Weitere Erfolge mit Quantendiamanten

Pressemitteilung der Universität Stuttgart vom 19.04.2011

Veröffentlichung in Nature Physics und DFG-Forschergruppe

Forschern des 3. Physikalischen Instituts sowie des Stuttgart Research Centers für Photonische Technologien (SCoPe) der Universität Stuttgart ist es gelungen, mit einer einzelnen atomaren Fehlstelle in Diamant elektrische Felder zu messen. Damit können künftig die Struktur einer Substanz und deren chemische Reaktivität gleichzeitig bestimmt werden. Über diese Messungen berichtet nun die renommierte Zeitschrift Nature Physics. Die Erfolge der Stuttgarter Wissenschaftler auf dem Feld der Quantendiamanten honorierte auch die Deutsche Forschungsgemeinschaft DFG, die in ihrer Sitzung im April die Einrichtung der DFG-Forschungsgruppe „Diamond Materials and Quantum Application“ an der Uni Stuttgart bewilligt hat.

Die Quantenphysik wandelt sich dank eines immer umfassenderen Verständnisses und gut beherrschbarer Experimente zunehmend zum Forschungsfeld Quantentechnologie. Physikerinnen und Physiker können mittlerweile Materie maßschneidern und die Quantendynamik beeinflussen, was vielfältige Anwendungsmöglichkeiten beispielsweise in der Informationsverarbeitung oder der Sensorik eröffnet. Die Forschergruppe „Diamond Materials and Quantum Application“ (Sprecher: Prof. Jörg Wachtrup, 3. Physikalisches Institut der Universität Stuttgart) widmet sich mit Diamant einem sehr vielversprechenden Quantenmaterial und nutzt die technologischen Grundlagen dazu, besser kontrollierte und immer komplexere Diamant-Strukturen herzustellen. Hierzu bringt die Forschergruppe Experten zu Materialwachstum, Strukturierung und Defekterzeugung, aber auch Quantenoptik und Spintronik zusammen. Sie fokussiert vor allem auf die Anwendung von „Quanten-Diamanten“ in den Bereichen Quantenphotonik und Spintronik. Die Ergebnisse der Forschergruppe könnten in der Zukunft aber auch unter anderem in der Medizin Anwendung finden.

Hochgenaue Messung elektrischer Felder

In den jetzt in Nature Physics publizierten Forschungsarbeiten widmen sich die Stuttgarter Forscher der großen physikalischen Herausforderung, elektrische Felder zu vermessen. Solche Felder spielen an verschiedenen Stellen in der Natur und Technik eine entscheidende Rolle. Nervenimpulse werden zum Beispiel durch die Veränderung von elektrischen Feldern übertragen und auch die moderne Datenspeicherung wie zum Beispiel auf USB-Sticks beruht auf der Speicherung elektrischer Ladung. Die hochgenaue Messung der mit den Ladungen verbundenen kleinen elektrischen Felder ist allerdings eines der anspruchsvollsten Gebiete der Messtechnik. Die Stuttgarter Forscher haben dafür einen neuartigen Sensor entwickelt, der aus lediglich einem einzelnen Atom besteht. Dieses Stickstoffatom ist als Verunreinigung in Diamant enthalten. Das Diamantgitter fixiert das Atom und erlaubt es gleichzeitig, mit Hilfe eines Lasers die atomare Fehlstelle zu adressieren. Die Wechselwirkung des Atoms mit dem zu messenden Feld kann mittels des von der Verunreinigung wieder ausgesendeten Lichts bestimmt werden. Auf diese Weise ist man in der Lage, elektrische Felder zu messen, die einem Bruchteil einer Elementarladung in einer Entfernung von 0,1 Mikrometern entsprechen. Da der Sensor selbst ungefähr die Abmessung von einem Atom besitzt, können elektrische Felder ebenfalls mit dieser räumlichen Präzision gemessen werden. Das optische Auslesen des Sensors erlaubt es, den Sensor in jeder beliebigen Geometrie anzubringen. Zudem erreicht das Verfahren bei Raumtemperatur und unter Umgebungsbedingungen seine Empfindlichkeit und Auflösung.

