Gassensoren warnen vor Schwelbränden

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.09.2015

Rauchmelder sind allgegenwärtig. Dennoch geht die Zahl der Brandopfer jährlich in die Tausende. Brandgasmelder, die auf Kohlenstoffmonoxid und Stickoxide reagieren, entdecken Brände im Frühstadium. Durch ein neues Messprinzip von Fraunhofer-Forschern werden die teuren Sensoren nun kostengünstig und damit bereit für den Massenmarkt.

Die Sterne funkeln am Himmel, die Bewohner des Hauses schlummern in ihren Betten. Soweit nichts Besonderes, doch in dieser Nacht steht ihr Leben auf dem Spiel: Ein Kabel schwelt vor sich hin, giftiges Kohlenstoffmonoxid verbreitet sich unbemerkt im Raum. Die Rauchmelder allerdings geben keinen Alarm – sie reagieren nur auf Rauch, der bei einem Schwelbrand jedoch nicht immer entsteht. Kurzum: höchste Gefahr für Schlafende.

Kohlenstoffmonoxid zuverlässig erkannt

Gassensoren könnten die Bewohner rechtzeitig wecken und somit Leben retten. Etwa der Sensor, den Forscher am Fraunhofer-Institut für Physikalische Messtechnik IPM in Freiburg entwickeln: Er erkennt einen Brand nicht über den Rauch, sondern über das entstehende Kohlenstoffmonoxid. Auch bei Stickstoffdioxid, das etwas später im Brandverlauf entsteht, schlägt er Alarm. Kleinste Mengen der Gase reichen dabei aus. »Die Sensoren sind sehr empfindlich. Sie reagieren also schon sehr früh im Brandverlauf, schließlich zählt jede Sekunde«, erläutert Dr. Carolin Pannek, Wissenschaftlerin am IPM.

Zwar sind solche lebensrettenden Kohlenstoffmonoxid-Sensoren heute bereits erhältlich, für den Massenmarkt jedoch zu teuer. Darüber hinaus sind sie wartungsaufwändig und verbrauchen viel Strom. Handelsübliche, preisgünstige Halbleiter-Gassensoren können aber beispielsweise nicht zwischen verschiedenen Gasen unterscheiden. Nicht so der neuartige Sensor der IPM-Forscher: »Er reagiert gezielt auf Kohlenstoffmonoxid und Stickstoffdioxid, bei allen anderen Gasen bleibt er ruhig. Mit einem Rolle-zu-Rolle-Verfahren können wir die Sensoren sehr günstig herstellen und somit für den Verbraucher erschwinglich machen«, bestätigt Pannek.

Das ist vor allem dem Farbstoff zu verdanken, dem Herzstück der Sensoren. So wie in jedes Schloss nur ein ganz bestimmter Schlüssel passt, reagiert jeder dieser Farbstoffe auf ein ganz spezielles Gas – im Sensor gibt es daher einen Farbstoff für Kohlenstoffmonoxid, einen weiteren für Stickstoffdioxid. Das Prinzip: Eine kleine LED strahlt blaues Licht in einen Wellenleiter, in dem das Licht auf einem Zickzackkurs bis zum anderen Ende läuft. Dort trifft es auf einen Detektor. Der Wellenleiter ist mit einem Polymer beschichtet, in das Farbstoffe gemischt sind. Ist die Luft im Raum unauffällig, ist der Farbstoff im Polymer lila – er nimmt nur wenig blaues Licht auf. Sprich: Es gelangt viel blaues Licht zum Detektor. Ist dagegen Kohlenstoffmonoxid in der Raumluft, ändert der Farbstoff seine Farbe: Er wird gelb. Der gelbe Farbstoff nimmt mehr blaues Licht auf – die Lichtmenge am Detektor sinkt. Wird dabei ein Grenzwert unterschritten, löst dies den Alarm aus. Um auch Stickstoffdioxid nachweisen zu können, integrieren die Forscher in den Sensor noch einen zweiten Wellenleiter mit einem anderen Farbstoff.

Kaum teurer als ein Rauchmelder

Die Forscher achten darauf, dass der Sensor sich im Massenverfahren möglichst kostengünstig herstellen lässt – schließlich möchte kaum jemand deutlich tiefer in die Tasche greifen müssen als für einen herkömmlichen Rauchmelder, auch wenn der Gassensor eine erheblich höhere Sicherheit bietet. »Der Sensor wird, fertigt man ihn in Massen, in einem ähnlichen Preisrahmen liegen wie Rauchmelder – und wesentlich günstiger sein als die wenigen am Markt verfügbaren Brandgasmelder«, ist sich Pannek sicher.

Für die Brandgas-Sensoren setzen die Wissenschaftler auf die gleichen Komponenten wie beim Rauchmelder, ergänzt um den Lichtwellenleiter. Eine Elektronik gibt die Schwelle an, ab der der Sensor Alarm schlagen soll. Für die Herstellung dieser Komponenten haben die Forscher gemeinsam mit einem Industriepartner ein Rolle-zu-Rolle-Verfahren entwickelt: Ähnlich wie beim Zeitungsdruck werden dabei 15 000 Messsysteme auf einer Endlosrolle gefertigt. Das Verfahren ist sowohl massentauglich als auch preiswert. Bis die Gassensoren in Wohn- und Schlafzimmern hängen werden, wird es sicherlich noch ein paar Jahre dauern.

Externer Link: www.fraunhofer.de

Smarter Fahrersitz, der auf Gesten reagiert

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 03.08.2015

Viele Berufskraftfahrer leiden unter Rückenproblemen. Eine Ursache: Fahrzeugsitze, die unzureichend auf den jeweiligen Fahrer eingestellt sind. Fraunhofer-Forscher haben jetzt gemeinsam mit der Isringhausen GmbH & Co. KG einen Fahrersitz entwickelt, der sich über einfache Handbewegungen in Form und Position anpassen lässt.

Langes Sitzen und wenig Bewegung gehören für Berufskraftfahrer zum Arbeitsalltag: Durchschnittlich neun Stunden pro Tag verbringen sie in der Fahrzeugkabine. Die Folge: Viele Fahrer haben irgendwann Probleme mit dem Rücken. Krankenkassen konnten in Untersuchungen nachweisen, dass ein Fahrersitz, der in Form und Position auf die Person am Steuer angepasst ist, Rückenleiden effektiv entgegenwirken kann. Zwar verfügen die meisten Lkw-Sitze über eine große Auswahl an Einstellmöglichkeiten – diese werden aber von einem Großteil der Fahrer nur sporadisch genutzt, da die Bedienung komplex ist und die Zeit für eine korrekte Einstellung oftmals fehlt.

Ein neues, intuitives Bedienkonzept soll dies ändern: Forscher des Fraunhofer-Instituts für Silicatforschung ISC in Würzburg haben in Kooperation mit der Isringhausen GmbH & Co. KG einen Fahrzeugsitz entwickelt, der sich intuitiv über Gesten justieren lässt. »Wir nutzen dazu eine sensorbasierte Gestensteuerung im Fahrersitz«, erklärt Johannes Ehrlich vom Center Smart Materials (CeSMa) des Fraunhofer ISC. »Mit Hilfe einfacher Handbewegungen kann der Fahrer den Sitz vor und zurück sowie nach oben und unten fahren. Außerdem kann er auf die gleiche Weise die Neigung der Oberschenkelstütze und der Rückenlehne individuell einstellen.«

Sensoren, die auf Handwischen reagieren

Damit der Sitz auf die Gesten des Fahrers reagiert, integrierten die Wissenschaftler verschiedene Sensoren in die Seitenabdeckung aus Kunststoff. Piezosensoren – das sind Sensoren, die auf Druck reagieren – sorgen dafür, dass die Gestensteuerung aktiviert wird: Der Nutzer muss dazu einen bestimmten Punkt an der Seitenabdeckung kurz drücken. »So verhindern wir, dass die Gestensteuerung ungewollt ausgelöst wird«, erklärt Ehrlich. Außerdem lassen sich über diesen Punkt durch mehrmaliges Drücken Sitzpositionen abspeichern. Das ist sinnvoll, wenn mehrere Fahrer einen Lkw nutzen. Die Gestenerkennung erfolgt über Näherungssensoren, die ebenfalls in der Seitenabdeckung verbaut sind. Sie können kleinste Änderungen von elektrischen Feldern in der Umgebung erfassen, wie sie etwa durch Handbewegungen hervorgerufen werden. Eine ebenfalls am ISC entwickelte Software wertet diese Sensoren aus und leitet daraus die Bewegungsrichtung der Hand ab. Die Anordnung der Sensoren in der Seitenabdeckung ist dabei entscheidend: »Wir haben auf der relativ begrenzten Fläche die Elektroden so angebracht, dass die erforderlichen Steuerungsgesten einfach und ergonomisch günstig sind«, erläutert Ehrlich. Darüber hinaus gewährleistet eine intelligente Algorithmik in der Software, dass mehrere Elektroden gleichzeitig ausgewertet werden können, um eine Fehlbedienung zu reduzieren.

Um den Sitz einzustellen, führt der Fahrer entlang der Seitenabdeckung kurze Handbewegungen aus – man kann sich das in etwa vorstellen wie das »Wischen« bei Touchscreens. Das heißt, er muss die Abdeckung dabei leicht berühren. Je nach Bewegungsrichtung der Geste (hoch-runter, vor-zurück oder diagonal) werden die einzelnen Sitzelemente angepasst. Hat der Bediener seine Einstellungen vorgenommen, wird die Gestensteuerung automatisch beendet, sobald die Hand sich aus dem Sensorbereich entfernt. Über eine aufleuchtende LED erhält der Fahrer die Rückmeldung, ob seine Gesten erfasst werden konnten.

Die Isringhausen GmbH realisierte gemeinsam mit den Wissenschaftlern des ISC bereits einen voll funktionsfähigen Prototyp des Sensor-Sitzes. Er wird dieses Jahr unter anderem auf der IAA in Frankfurt vorgestellt. Derzeit konzentrieren sich die Projektpartner auf das Marktsegment Nutzfahrzeuge. Langfristig wäre der gestengesteuerte Sitz aber auch für Mittel- oder Oberklassewagen interessant, um den Komfort für den Fahrer zu erhöhen.

Externer Link: www.fraunhofer.de

Nano-Poren für bessere Radarsensoren

Presseaussendung der TU Wien vom 06.07.2015

Nanostrukturen, in die Oberfläche geätzt: Eine neue Bearbeitungstechnik der TU Wien verbessert die elektrischen Eigenschaften von Glaskeramik-Leiterplatten.

Man nimmt entspannt den Fuß vom Gaspedal, ein Radar-Sensor erkennt den Abstand zu den anderen Autos und passt die Geschwindigkeit intelligent an. Solche Technologien sorgen heute bereits für mehr Sicherheit im Straßenverkehr, ihre Verbreitung wird noch weiter zunehmen. Aus elektrotechnischer Sicht ist die Herstellung solcher Sensoren allerdings recht schwierig: Die Sensoren sollen mit sehr hohen Frequenzen arbeiten und trotzdem präzise und effizient funktionieren. An der TU Wien wurde nun eine neue Bearbeitungstechnik entwickelt, mit der man glaskeramische Leiterplatten ganz gezielt nanostrukturieren kann. Damit lassen sich Materialeigenschaften anpassen und das elektromagnetische Verhalten des Sensors wird deutlich verbessert.

Das Material beeinflusst die Strahlung

Die Antennen eines Radarsensors haben wenig mit den langen Metallstäben gemeinsam, die aus einem Radiogerät herausragen. Sensor-Antennen werden heute sehr klein gebaut und direkt auf die Leiterplatten aufgebracht. Die Leiterplatten selbst können beispielsweise aus spezieller Glaskeramik bestehen („Low Temperature Cofired Ceramics“, LTCC), die aus verschiedenen Schichten aufgebaut ist, zwischen denen  Leiterbahnen angebracht sein können. Auf der obersten Schicht befindet sich die Patch-Antenne.

„Die Abstrahlcharakteristik einer Antenne wird stark vom darunterliegenden Material beeinflusst“, erklärt Prof. Ulrich Schmid vom Institut für Sensor- und Aktuatorsysteme der TU Wien. Abhängig von den elektromagnetischen Eigenschaften der Leiterplatte kann das Material die Abstrahlung stören, es kann die ausgesendeten Wellen absorbieren und sich dabei im Extremfall so sehr aufheizen, dass Halbleiterchips in Mitleidenschaft gezogen werden. Besonders problematisch ist das im Hochfrequenzbereich: Radar-Sensoren von Autos arbeiten bei etwa 77 GHz, das hat einerseits technische Gründe, andererseits auch juristische: Dieser Frequenzbereich wurde gesetzlich für Radarsensoren im Straßenverkehr reserviert.

Um störende Materialeffekte zu verhindern hat man bereits versucht, die Glaskeramik der Leiterplatten mit organischen Materialien zu verbinden, doch das bringt wieder neue Probleme mit sich. „Übergänge zwischen unterschiedlichen Materialien sollte man eher vermeiden“, sagt Ulrich Schmid. Ganz besonders dann, wenn man es mit unterschiedlichen Materialgruppen zu tun hat, die sich bei Erwärmung unterschiedlich stark ausdehnen, sinkt die Lebensdauer des Radarsensors.

