Mensch und Maschine Hand in Hand

Pressemitteilung der Universität Passau vom 16.07.2012

Roboter, die sich frei durch den Raum bewegen, einfach steuern lassen und Menschen mit Behinderung den Wiedereinstieg ins Arbeitsleben ermöglichen: Ein bayernweites Forschungsprojekt will aus Maschinen Kollegen machen, Wissenschaftler der Uni Passau entwickeln dafür neue Ansätze zur millimetergenauen Positionsbestimmung in geschlossenen Räumen.

Ulrich Sommer hat einen pragmatischen Traum: Der Fachreferent für Arbeits- und Tagesstruktur bei der Diakonie Neuendettelsau wünscht sich Arbeitsplätze ohne unüberwindbare Hürden für Beschäftigte mit Behinderung – wie etwa Gegenstände, die sie nicht heben und Geräte, die sie nicht bedienen können oder viele verschiedene Abläufe, die sie überfordern. Dafür sollen Roboter sorgen, die Teil-Aufgaben erledigen – und sich im Gegensatz zu gängigen Industrielösungen frei durch den Raum bewegen, mehrere Arbeitsschritte beherrschen, Hindernisse selbstständig erkennen und durch einen Zeigestift dirigiert werden. Informatiker der Universität Passau arbeiten gemeinsam mit Kollegen der Universitäten Erlangen-Nürnberg und Würzburg und dem Unternehmen Reis Robotics im Projekt AsProMed an einem System, das diese technischen Herausforderungen nutzerfreundlich lösen will. Um die Träume vieler Beschäftigter aus den Werkstätten für behinderte Menschen von einer spannenden Tätigkeit zu erfüllen, müssen viele einzelne Technologien kombiniert werden. „Mensch und Maschine arbeiten Hand in Hand. Wir müssen also die Sicherheit der Arbeiter im direkten Kontakt mit dem Roboter garantieren können. Das umfasst die Integration neuartiger Sensorsysteme, Kollisionserkennung und -vermeidung sowie neue Funktionalitäten im Bereich ‚Augmented Reality‘, die Maschinendaten und Abläufe auf einer Benutzeroberfläche verständlich machen“, erklärt Dr. Manfred Dresselhaus, Koordinator für Forschungsprojekte bei Reis Robotics.

Damit alles klappt, muss der Roboter zunächst genau wissen, wo er steht, wo er hin soll und welche Hindernisse im Weg sind. Im Fall der Diakonie Neuendettelsau soll er die Beschäftigten bei der Produktion von maßgefertigten Industriepaletten unterstützen. „Der Mitarbeiter benutzt einen Stift als Steuergerät – die Maschine bewegt sich zur Stelle, auf die er ihn richtet, oder jagt genau dort einen Nagel ins Holz. Dann kann auch jemand im Rollstuhl oder mit nur einem Arm in diesem Bereich arbeiten – wenn der Roboter die Anweisungen millimetergenau umsetzt“, erklärt Gerald Pirkl, Mitarbeiter am Lehrstuhl für Informatik mit Schwerpunkt Eingebettete Systeme. Darin liegt die besondere Herausforderung: Satellitengestützte Methoden wie z.B. GPS stehen in Gebäuden nicht zur Verfügung. Andere Techniken auf Basis von Ultraschall oder WLAN sind für das Anwendungsgebiet zu ungenau und störanfällig, professionelle Systeme auf Basis von Elektromagnetischen Feldern bieten zwar ausreichende Genauigkeit, sind aber für viele Anwendungsgebiete zu teuer und unflexibel. „Wir forschen an einem industriereifen Verfahren, dessen Herstellungskosten so niedrig sind, dass Anwender wie soziale Betriebe sich die Technik leisten können“, sagt Pirkl. Lediglich mit Draht und Prozessoren haben er und seine Kollegen einen Sender entwickelt, der ähnlich wie GPS funktioniert: Kleine Spulen erzeugen ein Magnetfeld, das ein Empfänger – der Eingabestift des Diakoniemitarbeiters – misst und in Abhängigkeit von den Signalstärken zur Berechnung der eigenen Position und Ausrichtung nutzt.

