Saubere Energie aus Brennstoffzellen

Medienmitteilung der Universität Basel vom 08.02.2016

Brennstoffzellen erzeugen elektrischen Strom aus der chemischen Reaktion von Wasserstoff und Sauerstoff. Um saubere Energie zu erhalten, ist es entscheidend, mit welcher Methode Wasser vorher in seine Bestandteile Wasserstoff und Sauerstoff aufgetrennt wird. Forschende der Universität Basel untersuchen, wie sich Sonnenlicht zu diesem Zweck einsetzen lässt. Die Fachzeitschrift «Chemical Communications» hat ihre neusten Resultate veröffentlicht.

Saubere und erneuerbare Energiequellen zu entwickeln, ist eine der grossen Herausforderungen unserer Zivilisation. Die künstliche Photosynthese scheint dabei einer der erfolgversprechendsten Ansätze zu sein. Dabei wird Wasser photoelektrochemisch, d.h. mithilfe von Sonnenlicht, in seine Bestandteile H2 und O2 aufgetrennt und gespeichert. Bei der späteren Vereinigung der chemischen Elemente entsteht elektrischer Strom. Ein Team von Forschenden unter der Leitung der Basler Chemiker Catherine Housecroft und Edwin Constable arbeitet gemeinsam mit der Eidgenössischen Materialprüfungs- und Forschungsanstalt (Empa) an der Realisierung dieser Methode.

Die nachhaltige Brennstoffzelle

Die Spaltung von Wasser (H2O) besteht aus zwei Teilreaktionen, die mithilfe von unterschiedlichen Katalysatoren umgesetzt werden: die Wasseroxidation (dabei entsteht O2) und die Wasserreduktion (dabei entsteht H2), wobei die erste die anspruchsvollere der beiden Reaktionen ist. Die Forschung widmet sich deshalb intensiv der Entwicklung von effizienten und nachhaltigen Wasseroxidationskatalysatoren.

Ein wichtiger Faktor in der Realisierung der photoelektrochemischen Brennstoffzelle ist die präzise Anordnung der einzelnen Bestandteile. «Tut man das nicht, ist es, als würde man alle Einzelteile einer Uhr in einen Sack werfen, schütteln und dann darauf hoffen, die Zeit ablesen zu können», erklärt Prof. Edwin Constable von der Universität Basel.

Um die perfekte Anordnung der Katalysatoren zu eruieren, haben die Basler Chemiker in der aktuellen Studie ein Modell zur Wasseroxidation entwickelt, welches zwar mit Strom betrieben wird, aber die gleichen chemischen Zwischenzustände wie Licht generiert. Dabei verwendeten sie das chemische Element Ruthenium als Katalysator. Den Forschern ist es also gelungen, eine durch Lichtstrahlung betriebene Brennstoffzelle zu simulieren. Mithilfe dieses Modells konnten sie dann die Position und Effizienz der einzelnen Bestandteile testen.

Originalartikel:
Rita Toth, Roché M. Walliser, Niamh S. Murray, Debajeet K. Bora, Artur Braun, Giuseppino Fortunato, Catherine E. Housecroft and Edwin C. Constable
A self-assembled, multicomponent water oxidation device
Chemical Communications (2016), doi: 10.1039/c5cc09556e

Externer Link: www.unibas.ch

Mit biologischen Abfällen zu nachhaltigen Batterien

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 20.01.2016

Forscher entwickeln neuartige, kostengünstige und leistungsstarke Aktivmaterialien für Natrium-basierte Energiespeicher / Veröffentlichung in Advanced Energy Materials und ChemElectroChem

Ein kohlenstoffbasiertes Aktivmaterial, das aus Apfelresten gewonnen wird, und ein Material aus Schichtoxiden könnten helfen die Kosten für zukünftige Energiespeicher zu senken. Beide zeigen exzellente elektrochemische Eigenschaften und stehen für umweltfreundliche und nachhaltige Nutzung von Ressourcen. In den Zeitschriften „ChemElectroChem“ und „Advanced Energy Materials“ stellen Forscher des Helmholtz-Instituts Ulm des Karlsruher Instituts für Technologie die neuen Materialien vor.

Natrium-Ionen-Batterien sind nicht nur deutlich leistungsstärker als Systeme wie Nickel-Metallhydrid- oder Bleisäure-Akkumulatoren, sondern repräsentieren auch eine Alternative zur Lithium-Ionen-Technologie, da ihre Ausgangsrohstoffe weit verbreitet, einfach zugänglich und kostengünstig sind. Daher sind Natrium-Ionen-Batterien eine äußerst vielversprechende Technologie für stationäre Energiespeicher, welche eine zentrale Rolle in der Energiewende einnehmen und damit einen äußerst attraktiven Markt in der Zukunft darstellen.

In der Entwicklung von Aktivmaterialien für Natrium-basierte Energiespeichersysteme ist dem Team um Professor Stefano Passerini und Dr. Daniel Buchholz am Helmholtz-Institut Ulm des Karlsruher Instituts für Technologie nun ein bedeutender Schritt gelungen. Für die negative Elektrode wurde ein kohlenstoffbasiertes Material entwickelt, welches aus Apfelabfällen gewonnen werden kann und exzellente elektrochemische Eigenschaften besitzt. Über 1000 Lade- und Entladezyklen mit hoher Zyklenstabilität und hoher Kapazität konnten bisher demonstriert werden. Diese Entdeckung stellt einen wichtigen Schritt zur nachhaltigen Nutzung und Verwertung von Ressourcen wie beispielsweise biologischer Abfälle dar.

Für die positive Elektrode wurde ein Material entwickelt, welches aus verschiedenen Schichten von Natriumoxiden besteht. Dieses Aktivmaterial kommt völlig ohne das teure und umweltschädliche Element Cobalt aus, welches heutzutage häufig noch immer ein wichtiger Bestandteil in Aktivmaterialien von kommerziellen Lithium-Ionen-Batterien ist. Das neue Aktivmaterial, in dem die eigentliche elektrochemische Speicherung von Energie stattfindet, kann im Labor ohne Kobalt über Hunderte Zyklen die gleichen Leistungsdaten erreichen, wenn es um Effizienz, