauchen. Das KLP11 bringt dagegen einen Autoinhibierung genannten Mechanismus mit, der dafür sorgt, dass das Transportprotein still steht, wenn keine Fracht angebunden ist.

„Unsere Ergebnisse zeigen, dass ein molekularer Motor, will er in einer Zelle erfolgreich arbeiten, über den einfachen Transport hinaus eine Vielzahl an Funktionen übernehmen muss,“ sagt Professor Matthias Rief aus dem Physik-Department der TU München. Der Motor muss an- und abschaltbar sein, er muss zielgerichtet eine Last aufnehmen und diese am Ziel abgeben können. „Es ist beeindruckend wie die Natur es schafft, all diese Funktionen in einem Molekül zu vereinen. Hier ist sie allen Anstrengungen der modernen Nanotechnologie noch weit überlegen und dient uns allen als großes Vorbild.“

Die Arbeiten wurden gefördert aus Mitteln des Exzellenzclusters Center for Integrated Protein Science Munich, der European Microbiology Organization, der Deutschen Forschungsgemeinschaft (DFG) und der Friedrich-Baur-Stiftung.

Original-Publikation:
Regulation of a heterodimeric kinesin-2 through an unprocessive motor domain that is turned processive by its partner, Melanie Brunnbauer, Felix Mueller-Planitz, Süleyman Kösem, Thi-Hieu Hoa, Renate Dombi, J. Christof M. Gebhardt, Matthias Rief, und Zeynep Ökten PNAS Early Edition, Week following May 17, 2010

Externer Link: www.tu-muenchen.de

Polymere werden berechenbar

Pressemitteilung der TU München vom 03.05.2010

Neues Simulationsverfahren für Kunststoffe und Biopolymere:

Was hält ein neuer Kunststoff aus, wie halten Biopolymere zusammen? Durch eine Vorausberechnung der Eigenschaften, könnten Materialwissenschaftler massiv Entwicklungskosten sparen und Biophysiker die Eigenschaften von Biopolymeren und menschlichen Zellen untersuchen. Doch bisherige Berechnungsmethoden stoßen hier an ihre Grenzen. Ingenieure der Technischen Universität München haben nun die im Ingenieurwesen häufig angewandte Finite-Elemente-Methode so erweitert, dass eine derartige Vorausberechnung möglich wird.

Technische Kunststoffe bestehen aus langen, kettenartigen Molekülen. Deren Beweglichkeit hat einen entscheidenden Einfluss auf die Materialeigenschaften. Könnte man sie besser vorausberechnen, so würde dies bei der Entwicklung neuer Kunststoffe sehr viel Zeit und Geld sparen. Auch die Biologie steht vor ähnlichen Problemen: Biopolymere Netzwerke sind von entscheidender Bedeutung für eine Vielzahl biologisch und medizinisch relevanter Prozesse im menschlichen Körper. Insbesondere sind sie wichtig für Teilung, Bewegung und Verformung von Zellen.

Aufgrund der enormen Komplexität dieser Netzwerke ist eine Untersuchung oft nur mit Computersimulationen möglich. Die Größe und die komplexen Eigenschaften der in Materialwissenschaft und Biologie zu simulierenden Systeme setzen einer präzisen Modellierung jedoch bislang enge Grenzen. Bei Verwendung der bisher in diesen Bereichen üblichen Simulationsverfahren sprengt der Rechenaufwand selbst die Möglichkeiten von Supercomputern.

Professor Wolfgang Wall und sein Team am Lehrstuhl für Numerische Mechanik der TU München haben nun die in den Ingenieurwissenschaften als höchst effizientes Verfahren bekannte Finite-Elemente-Methode so erweitert, dass sie auch für die Simulation der Mikromechanik von Kunststoffen und Biopolymeren eingesetzt werden kann. Die Finite-Elemente-Methode erlaubt es, physikalische Effekte in einem bestimmten Gebiet zu simulieren, indem die Vorgänge auf kleinen Teilgebieten, den Finiten Elementen, in ihrer Auswirkung zusammengefasst werden und so genannten Knoten zugeschlagen werden. Während der Simulation genügt es dann, alle Rechenschritte nur noch in Bezug auf diese diskreten Knoten auszuführen.