Die Modellierung der Signale und die Fähigkeit von Hard- und Software, Störquellen herauszurechnen, entscheiden über die Genauigkeit des Systems. Ab März 2013 soll es in der Praxis der Diakonie-Werkstatt in Polsingen erprobt werden. „Das bringt unseren Mitarbeitern nicht nur Motivation, weil sie erleben, wie sie eine Einschränkung überwinden können. Es gibt uns auch die Möglichkeit, auf einem strammen Markt die Paletten-Stückzahlen zu erhöhen und noch konkurrenzfähiger zu werden“, erklärt Diakonie-Referent Sommer.

„Wir entwickeln eine Grundlagentechnik, die auch in anderen Bereichen genutzt werden kann“, sagt Uni-Mitarbeiter Gerald Pirkl. Reis Robotics schweben etwa langfristig medizinnahe Anwendungen von Assistenzsystemen vor. Pirkl denkt da häuslicher – an Anwendungen des ‚Assisted Living‘, also Geräte, die sich abschalten, sobald der Benutzer sich von ihnen zu weit und zu lange entfernt oder an Supermärkte, deren Waren entsprechend der Laufwege von Kunden platziert werden. Und dort womöglich auf Paletten der Diakonie Neuendettelsau angeliefert wurden.

Das Forschungsprojekt AsProMed Das Forschungsprojekt „Assistenzsysteme für die Produktion und für medizinnahe Anwendungen“ wird von der Europäischen Union aus dem Europäischen Fonds für regionale Entwicklung (EFRE) und vom Freistaat Bayern kofinanziert. Es hat eine Laufzeit von drei Jahren (bis 2013). (Steffen Becker)

Externer Link: www.uni-passau.de

Segeln mit Nerven aus Glas

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 02.07.2012

Im Rennsport können winzige Details über Sieg oder Niederlage entscheiden. Die Hersteller von Rennyachten suchen daher ständig nach neuen Technologien, um Boote und Besegelung zu optimieren. Eine ausgetüftelte Sensorik hilft jetzt, Grenzen zu überschreiten.

Die Sehnsucht nach immer neuen Rekorden hat den Bootsbau zu einem Hightech-Geschäft gemacht. Die Rennyachten, die heute bei den internationalen Regatten an den Start gehen, sind auf Höchstgeschwindigkeit getrimmte Sportgeräte. Seit Jahrzehnten werden die Boote optimiert, doch unlängst schien die Grenze erreicht: Bei der fünften Etappe des »Volvo Ocean Race« im Frühjahr 2012 von Neuseeland nach Brasilien erreichte nur eines von sechs Teams ohne technische Probleme das Ziel – alle anderen mussten unterbrechen oder aufgeben. Die Regatta eskalierte zur Materialschlacht. Dabei sind die Yachten die besten der Welt: »Diese Boote sind sehr gut gebaut«, beteuert Ian Walker, Skipper des Teams Abu Dhabi Ocean Racing. »Ich glaube nur, wir nehmen sie zu hart her und sie sind so steif und so leicht, dass ich glaube, sie müssen zwangsläufig brechen.« Wie also baut man Yachten, die schneller sind als der Wind und doch so stabil, dass sie den harten Bedingungen auf hoher See trotzen können?

Mit Sensorik auf Kurs gebracht

Ein neues Sensorsystem vom Fraunhofer-Institut für Nachrichtentechnik HHI kann helfen, Schwachstellen rechtzeitig aufzuspüren und Segler warnen, wenn die Belastungsgrenze erreicht ist. Prof. Dr. Wolfgang Schade und sein Team in der Projektgruppe Faseroptische Sensorsysteme in Goslar haben Nerven aus Glas entwickelt, mit denen sich die Kräfte messen lassen, die auf Rümpfe, Masten und Segel wirken. Eigentlich wurde die Technik für das Monitoring von Windkraftanlagen erarbeitet. Dort sind Rotorblätter und Kabel hohen Belastungen ausgesetzt. »Mit faseroptischen Sensoren können wir Delaminationen oder auch Risse in einem frühen Stadium detektieren – lange bevor Brüche oder Ausfälle auftreten«, erklärt der Physiker. »Man benötigt nur ein Glasfaserkabel. In dieses lassen sich Dutzende von Sensoren integrieren.« Das Herzstück der neuen Technik sind »Faser-Bragg-Gitter«, mikroskopische Strukturen, die in definierten Abständen in die Glasfaser integriert sind, und die den Brechungsindex verändern. Licht, das durch die Glasfaser rast, wird von diesen Gitterpunkten reflektiert. Die Wellenlänge des reflektierten Lichts ist abhängig vom Abstand der mikroskopischen Strukturen: Jede Dehnung oder Stauchung der Glasfaser verändert die Wellenlänge. Um das Reflexionsspektrum schnell und kostengünstig messen zu können, haben die Forscher ein Mini-Spektrometer entwickelt. Es besteht aus einem Chip, der Licht in verschiedene Frequenzen aufspaltet. Durch Analyse des Frequenzspektrums können die Experten Rückschlüsse ziehen auf die Kräfte, denen die Glasfaser gerade ausgesetzt ist.

Die Idee, die Messtechnik auch auf Segelbooten einzusetzen, kam Schade während eines Törns im Herbst 2010: »Beim Segeln geht es darum, den Wind optimal zu nutzen und möglichst schnell zu sein, gleichzeitig muss man aber verhindern, dass die Belastungsgrenze überschritten wird. Faseroptische Sensoren können dabei helfen, die Kräfte, denen Rumpf, Mast und Segel ausgesetzt sind, während der Fahrt in Echtzeit zu bestimmen.« Dass sich die Sensoren eignen, um den Segelsport voranzutreiben, konnte Schade wenige Monate später beweisen. Auf der Düsseldorfer Bootsmesse lernte er Jens Nickel kennen, den Chef der Segelwerkstatt Stade. In Nickels Werkstatt wurden in Zusammenarbeit mit dem Tuchhersteller Dimension Polyant ein Großsegel und eine Genua mit einem Spinnennetz aus Glasfasern, das 45 Messpunkte enthielt, versehen und beim anschließenden Probetörn vermessen. »Es stellte sich heraus, dass die Zugspannung im Segelkopf, ganz oben im Segel, höher war als bisher angenommen«, so Nickel. »Die Belastung im Schothorn, dem unteren, hinteren Teil des Segels und im gesamten Achterlieksbereich, der das hintere Ende eines Segels bildet, waren hingegen geringer als gedacht.« Die Segelwerkstatt Stade nutzte die Daten sofort, um die Verarbeitung ihrer Segel zu optimieren. Die stark belasteten Bereiche wurden verstärkt, in den weniger beanspruchten Zonen setzt der Segelmacher jetzt leichteres Material ein.

Als nächstes wollen Schade und sein Team die Messtechnik fit machen für den Einsatz im Wettkampf. »Wir haben jetzt Segellatten mit faseroptischen Sensoren ausgerüstet, die Sportlern künftig dabei helfen können, den optimalen Trimm zu finden. Das ist die Segelstellung, mit der das Boot bei bestimmten Wind- und Wellenverhältnissen am schnellsten ist«, so Schade. Die faseroptischen Sensoren und die angeschlossene, zigarettenschachtelgroße Messtechnik, die LED-Lichtquelle, Spektrometer und Elektronik enthält, liefern erstmals reproduzierbare Werte, die anzeigen, in welchen Bereichen zu viel oder zu wenig Druck herrscht oder wie sich die Belastungszonen verschieben, wenn beispielsweise die Schoten dichter geholt werden. Die Ergebnisse der Sensortechnik sollen an Bord jederzeit und überall abrufbar sein – eine App, die das Abrufen der Echtzeitdaten via Smartphone erlaubt, hat Schades Team bereits entwickelt. Das neue Messsystem kommt unter dem Markenamen NextSailSystem demnächst auf den Markt.

Externer Link: www.fraunhofer.de

Elektrosignale gegen den Schmerz

Presseaussendung der TU Wien vom 25.06.2012

In der Schmerz- und Wundtherapie werden elektrische Impulse eingesetzt, die am Ohr freie Nervenendigungen stimulieren. Elektrotechnische Entwicklungen der TU Wien treiben diese neuartige Therapie voran.

Elektronik, die in unser Nervensystem eingreift und Erstaunliches bewirkt – das klingt fast nach Science-Fiction. An der TU Wien wird allerdings an elektronischen Geräten gearbeitet, die bereits jetzt spürbare Verbesserungen bei Schmerzen oder Durchblutungsstörungen bringen, ganz ohne pharmakologischen Nebenwirkungen. Winzige Nadeln im Ohr leiten spezielle elektrische Impulse in den Körper – die Auswirkungen davon können mit sensibler Messelektronik nun erstmals sofort sichtbar gemacht werden.

Gegen Schmerz, für bessere Durchblutung

Professor Eugenijus Kaniusas leitet die Gruppe für Biosensorik (Institute of Electrodynamics, Microwave and Circuit Engineering) an der TU Wien. Dort werden elektronische Methoden entwickelt, Messdaten über den menschlichen Körper aufzuzeichnen und zu verarbeiten. Durch die nun entwickelten Geräte soll aber nicht nur gemessen, sondern auch direkt in die physiologischen Mechanismen des Körpers eingegriffen werden. Kaniusas arbeitet dabei mit Dr. Jozsef Constantin Széles von der Medizinischen Universität Wien zusammen. Széles erfand und entwickelte eine Methode, mit elektrischer Stimulation über mehrere Tage hindurch Schmerzen zu lindern und die Durchblutung zu fördern. Die Grundidee dieses Verfahrens wurde bereits erfolgreich in klinischen Studien getestet, soll zukünftig durch verbesserte Elektronik und objektive Messtechniken aber noch deutlich wirkungsvoller werden.

Elektronisches Gerät am Ohr

Das Gerät, das an der TU Wien im Rahmen der Kooperation mit Széles entwickelt wird, trägt man direkt am Körper, nahe am Ohr. Dort verlaufen nämlich auch Fasern des Nervus Vagus, der größte Nerv des Parasympathikus. Der Parasympathikus ist ein Teil des autonomen Nervensystems, das für die Steuerung der inneren Organe und des Blutkreislaufs verantwortlich ist. Er wird (als Gegenspieler des aktivierenden Sympathikus) mit Ruhe und Regeneration in Verbindung gebracht. Das Gerät gibt über kleine Titannadeln elektrische Impulse an die Verzweigungen des Nervus Vagus ab und kann ganz einfach von außen drahtlos gesteuert werden – etwa über ein Smartphone.

Wissenschaftliche Daten sammeln

Mit gewöhnlicher Akupunktur oder mit alternativen Heilmethoden hat die neue Methode nichts zu tun, denn stimuliert werden parasymphatische und symphatische freie Nervenendigungen am Ohr. Die Wirkung der Elektrostimulation der Nerven lässt sich direkt überprüfen: „Unsere elektrischen Impulse beeinflussen den Körper auf eine nachvollziehbare Weise, deren Auswirkungen man sofort messen kann“, betont Eugenijus Kaniusas. Zunächst muss die richtige Einstichregion am Ohr gefunden werden. An der TU Wien wurden in Kooperation mit der MedUni Wien Geräte entwickelt, die zur genauen Auffindung des Nervus Vagus dienen.