Mit demselben Verfahren konnten Wissenschaftler in der Vergangenheit bereits den Nachweis kleiner magnetischer Felder demonstrieren. Jetzt wurde es erstmals möglich, am selben Ort das elektrische sowie magnetische Feld zu bestimmen, ohne den Sensor wechseln zu müssen. Diese einzigartige Kombination eröffnet vollkommen neue Möglichkeiten, zum Beispiel das gleichzeitige Messen der Verteilung von magnetischen Momenten der Kerne chemischer Verbindungen sowie die Ladungsverteilung von Elektronen in einzelnen Molekülen.

Veröffentlichung:
Florian Dolde, Helmut Fedder, Marcus W. Doherty, Tobias Nöbauer, Florian Rempp, Gopalakrishnan. Balasubramanian, ThomasWolf, Friedemann Reinhard, Lloyd C.L. Hollenberg, Fedor Jelezko and Jörg Wrachtrup: Sensing electric fields using single diamond spins – Nature physics 10.1038/NPHYS1969

Externer Link: www.uni-stuttgart.de

IMPULLS testet Systeme und Sensoren für Flugzeuge

Pressemitteilung der TU München vom 06.04.2011

Erstflug eines von Doktoranden der TU München entwickelten Testflugzeugs:

Eine Vielzahl von Sensoren und Systemen liefern modernen Flugzeugen die Daten für die Flugsteuerung. Aber auch für die Messung von Schadstoffen, die archäologische Forschung und sogar die Suche nach Vermissten bringt die Vogelperspektive große Vorteile. Doktoranden der Technischen Universität München (TUM) haben nun ein unbemanntes Kleinstflugzeug entwickelt, das für eine Vielzahl solcher Aufgaben eingesetzt werden kann. Gestern hatte es seinen Erstflug.

Bei bestem Wetter absolvierte gestern ein neues Testflugzeug der TU München auf dem Flugfeld des MFC Red Baron bei Heimstetten erfolgreich seinen Erstflug. Das auf den Namen „IMPULLS“ (Innovative Modular Payload UAV – TUM LLS) getaufte Kleinstflugzeug dient dem Test von Sensoren und Systemen für die Luftfahrt. Entwickelt haben es Doktoranden der Lehrstühle für Luftfahrtsysteme und für Flugsystemdynamik in Garching. Angetrieben wird es emissionsfrei und leise durch einen kompakten Elektromotor.

Ein wesentliches Merkmal der neuartigen Konstruktion ist der modulare Aufbau. Mit wenig Aufwand können die Wissenschaftler so unterschiedlichste Systeme einbauen und unter Flugbedingungen testen. Dies gilt ebenso für die Komponenten der elektrischen Antriebseinheit, denn die Wissenschaftler wollen mit IMPULLS auch erforschen, wie elektrische und hybride Antriebe in Flugzeugen eingesetzt werden können.

Ideal eignen sich automatisch fliegende, unbemannte Kleinstflugzeuge wie IMPULLS (engl. unmanned aerial vehicles, UAV) für Schadstoffmessungen in der Atmosphäre, für luftgestützte geographische Messungen oder Überwachung von Natur und Infrastruktur aus der Luft. Ein weiteres Einsatzfeld ist die Informationsgewinnung in Not- und Gefahrensituationen. Entsprechend ausgerüstete unbemannte Flugzeuge ließen sich auch unter schwierigen Wetterbedingungen oder bei Gefährdungen einsetzen, denen man Piloten nicht aussetzen möchte.

„Dank der fortschreitenden Miniaturisierung und der steigenden Leistungsfähigkeit von Sensorik- und Avioniksystemen können wir mit IMPULLS die Grundlagen für solche Entwicklungen legen,“ sagt Professor Mirko Hornung, Inhaber des Lehrstuhls für Luftfahrtsysteme. Aber auch die Ableitung und das Verständnis entsprechender Geschäftsmodelle und Dienstleistungsangebote sind Fragestellungen, die mit IMPULLS als Plattform untersucht werden.