Bislang war nicht bekannt, wie bei diesem Verfahren die in der Bio- und Polymerphysik essentiellen Effekte der statistischen Mechanik berücksichtigt werden können. Denn die Moleküle werden durch die Umgebungswärme ständig zufällig angeregt und bewegen sich daher ständig ein klein wenig. Die neu entwickelte Simulationsmethode löst dieses Problem und öffnet damit den Weg zu einer höchst effizienten Simulation der statistischen Polymer- und Biophysik. Dies ermöglicht die computergestützte Analyse auch solcher Systeme, die bislang zu groß und komplex waren.

„Die großen Vorteile der neuen Methode sind ihre Vielseitigkeit, ihre Effizienz sowie ihre solide mathematische Basis“, sagt Professor Wall. Die grundlegende Methode wird bereits für viele verschiedene Probleme aus Technik und Naturwissenschaft genutzt – zur Simulation derartiger Fragestellungen wurde sie jedoch bislang noch nicht eingesetzt. Dazu waren theoretisch anspruchsvolle Erweiterungen nötig. Erfreulicher Weise lassen sich diese jedoch in die Vielzahl bestehender, bereits weit entwickelter Softwarepakete leicht einbauen, um die Methode direkt in Simulationen anwenden zu können.

Mit Hilfe des neuen Simulationsverfahrens wollen die Ingenieure zusammen mit Biophysikern im Rahmen eines Projektes der International Graduate School of Science and Engineering (IGSSE) der TUM wesentliche Fortschritte beim Verständnis des Verhaltens biopolymerer Netzwerke erzielen. „Wir wollen verstehen, wie biopolymere Netzwerke dynamisch auf äußere Belastungen reagieren und dabei z.B. ihre Struktur anpassen.“ sagt Christian Cyron, Doktorand am Lehrstuhl für Numerische Mechanik. Daraus können wir dann ein besseres Verständnis für das mechanische Verhalten menschlicher Zellen gewinnen, das ja ebenfalls maßgeblich von einem biopolymeren Netzwerk, dem Zytoskelett, bestimmt wird. Langfristig können diese Erkenntnisse dann zur Entwicklung neuer medizinischer Technologien führen.

Originalpublikation:
Finite-element approach to Brownian dynamics of polymers, Christian J. Cyron and Wolfgang A. Wall, Physical Review E 80, 066704 2009 – DOI: 10.1103/PhysRevE.80.066704

Externer Link: www.tu-muenchen.de

Schlüsselelemente für eine Elektronik nach Maß

Presseinformation der LMU München vom 22.04.2010

Elektron-Loch-Systeme an Oxidgrenzflächen

Die Grenzflächen komplexer Oxide zeigen oft unerwartete Eigenschaften, die nicht in den Ausgangsmaterialien vorhanden sind. Eine gezielte Manipulation dieser Eigenschaften könnte zu elektronischen Bauteilen mit maßgeschneiderten Funktionen führen. Ein Team um die LMU-Physikerin und Materialwissenschaftlerin PD Dr. Rossitza Pentcheva konnte nun erstmals die Vorgänge an der Grenzfläche von Oxidschichten – hier aus den beiden Isolatoren Lanthanaluminat (LaAlO3) und Strontiumtitanat (SrTiO3) – entschlüsseln. Wie kürzlich von Augsburger Forschern um Professor Mannhart nachgewiesen, entwickelt sich ab einer gewissen Dicke der LaAlO3-Schicht ein zweidimensionales Elektronengas. Dann leitet die bislang isolierende Grenzschicht Strom. „In einer internationalen Kooperation haben wir nun gezeigt, dass sich dieser Effekt durch eine Deckschicht aus SrTiO3 zusätzlich manipulieren lässt“, berichtet Pentcheva. „Besonders spannend ist, dass sich dabei eine Doppellage aus mobilen Elektronen an der Grenzfläche und Löchern an der Oberfläche ausbildet, den positiv geladenen Gegenstücken der Elektronen.“ Dieses Elektron-Loch-System, bei dem die Ladungsträger nur ein bis zwei Nanometer voneinander getrennt sind, könnten Schlüsselelemente in der weiteren Miniaturisierung elektronischer Bauelemente werden. (Physical Review Letters online, 22. April 2010)

Übergangsmetalloxide sind außerordentlich spannende Werkstoffe, weil sie dank der starken Wechselwirkung ihrer Elektronen vielfältige Eigenschaften zeigen. Als Hochtemperatur-Supraleiter etwa leiten sie bei tiefen Temperaturen elektrischen Strom ohne Energieverluste. Manche Oxide sind dagegen magnetisch oder ferroelektrisch, etwa weil sie ein permanentes elektrisches Dipolfeld aufbauen. Manchmal kann ein Magnetfeld auch den elektrischen Widerstand des Materials extrem stark verändern. Dieser kolossale Magnetowiderstand ähnelt dem Riesenmagnetowiderstand, auf dem die Leseköpfe von Festplatten basieren. So könnten Übergangsmetalloxide die Grundlage für eine künftige Spintronik bilden, welche die Ladung der Elektronen und auch deren magnetisches Moment für die Informationsverarbeitung nutzt.

Die Herstellung von oxidbasierten Schichtstrukturen mit atomarer Präzision ist erst seit Kurzem möglich. Um Materialien mit maßgeschneiderten Eigenschaften zu erhalten, müssen im Labor eine Vielzahl von Parametern variiert werden. Da im Experiment mehrere Faktoren zusammenwirken, können allerdings die Ursachen oft nicht eindeutig identifiziert werden. Deshalb spielen komplexe quantenmechanische Simulationen eine große Rolle, mit deren Hilfe das Verhalten eines Materials auf der atomaren Ebene berechnet werden kann.

Entsprechend modellierten die Forscher um PD Dr. Rossitza Pentcheva am Department für Geo- und Umweltwissenschaften der LMU die elektronischen Phänomene bei Übergangsmetalloxiden, indem sie die quantentmechanischen Wechselwirkungen einzelner Atome an den Grenzflächen zwischen LaAlO3- und SrTiO3-Schichten berechneten. „Wir haben einen neuen und besonders einflussreichen Parameter gefunden“, sagt die Materialwissenschaftlerin. „Wie sich in Zusammenarbeit mit Kollegen der University of California in Davis gezeigt hat, lässt eine SrTiO3 Deckschicht das System schon bei einem deutlich dünneren LaAlO3-Film elektrisch leitend werden.“ Experimente an der niederländischen Universität Twente haben dies bestätigt.

Weil LaAlO3 formal aus positiv und negativ geladenen Lagen besteht, ist seine Oberfläche polar. Um diesen Ladungsunterschied auszugleichen, entsteht an der Grenzfläche zum neutralen SrTiO3 ein Elektronengas. Zudem bildet sich an der Oberfläche des Systems eine Lage mit positiven Ladungsträgern, den Löchern – als Gegenstück zu den negativ geladenen Elektronen. Derartige Elektron-Loch-Paare sind Schlüsselelemente in der Halbleiterelektronik. So beruht etwa die Funktion von Solarzellen darauf, dass Licht ein Elektron auf ein neues Energieniveau hebt. Dabei bleibt ein Loch zurück. Im Gegensatz zu Halbleitern sind in diesem System die Elektron-Loch Schichten nur ein bis zwei Nanometer voneinander entfernt.

Solche Systeme könnten eine Schlüsselrolle für die weitere Miniaturisierung von Elektronik-Bauelementen spielen. „Wir wollen nun gezielt nach Materialkombinationen mit neuartigen elektronischen Eigenschaften suchen“, sagt Pentcheva. Dieses Projekt soll im Rahmen des von der Deutschen Forschungsgemeinschaft (DFG) geförderten Sonderforschungsbereichs SFB/TRR80 „Von elektronischen Korrelationen zur Funktionalität“ durchgeführt werden. (CR/suwe)

Publikation:
„Parallel electron-hole bilayer conductivity from electronic interface reconstruction“,
R. Pentcheva, M. Huijben, K. Otte, W.E. Pickett, J.E. Kleibeuker, J. Huijben, H. Boschker, D. Kockmann, W. Siemons, G. Koster, H.J.W. Zandvliet, G. Rijnders, D.H.A. Blank, H. Hilgenkamp, and A. Brinkman
Physical Review Letters, 22 April 2010

Externer Link: www.uni-muenchen.de

Neuer Ansatz für Supraleiter?