Maßgeschneiderte Elektrosignale

Den Nerv einfach nur elektrisch zu stimulieren genügt nicht – es kommt darauf an, wie man es macht: „In unseren Experimenten fanden wir heraus, dass die genaue Form der elektrischen Impulsabfolgen entscheidend für den optimalen Erfolg ist“, sagt Eugenijus Kaniusas. An einer Patientengruppe wurden unterschiedliche elektrische Signalformen getestet, um die wirksamsten Impulse zu ermitteln. Die erforderlichen Nerven-Signale hängen auch von der Art des Schmerzes ab: Chronische Schmerzen sprechen auf andere Elektro-Signale an als akuter Schmerz.

Weitere Forschung nötig

Bei der Überprüfung des Erfolgs kann man auf elektronische Messmethoden zurückgreifen: „Mit speziellen Geräten können wir die Herzratenvariabilität messen“, sagt Kaniusas. Daraus lassen sich dann viele Informationen berechnen – auch über das Schmerzempfinden. Damit steht eine objektive Messgröße zur Verfügung, die man laufend überwachen kann. Bei Bedarf kann die Form der elektrischen Stimulation angepasst werden.

Stimulation statt Amputation

Große Erfolge zeigen sich auch bei Patientengruppen mit schlechter peripherer Durchblutung („Peripheral Vascular Disease“). „Wer unter dieser Krankheit leidet, ist oft in der Beweglichkeit stark eingeschränkt, auch mit der Wundheilung gibt es bei schlechter Durchblutung oft schwere Probleme“, sagt Eugenijus Kaniusas. Im schlimmsten Fall müssen sogar Extremitäten amputiert werden. Elektrostimulation kann hier aber sehr hilfreich sein: „Wir können die Steigerung der Durchblutung im Fuß durch die elektrischen Impulse wiederholt ein- und ausschalten – der Effekt ist sehr deutlich zu sehen“, berichtet Kaniusas.

Langfristig sollen Geräte entwickelt werden, die noch flexibler sind und sich auch kurzfristig an Herzschlag und Atmung anpassen, um so die therapeutische Wirkung weiterhin zu steigern. Auch wenn es bereits klinische Studien gibt, in denen die Wirksamkeit der Elektrostimulation bestätigt wurde, sollen noch weitere Studien durchgeführt werden. „Je mehr Daten wir sammeln können, umso bessere Ergebnisse werden wir erzielen“, meint Eugenijus Kaniusas. (Florian Aigner)

Externer Link: www.tuwien.ac.at

Organische Leuchtdioden (OLEDs) als Kompassnadel

Pressemitteilung der Universität Regensburg vom 11.06.2012

Forscher entwickeln neuartige Magnetsensoren

OLEDs gehören zu den Technologien der Zukunft. Schon jetzt finden sie sich in vielen Display- und Beleuchtungsanwendungen. Denn OLEDs erzeugen ein brillantes Bild, sind relativ einfach herzustellen, sehr dünn, energiesparend und sogar auf flexiblen Trägerfolien einsetzbar. Forscher der Universität Regensburg konnten jetzt auch zeigen, dass die elektrische Lichterzeugung dabei sehr stark von magnetischen Feldern abhängt. Damit lassen sich OLEDs als empfindliche Magnetsensoren einsetzen – beispielsweise, um in Navigationsgeräten das Erdmagnetfeld zu vermessen. Prof. Dr. John Lupton vom Institut für Experimentelle und Angewandte Physik der Universität Regensburg entwickelte in Kooperation mit Wissenschaftlern der University of Utah und der University of Sydney ein entsprechendes Gerät, das die Eigenschaften von OLEDs mit der Präzision herkömmlicher Magnetsensoren verbindet. Die Einheit benötigt keine Kalibrierung und funktioniert auch bei extremen Temperaturen.