Der Trick mit den Nano-Poren

An der TU Wien suchte man daher nach einer Methode, die elektromagnetischen Eigenschaften der Leiterplatten ganz gezielt zu verändern, ohne dafür ein zusätzliches Material verwenden zu müssen. Die Glaskeramik besteht aus winzigen Körnchen, die durch Hitze „aneinandergebacken“ werden. Dabei entsteht Feldspat, der sich mit Säure wegätzen lässt – das restliche Substratmaterial bleibt übrig. Das Forschungsteam stellte fest, dass man das Glaskeramik-Material auf diese Weise mit einer komplizierten Porenstruktur im Nano-Maßstab versehen kann, wodurch sich lokal die Eigenschaften des Materials verändern.

Die Durchlässigkeit eines Materials für elektrische Felder wird als „elektrische Permittivität“ bezeichnet. „Vor der Säurebehandlung messen wir eine Permittivität von sieben bis acht – durch die Nanoporen sinkt die Permittivität um bis zu 30% – und das mit geringstem technologischem Aufwand und in konventionellen Tapesystemen, die gar nicht für diesen Ätzprozess hergestellt wurden. Das ist beachtlich“, sagt Dr. Achim Bittner. Bittner untersuchte diesen Effekt bereits vor mehreren Jahren, nun entwickelte sein Kollege Frank Steinhäußer in Zusammenarbeit mit der österreichischen Galvanik-Firma Happy Plating die Technik weiter und erzielte dabei sehr vielversprechende Ergebnisse. Die weiteren Herstellungsschritte für die Antennenplatine wurden von deutschen Partnern durchgeführt. So wurden die Glaskeramiken von der Firma MSE aus Material von der Fa. Kerafol gesintert. Die Hochfrequenzsimulationen sowie das Design der Antenne wurden an der Universität Erlangen-Nürnberg sowie von der Fa. Astyx durchgeführt.

Die neue Ätz-Technik kann man punktgenau einsetzen, sodass die Glaskeramik an unterschiedlichen Stellen unterschiedliche Eigenschaften erhält. Das kann beispielsweise bei Arrays aus mehreren Antennen sehr nützlich sein, die zusammengeschaltet werden, um eine elektromagnetische Welle in eine ganz bestimmte Richtung zu senden. Außerdem wird man die Technik in Zukunft als Diagnosemethode einsetzen, um mehr über das Verhalten des Glaskeramikmaterials zu erfahren und sie weiterhin grundlegend verbessern zu können. (Florian Aigner)

Externer Link: www.tuwien.ac.at

Banknoten-Check mit ultraschnellem Zeilensensor

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.06.2015

Schnelligkeit und eine exakte Bildwiedergabe sind das A und O bei der Qualitätsprüfung im Sicherheitsdruck. Herkömmliche Bildsensoren stoßen hier an ihre Grenzen. Fraunhofer-Forscher haben einen ultraschnellen Zeilensensor entwickelt, der hochwertige Bilder liefert und Banknoten mit fehlerhaften Sicherheitsmerkmalen identifiziert.

Allein im ersten Halbjahr 2014 wurden nach Angaben der Deutschen Bundesbank knapp 25 000 falsche Euro-Banknoten im Wert von 1,5 Millionen Euro registriert. Um Geldfälschern ihr kriminelles Handwerk zu erschweren, werden Banknoten mit speziellen Sicherheitsmerkmalen ausgestattet. Dazu zählen winzige Strukturen, die mit bloßem Auge nicht sichtbar sind, sowie Hologramme mit Kippeffekten. Dabei verändert sich das Motiv, wenn man es aus unterschiedlichen Perspektiven betrachtet. Qualitätsprüfungen beim Druck sollen mit Hilfe spezieller Kameras sicherstellen, dass diese Merkmale auf jeder Banknote fehlerfrei vorhanden sind.

Das AIT Austrian Institute of Technology ist am internationalen Markt führend in der Herstellung solcher Prüfsysteme für den Sicherheitsdruck. Für die Entwicklung eines neuen Sensors hat die österreichische Forschungseinrichtung das Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS in Duisburg mit ins Boot geholt. Denn heute verfügbare Sensoren stoßen mittlerweile an ihre Grenzen: Ihre Geschwindigkeit reicht oft nicht aus, um die Qualität in Echtzeit während des Produktionsprozesses zu prüfen.