Pressemitteilung der Universität Stuttgart vom 08.04.2010

Physik: Quanten-Spinflüssigkeit simuliert

Elektronen in einer wabenförmigen Kristallstruktur können einen exotischen Zustand der Materie annehmen, den Physiker als „Quanten-Spinflüssigkeit“ bezeichnen. Deren Besonderheit besteht darin, dass ihre Elektronen bis zum absoluten Nullpunkt von minus 273 Grad Celsius ungeordnet bleiben, weil die sonst übliche Tendenz zur Ordnung selbst bei diesen Minusgraden durch die Fluktuationen der Elektronen (Quantenfluktuationen) unterbunden wird. Um das zu erreichen, müssen die Quantenfluktuationen stark genug sein, was in der Natur sehr selten und in Modellen typischerweise kaum realisierbar ist. Zi Yang Meng, Dr. Stefan Wessel und Prof. Alejandro Muramatsu vom Institut für Theoretische Physik III der Uni Stuttgart ist es nun zusammen mit Ihren Würzburger Kollegen Thomas Lang und Prof. Fakher Assaad gelungen, das Auftreten einer Quanten-Spinflüssigkeit in einem realitätsnahen Modell aufzuzeigen – mit einer aufwendigen Simulationsrechnung, die sowohl die gegenseitige Abstoßung der Elektronen als auch ihre Quantenfluktuationen effizient erfasst. Über die Arbeit berichtete die Zeitschrift „Nature“ in ihrer Ausgabe vom 8. April.

Elektronen in einem Kristall treten in unterschiedlichen Zuständen auf. In vielen Fällen entscheidet die Kristallstruktur, ob das Material zum Beispiel ein Metall mit einer elektrischen Leitfähigkeit ist oder ein Isolator, der keinen elektrischen Strom trägt. Es gibt jedoch isolierende Materialien, in denen aufgrund der Kristallstruktur eigentlich metallisches Verhalten zu erwarten wäre. In solchen so genannten „Mott-Isolatoren“ unterdrückt die gegenseitige Abstoßung der Elektronen das metallische Verhalten, und die Elektronen sitzen regelrecht an den Atomen fest. Diese lokalisierten Elektronen neigen dazu, bei sinkenden Temperaturen geordnete Zustände anzunehmen, wie etwa magnetisch geordnete Strukturen. Bei einer „Quanten-Spinflüssigkeit“ hingegen handelt es sich um einen nicht-magnetischen Mott-Isolator, der durch Effekte der Quantenmechanik stabilisiert wird.

Die von den Wissenschaftlern gefundene Quanten-Spinflüssigkeit lässt sich in Materialen erzeugen, in denen die Atome in einer Ebene das Muster einer Honigwabe bilden. Genau diese Struktur zeigt zum Beispiel Graphen, ein zweidimensionales Material aus Kohlenstoffatomen, das erst seit wenigen Jahren hergestellt und seitdem intensiv erforscht wird. Gelänge es, in einer solchen Gitterstruktur die Wechselwirkungen zwischen den Elektronen gezielt zu erhöhen, ließe sich der Zustand einer Quanten-Spinflüssigkeit schaffen. Dass dies in Graphen gelingen kann, erscheint jedoch fraglich. Daher schlagen die Stuttgarter und Würzburger Physiker einen anderen Weg vor, etwa Schichten aus Elementen der vierten Hauptgruppe mit einer höheren elektronischen Wechselwirkung. Als ersten Schritt in diese Richtung war es Chemikern gelungen, graphen-artige Strukturen aus Silizium-Atomen zu synthetisieren. Weiterhin sollte sich die Quanten-Spinflüssigkeit mit ultra-kalten Atomen realisieren lassen. Denn das von den Theoretikern untersuchte Modell beschreibt neben Elektronen im Festkörper auch das Verhalten von ultra-kalten Atomen in optischen Gittern. In diesem neuen Forschungsfeld wurden in den letzten Jahren große Fortschritte gemacht, die hoffen lassen, dass sich auch die Quanten-Spinflüssigkeit mit ultra-kalten Atomen realisieren lässt. Interessant ist diese auch deshalb, weil sie ein möglicher Ausgangspunkt für einen so genannten Supraleiter sein kann: Elektrischer Strom würde dann ganz ohne Widerstand und damit verlustfrei durch das Material fließen. Anwenden könnte man das zum Beispiel für superschnelle Computerchips oder verlustfreie Stromversorgungsnetze.

In Ihrer Grundlagenforschung untersuchen die Stuttgarter und Würzburger Theoretiker komplexe Zustände von Quanten-Vielteilchensystemen in Festkörpern. Die Quanten-Spinflüssigkeit fanden sie bei der Erforschung des Überganges zwischen den Zuständen „Metall“ und „Mott-Isolator“ in einem theoretischen Modell für Graphene. In der Nähe solcher Übergänge, so fanden die Forscher, sind die Quantenfluktuationen so stark, dass die magnetische Ordnung unterdrückt wird. Auch andere elektronische Ordnungen konnten die Physiker durch systematische Analysen ausschließen. Die dazu notwendigen Berechnungen erfordern den Einsatz moderner Supercomputer. Hier profitierten die Physiker von der Effizienz der Hochleistungsrechenzentren in Stuttgart, Jülich und München. Für die Zukunft erhoffen sich die Wissenschaftler von der Simulation, neue Materialen mit exotischen Zuständen wie die Quanten-Spinflüssigkeit auch gezielt designen zu können.