Für die Umwandlung von Strom in Licht bringen OLEDs positive und negative Ladungen zusammen, sogenannte Elektronen und Löcher. Diese Elementarladungen haben neben der elektrischen Eigenschaft noch ein weiteres Merkmal: So verhält sich ein Elektron mikroskopisch gesehen wie ein kleiner Stabmagnet. Richten sich viele dieser Stabmagnete zusammen in die gleiche Richtung aus, so spricht man von Magnetismus. Während im Alltag die statischen Eigenschaften magnetischer Felder dominieren, so sind für Physiker besonders die dynamischen magnetischen Prozesse – wie beispielsweise die Spinresonanz – interessant. Diese lässt sich leicht veranschaulichen. Läuft man mit einem Kompass unter einer Stromleitung durch, so schlägt die Kompassnadel aus, da der Strom ein Magnetfeld erzeugt, das das Erdmagnetfeld überlagert. Ändert sich die Stromrichtung nun regelmäßig, so ist es möglich, die Kompassnadel gleichmäßig auszulenken oder gar zum Rotieren zu bringen.

Eine solche Rotation können die Stabmagnete der Elektronen auch in OLEDs erfahren. Wie bei einer Reihe von Stabmagneten hängt hier die Wechselwirkung zwischen den Magneten von der jeweiligen Richtung ab: Zwei Nordpole stoßen sich ab, Nord- und Südpol ziehen sich an. Mit einem stromdurchflossenen Draht können die Elektronen in der OLED nun zum Schwingen angeregt werden. Kleinste Änderungen in Magnetfeldern können als eine Änderung der Schwingung exakt ausgemessen werden. Somit wird aus einem – OLED-basierten – Display eines Navigationsgeräts das Navigationsinstrument selbst.

In organischen Halbleitern, aus denen OLEDs hergestellt werden, können Elektronen ihre Eigenschaften als Stabmagneten besonders gut zur Schau stellen. OLED-basierte Magnetfeldsensoren sind deshalb auch außerordentlich empfindlich. Solche Sensoren könnten auch in medizinisch-diagnostischen Verfahren Anwendung finden. So ließe sich mit einem OLED-Display ein magnetisches Feld so genau abbilden, dass sogar biologische Prozesse untersucht werden könnten.

Die Ergebnisse der Regensburger Physiker werden in der renommierten Fachzeitschrift „Nature Communications“ veröffentlicht (DOI: 10.1038/ncomms1895). (Alexander Schlaak)

Externer Link: www.uni-regensburg.de

DNA-Origami-Faltung bildet einen intelligenten Verschluss für Nanoporen

Pressemitteilung der TU München vom 19.04.2012

Zwei Forschungsarbeiten der TUM eröffnen neue Möglichkeiten für den Nachweis einzelner Moleküle:

Eine neu entwickelte Variante von festkörperbasierten Nanosensoren wurde mit ein paar Tricks aus der Bionanotechnologie verbessert, so dass die Möglichkeiten zur Messung von Einzelmolekülen und damit ein markierungsfreies Screening von Proteinen erweitert wurden. Forschern an der TU München ist es gelungen, die Funktionalität von Festkörper-Nanoporen zu verbessern, indem sie diese mit Nanoplättchen-Deckeln aus DNA als eine Art Verschluss versehen haben. Die Ergebnisse dieser Forschungsarbeiten wurden in der Zeitschrift Angewandte Chemie, International Edition, veröffentlicht.

Zentrale Öffnungen in diesen Plättchen fungieren als „Torwächter“ und kontrollieren quasi einzelne Moleküle beim Passieren der Nanoschleuse. Gebildet werden diese Deckel mit dem sogenannten DNA-Origami-Verfahren: Abgeleitet von der japanischen Faltkunst Origami werden DNA-Stränge so synthetisiert, dass sie sich zu maßgeschneiderten Strukturen mit spezifischen chemischen Eigenschaften falten.