Kamera nimmt 200 000 Farbbilder pro Sekunde auf

Mit dem 60-Zeilen-Sensor, den die Duisburger Experten entwickelt haben, gehören diese Nachteile der Vergangenheit an: »Unser Sensor ist doppelt so schnell wie heute verfügbare Lösungen und liefert gleichzeitig qualitativ hochwertige Bilder in sehr hoher Auflösung«, erklärt Werner Brockherde vom IMS. Der Sensor erfasst die Geldscheine – ähnlich wie ein Scanner – Zeile für Zeile, wenn sie aus der Druckerpresse kommen. Pro Sekunde nimmt die Kamera dabei bis zu 200 000 Farbbilder auf, bei Belichtungszeiten von Millionstel Sekunden. Eine Software vergleicht die Bildaufnahmen mit einem Sollbild und identifiziert Banknoten mit fehlerhaften Sicherheitsmerkmalen. Um die hohe Geschwindigkeit zu erreichen, haben die IMS-Wissenschaftler für jede Pixelspalte eine eigene Auslesekette auf dem Chip integriert. Zudem entwickelten sie spezielle Photopixel, dank derer man trotz der kurzen Belichtungszeiten mit herkömmlichen Optiken arbeiten kann. In jeder Pixelspalte werden die drei Farben Rot, Grün und Blau gleichzeitig und über die gesamte Pixelfläche erfasst. Dies sorgt für eine qualitativ hochwertige Farbwiedergabe. Eine weitere Besonderheit des Sensors: Die hohe Anzahl an Zeilen ermöglicht es, Objekte aus unterschiedlichen Blinkwinkeln zu erfassen. »Damit lassen sich erstmalig auch Oberflächenstrukturen in 3D wie etwa Kippeffekte von Hologrammen überprüfen«, sagt Brockherde.

Die spezielle Architektur des Sensors eröffnet Spielräume für weitere Anwendungen. Dank der hohen Zeilenanzahl ließe sich sein Wellenlängenspektrum noch erweitern – bis in den UV- oder Infrarotlicht-Bereich. Das wäre auch für das Recycling von Kunststoffen interessant, wo der Sensor geschredderte Materialien anhand ihrer Farbinformationen identifizieren und so eine Trennung erleichtern könnte. Mit der Fähigkeit, auch 3D-Oberflächen zu analysieren, eignet er sich zudem für die Qualitätsprüfung unterschiedlicher Materialien in der industriellen Fertigung. Ein weiteres Einsatzgebiet ist die Untersuchung von Schienen oder Fahrdrähten der Bahn: Selbst bei einer Geschwindigkeit von rund 300 km/h könnte der Sensor gestochen scharfe Bilder mit einer Auflösung von bis zu 0,4 mm liefern und so winzigste Haarrisse erkennen. Erdnahe Satelliten, die mit einem solchen Sensor ausgestattet sind und die Erde mit einer Geschwindigkeit von 26 000 Kilometern pro Stunde umkreisen, könnten Farbaufnahmen von der Erdoberfläche mit einer Auflösung von drei Zentimetern machen.

Die Markteinführung des neuen Sensors als Herzstück der AIT-Prüfkameras ist für Ende 2015 geplant.

Externer Link: www.fraunhofer.de

THI-Forscher entwickeln Analyse-Tool zur Bestimmung der Zuverlässigkeit von LEDs

Pressemitteilung der TH Ingolstadt vom 27.04.2015

Qualifizierung für den landesweiten Businessplan-Wettbewerb BayStartup

Ein Forscherteam der Technischen Hochschule Ingolstadt (THI), der Technischen Universität München und der FH Aachen hat sich mit einer neuen technischen Entwicklung für den landesweiten Businessplan-Wettbewerb BayStartup qualifiziert. Mit ihrem neuartigen Analyse-Tool, das die Lebensdauer von LEDs bestimmen kann, erreichten sie bereits auf der regionalen Ebene des BayStartup-Wettbewerbs den zweiten Platz (Bezirk Schwaben). Damit ist die Teilnahme auf Landesebene gesichert.

Das Analyse-Tool, das die Forscher entwickelt haben, greift an einer zentralen Kenngröße von LEDs an: dem thermischen Widerstand. Dieser besagt, wie viel Wärme über die Lötstelle zwischen einer LED und der Platine, auf der sie befestigt ist, abgeleitet wird. Dieses Temperaturverhältnis ist entscheidend für die Lebensdauer und damit für die Qualität von LEDs. Je besser eine Lötung vorgenommen wurde, desto länger die Lebensdauer. Aktuell kann der thermische Widerstand nur aufwendig im Labor untersucht werden, in der Industrie ist noch kein Gerät dafür vorhanden.

Die THI-Forscher unter dem Mentorat von Prof. Dr. Gordon Elger, THI-Professor für Elektrotechnik und Informatik, sind im Team für die technische Entwicklung und Umsetzung verantwortlich. Bereits im Sommer dieses Jahres werden sie einen Prototyp für das Messgerät vorstellen können. Ein Serieneinsatz im Qualitätsmanagement von Industrieunternehmen ist ab 2016 geplant.

Externer Link: www.thi.de