Die Untersuchungen fügen sich eng in das Forschungsumfeld beider Universitäten ein. So wird an der Uni Stuttgart innerhalb des Sonderforschungsbereichs SFB/TRR 21 „Controll of Quantum Correlations in Tailored Matter“ der Deutschen Forschungsgemeinschaft (DFG) gezielt an der Realisierung maßgeschneiderter Quantenmaterie geforscht. Der Sprecher dieses SFBs ist Prof. Tilmann Pfau von der Uni Stuttgart. Komplexe elektronische Zustände stehen auch im Zentrum der neu gegründeten Würzburger DFG-Forschergruppe „Electron Correlation-Induced Phenomena in Surfaces and Interfaces with Tuneable Interactions“, deren Sprecher der Würzburger Prof. Ralph Claessen ist.

Veröffentlichung:
Zi Yang Meng, Thomas C. Lang, Stefan Wessel, Fakher F. Assaad, and Alejandro Muramatsu: „Quantum spin-liquid emerging in two-dimensional correlated Dirac fermions“, Nature, DOI:10.1038/nature08942.

Externer Link: www.uni-stuttgart.de

Nature-Studie: Klassische Messgrenze überschritten

Pressemitteilung der Universität Heidelberg vom 01.04.2010

Physiker der Universität Heidelberg nutzen quantenmechanische Konzepte

Bereits im Alltag lässt sich an der Zeigerstellung einer Uhr ablesen: Die Genauigkeit der Anzeige ist aus technischen Gründen limitiert. Für Physiker markiert das sogenannte Schrotrauschen eine Grenze. Es tritt zum Beispiel auf, wenn elektrischer Strom eine potentielle Barriere überwinden muss. Alle derzeitigen Präzisionsmessungen arbeiten nahe an diesem Limit. Physiker der Universität Heidelberg konnten demonstrieren, dass unter Verwendung von quantenmechanischen Konzepten diese Grenze sogar noch überschritten werden kann. Die Ergebnisse wurden jetzt in der Online-Ausgabe von Nature vorgestellt.

„Um nach dem derzeitigen Kenntnisstand der grundlegenden Theorie der Quantenmechanik nahe an dieser klassischen Messgrenze arbeiten zu können, mussten wir atomare Gase auf extrem tiefe Temperaturen 0.000 000 01°K über den absoluten Nullpunkt abkühlen“, erläutert Prof. Dr. Markus Oberthaler, Leiter der Arbeitsgruppe „Synthetic Quantum Systems“ am Heidelberger Kirchhoff-Institut für Physik und Ko-Autor der Nature-Studie. Die Stabilität des Laboraufbaus wurde so weit getrieben, dass die Ablesegenauigkeit nurmehr durch die klassische Schrotrauschgrenze gegeben war. Um dieses Limit zu unterbieten, wurden sodann quantenmechanische Ressourcen durch die gezielte Manipulation der mikroskopischen Wechselwirkung zwischen den Atomen erzeugt. Die neu entwickelte Methode, betont der Heidelberger Physiker, „ist so hervorragend, dass damit das weltweit größte quantenmechanisch verschränkte System von 170 Teilchen realisiert werden konnte – zehnmal mehr Teilchen als jemals zuvor. Darüber hinaus wurden damit Messungen durchgeführt, die explizit und mit bloßem Auge erkennbar die klassische Messgrenze überschritten.“

Ob diese Errungenschaft der fundamentalen Physik auch im Alltag eine Anwendung erfahren wird, ist nicht unwahrscheinlich: „Schon derzeit sind wir von Präzisionsphysik umgeben. Fast in jedem Auto sieht man Navigationsgeräte, die auf dem Prinzip der präzisen Zeitmessung basieren. Diese wiederum arbeitet derzeit schon nahe an der klassischen Messgrenze. Will man den Zeitstandard verbessern, scheint mit den aktuellen Ergebnissen ein neuer Weg möglich“, so Prof. Oberthaler.

Originalveröffentlichung:
C. Gross, T. Zibold, E. Nicklas, J. Estève & M. K. Oberthaler:
Nonlinear atom interferometer surpasses classical precision limit, Nature online (31. März 2010)

Externer Link: www.uni-heidelberg.de