IMPULLS hat eine Spannweite von 5 Metern und ein Leergewicht von 20 Kilogramm. Angetrieben wird es von einem Elektromotor mit zwei Kilowatt Leistung. Bis zu 10 Kilogramm Zuladung kann das Kleinstflugzeug an Bord nehmen und damit bis zu 75 Minuten non-stop in der Luft bleiben. Ähnlich wie bei einem Verkehrsflugzeug sind bei IMPULLS die wesentlichen sicherheitskritischen Systeme redundant ausgelegt.

Externer Link: www.tu-muenchen.de

Keine Chance für Gammelfleisch

Mediendienst der Fraunhofer-Gesellschaft vom April 2011

Bei verpacktem Fisch oder Fleisch ist es kaum möglich, zwischen frischer und bereits ungenießbarer Ware zu unterscheiden. Fraunhofer-Forscher haben eine Sensorfolie entwickelt, die in die Packung integriert wird und dort die Qualitätskontrolle übernimmt. Bei verdorbener Speise warnt sie durch einen Farbwechsel.

Ob der eingeschweißte Hähnchenschenkel wirklich noch frisch und genießbar ist? Ansehen kann man es ihm nicht. Auch das Mindesthaltbarkeitsdatum stellt keine Garantie da. Gammelfleischskandale haben den Verbraucher zusätzlich verunsichert, und auch der Kunde selbst verkürzt möglicherweise durch falsche Lagerung die Haltbarkeit. Eine Sensorfolie der Fraunhofer-Einrichtung für Modulare Festkörper-Technologien EMFT in München kann hier unverzüglich grünes – nein: gelbes Licht geben oder bei verdorbener Ware warnen. Die EMFT hat sie in einem vom Bundesministerium für Bildung und Forschung geförderten Projekt entwickelt.

Farbwechsel zeigt verdorbene Ware an

Die Sensorfolie wird in die Innenseite der Verpackung integriert und reagiert auf biogene Amine. Das sind Moleküle, die beim Zersetzungsprozess von Lebensmitteln, vor allem Fisch und Fleisch, entstehen. Sie sind auch für den unangenehmen Geruch verantwortlich. Gelangen diese nun in die Luft in der Verpackung, so reagiert der Indikatorfarbstoff der Sensorfolie mit ihnen und wechselt seine Farbe von gelb zu blau. »Ab einem bestimmten Konzentrationsbereich ist die Farbänderung deutlich zu erkennen und kann somit eine Warnfunktion übernehmen«, erläutert Dr. Anna Hezinger, Wissenschaftlerin an der EMFT. Das ist nicht nur interessant, um ungenießbare Produkte zu erkennen. Viele Menschen reagieren überempfindlich auf bestimmte Amine. Eine Warnung ist für sie umso wichtiger.

Sensorfolie sorgt für Lebensmittelsicherheit

»Die Information der Sensorfolie beruht im Gegensatz zum Mindesthaltbarkeitsdatum nicht auf einer Schätzung, sondern auf der tatsächlichen Kontrolle des Lebensmittels«, betont Hezinger. Gleichzeitig ist das System sehr kostengünstig. Das ist wichtig, damit es auch im großen Maßstab eingesetzt werden kann. Andere Lösungen, beispielsweise elektronische Sensoren, würden den Preis des abgepackten Fleisches zu stark erhöhen. Darüber hinaus müssen Dinge, die direkt mit Lebensmitteln in Kontakt kommen können, hohen Anforderungen genügen. »Die Lebensmittelsicherheit ist hier durch eine Sperrschicht zwischen Sensorfolie und Produkt gewährleistet. Diese Barriere lässt nur gasförmige Amine durch. Die Indikatorchemikalien können nicht passieren«, erläutert Hezinger.

Zusätzlich arbeiten die Wissenschaftler an einem Messmodul mit eingebauter Sensorfolie. Mitarbeiter der Lebensmittel- und Verpackungsindustrie können damit die Ware direkt testen und die Frische bestimmen. Das Gerät wertet die Farbreaktion objektiv aus und liefert zudem ein genaueres Ergebnis als das menschliche Auge. Auch Farbzwischenstufen lassen sich so exakt bestimmen. Derzeit suchen Hezinger und ihr Team noch Industriepartner, um die Sensorfolie und das Messmodul weiter zu entwickeln und zu produzieren.