Im Verlauf der letzten Jahre ist es der Forschungsgruppe um Prof. Hendrik Dietz an der TUM gelungen, die DNA-Origami-Technik deutlich zu verfeinern. Dabei konnten sie zeigen, dass die mit Origami-Technik hergestellten Strukturen für Forschungszwecke in unterschiedlichsten Bereichen eingesetzt werden können. Ähnliche Fragen zur Messung einzelner Moleküle hat zur gleichen Zeit das Team von Dr. Ulrich Rant mit festkörperbasierten Nanoporen-Sensoren untersucht. Das messtechnische Prinzip dieser Sensoren basiert auf einer dünnen Halbleitermembran mit wenige Nanometer großen Öffnungen, durch die die gewünschten Biomoleküle einzeln geschleust werden. Wenn Biomoleküle durch diese Poren schlüpfen oder dort verweilen, liefern kleinste Änderungen des elektrischen Stroms, der durch die Nanopore fließt, Informationen über ihre charakteristischen physikalischen Eigenschaften. Inzwischen untersuchen Dietz und Rant gemeinsam – beide sind Fellows des TUM Institute for Advanced Study – welche Möglichkeiten eine kombinierte Anwendung dieser beiden Technologien eröffnen könnte.

Für das neue Messverfahren – das vor diesen Experimenten rein hypothetischer Natur war – wird zunächst ein DNA-Origami-Nanoplättchen über dem schmalen Ende einer konisch zulaufenden Festkörper-Nanopore positioniert. Durch eine Modifikation der Größe der zentralen Öffnung in der DNA-Nanoplatte lässt sich eine Filterung von Molekülen nach ihrer Größe erreichen. Um das System weiter zu verfeinern, werden Einzelstrang-DNA-Rezeptoren in der Öffnung als eine Art „Köder“ platziert, die sequenzspezifisch Zielmoleküle binden und damit den Nachweis einzelner Moleküle ermöglichen. Weitere denkbare Anwendungen sind hier unter anderem biomolekulare Interaktions-Screens und der Nachweis einzelner DNA-Sequenzen. Im Prinzip könnte man dieses System auch als Grundlage für ein neues Verfahren zur DNA-Sequenzierung nutzen.

Die Wissenschaftler untersuchten jede dieser Ideen Schritt für Schritt. Dabei konnten sie sowohl die Selbstorganisation von maßgeschneiderten DNA-Origami-Nanoplättchen als auch die anschließende elektrisch geleitete Positionierung über den Festkörper-Nanoporen belegen. Sie konnten auch zeigen, dass die größenabhängige Filterung von Biomolekülen und der Nachweis einzelner Zielmoleküle über spezifische „Köder“ funktionieren. „Wir freuen uns besonders darüber, dass wir mit unserem Köder aus spezifischen DNA-Sequenzen einzelne Moleküle herausfiltern und nachweisen konnten“, erläutert Dietz. „Denn neben DNA könnten sich auch eine Menge andere chemische Bestandteile des Stoffgemischs an der entsprechenden Stelle des DNA-Nanoplättchen unspezifisch anheften.“

Für den Einsatz bei hochspezifischen Messverfahren wie der DNA-Sequenzierung gilt es noch einige Hürden zu überwinden, erläutert Rant. „In zukünftigen Arbeiten müssen noch grundlegende Fragen geklärt werden, zum Beispiel in wie weit der direkte Transport von Ionen über die Origami Nanoplättchen die erreichbare Messgenauigkeit beeinflusst oder wie eine noch stabilere Verankerung der Nanoplättchen auf den Festkörperporen erzielt werden kann.“

Diese Forschungsarbeiten wurden unterstützt durch die Exzellenzinitiative des Bundes und der Länder – und zwar im Einzelnen durch das TUM Institute for Advanced Study, die Nano Initiative Munich und das Center for Integrated Protein Science Munich – sowie durch den Sonderforschungsbereich (SFB) 863 der Deutschen Forschungsgemeinschaft (DFG) und eine Nachwuchsforscher-Finanzhilfe des Europäischen Forschungsrates (ERC) an Hendrik Dietz. Ruoshan Wei wurde vom Fakultätsgraduiertenzentrum Physik der TUM Graduate School unterstützt.

Originalveröffentlichung:
DNA Origami Gatekeepers for Solid-State Nanopores Ruoshan Wei, Thomas G. Martin, Ulrich Rant, and Hendrik Dietz Angewandte Chemie International Edition on-line, April 4, 2012. DOI: 10.1002/anie.201200688

Externer Link: www.tu-muenchen.de