Externer Link: www.fraunhofer.de

Knopf im Ohr misst Temperatur und Puls

Pressemitteilung der TU München vom 23.03.2011

Absolventen der TU München gründen Firma für Sensortechnik:

So klein und unauffällig wie ein Hörgerät ist ein neues Thermometer, das im Ohr die Körperkerntemperatur des Menschen kontinuierlich misst. Diese ist wichtig, um die Leistungsfähigkeit von Sportlern zu beurteilen oder um Schutzkleidung für Feuerwehrleute oder Astronauten zu entwickeln. Erfunden hat das Gerät, das gleichzeitig den Puls misst und etwa den Brustgurt zur Pulsmessung ablösen könnte, ein Doktorand der Technischen Universität München (TUM), der jetzt mit zwei weiteren Absolventen eine Firma gründet und den Sensor erstmals auf der Hannover Messe präsentiert.

Funktionskleidung zu testen ist für die Probanden meist etwas unangenehm. Denn während sie in einer Klimakammer auf einem Heimtrainer strampeln, wird ihre Körperkerntemperatur gemessen, die anzeigt, wie gut die Funktionskleidung die Körperwärme reguliert. Weil die Probanden Sport treiben, können sie keine gewöhnlichen Fieberthermometer unter Zunge oder Achselhöhle halten, zudem ist es wichtig, die Temperatur kontinuierlich zu messen. Deshalb wird die Wärme im Körperinneren von speziellen Sonden bestimmt – in der Speiseröhre oder rektal.

Im sportlichen Training zeigt die Körperkerntemperatur den Leistungsstatus des Menschen an – viel genauer als der Puls. Der lässt sich zwar leichter messen und die meisten Sportler orientieren sich daran, zwei Bierchen am Vorabend können den Puls allerdings schon in die Höhe treiben.

Einen Sensor zu entwickeln, der für den praktischen Alltag gemacht ist und drahtlos Daten des Körpers übermittelt, war die Aufgabe für den Doktoranden Johannes Kreuzer am TUM-Lehrstuhl für Realzeit-Computersysteme. Er entschied sich für einen Temperatursensor, der die Körpertemperatur im Ohr misst und damit bei Bewegungen nicht hinderlich ist. Das Gerät ist so klein wie ein Hörgerät, lässt sich angenehm tragen und ist gut geeignet für den Sport, wie erste Tests mit Autorennfahrern und Marathonläufern zeigten. Auch in einer sportwissenschaftlichen Studie an der TUM zeigte der Sensor, wie sich das Material von Laufshirts auf die Körpertemperatur auswirkt.

Der Tragekomfort war die größte Herausforderung, erklärt Kreuzer: „Der Sensor muss einerseits eng im Gehörgang anliegen, um zuverlässig zu messen. Andererseits darf der Sensor auch nicht drücken. Das war ziemlich knifflig.“ Das Ergebnis ist ein Gerät, das die Temperatur auf 0,01 Grad Celsius genau bestimmt und gleichzeitig auch die Pulsfrequenz feststellt.

Zusammen mit zwei weiteren Absolventen gründet Johannes Kreuzer jetzt ein Unternehmen, das den Sensor herstellt. Anwendungen sieht der Elektroingenieur nicht nur im Umfeld des Sports. Das Gerät könnte auch in der Entwicklung von Schutzkleidung für Feuerwehrleute hilfreich sein und beim Testen der hermetisch geschlossenen Anzüge von Astronauten oder Reinraum-Arbeitern, meint Kreuzer – die Probanden würden es ihm wohl danken.

Externer Link: www.tu-muenchen.de

Kameras aus dem Salzstreuer

Mediendienst der Fraunhofer-Gesellschaft vom März 2011

Handschuhe und Rasierer für den einmaligen Gebrauch gibt es seit langem. Künftig wird es auch Einmal-Endoskope geben – für minimalinvasive Eingriffe in den menschlichen Körper. Eine neue Mikrokamera macht’s möglich. Sie ist so groß wie ein Salzkorn, liefert gestochen scharfe Bilder und lässt sich sehr kostengünstig herstellen.

Die Endoskopie hat sich in den vergangenen Jahren rasant weiterentwickelt. Mikrokameras in der Spitze von Endoskopen liefern Bilder vom Innern des menschlichen Körpers in immer höherer Auflösung. Dadurch können Tumore oft frühzeitig erkannt werden. Bisherige Endoskope haben jedoch einige Nachteile: Sie sind teuer und müssen aufgrund ihrer mehrfachen Verwendung nach jedem Gebrauch aufwändig gereinigt werden. Hilfe verspricht eine neue Mikrokamera, die das Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM in Berlin gemeinsam mit der Awaiba GmbH und mit Unterstützung des Fraunhofer-Instituts für Angewandte Optik und Feinmechanik IOF in Jena entwickelt hat. »Mit unserer Technologie können Mikrokameras so preiswert produziert werden, dass Mediziner die Endoskope nach einmaligem Gebrauch entsorgen können«, sagt Martin Wilke, Wissenschaftler am IZM. Möglich wird das durch einen neuartigen Herstellungsprozess.

Digitale Kamerasysteme bestehen aus zwei Komponenten: einer Optik und einem Sensor, der das Bild in elektrische Signale umwandelt. Elektrische Kontakte am Sensor ermöglichen den Zugang zu diesen Signalen und somit zur Bildinformation. Die Kontakte liegen herstellungsbedingt zwischen Sensor und Optik. Wie auch Computerchips werden Sensoren in großen Stückzahlen gleichzeitig gefertigt. »Man muss sich das wie einen Bogen Briefmarken vorstellen«, sagt Wilke. »Viele tausend Briefmarken werden in einem Arbeitsschritt gedruckt. Wenn man sie verwenden will, muss man sie voneinander trennen. Statt einem Papierbogen hat man bei Bildsensoren eine kreisförmige Scheibe Silizium, einen Wafer.« Auf einen Wafer passen etwa 28 000 Bildsensoren. Die wurden bislang einzeln ausgesägt, verdrahtet und an die noch fehlende Optik montiert. Das heißt also 28 000 Mal verdrahten und noch einmal genauso oft montieren.

Diesen Prozess haben die Forscher des IZM optimiert, indem sie einen neuen Zugang zu den elektrischen Kontakten entwickelten. Das Verdrahten geht jetzt schneller und das gesamte Kamerasystem ist kleiner. Der Clou: Die Kontakte werden nicht mehr bei jedem einzelnen Bildsensor über die Seite, sondern bei allen Sensoren gleichzeitig über ihre Rückseite erreicht, während sie noch als Wafer zusammenhängen. Dadurch muss man die Optiken auch nicht mehr einzeln montieren, sondern kann sie als Optik-Wafer mit dem Bildsensor-Wafer verbinden. Erst danach wird der Wafer-Stapel in einzelne Mikrokameras zersägt. Ein weiterer Vorteil: gestochen scharfe Bilder auch bei sehr dünnen Endoskopen. Bislang mussten die darin integrierten Kamerasysteme aufgrund ihrer »Größe« geteilt werden. Die Optik befand sich an der Endoskopspitze und der Sensor am anderen Ende des Glasfaserstrangs. Die neue Mikrokamera ist klein genug für die Endoskopspitze. Sie hat eine Auflösung von 25 000 Pixel und sendet die Bildinformation über ein elektrisches Kabel durch das Endoskop. »Mit 0,7 mal 0,7 mal 1,0 Millimeter ist die Kamera so klein wie grob gemahlenes Salz – die kleinste uns derzeit bekannte Kamera«, sagt Stephan Voltz, Geschäftsführer der Awaiba GmbH.

Neben der Medizintechnik interessiert sich auch die Automobilindustrie für den Kamera-Winzling. Aktuell wird daran geforscht, mit Mikrokameras Außenrückspiegel von Fahrzeugen zu ersetzen: Auf diese Weise ließe sich der Strömungswiderstand reduzieren und der Energieverbrauch senken. Eingebaut in Armaturen könnte die Kamera außerdem die Augenbewegungen des Fahrers berechnen und so dem Sekundenschlaf vorbeugen. Stephan Voltz freut sich über die vielfältigen Anwendungsmöglichkeiten: »Mit dem Fraunhofer-Know-how können wir ab 2012 Einmal-Endoskope für nur wenige Euro auf den Markt bringen. Der Prototyp liegt bereits vor.«

Externer Link: www.fraunhofer.de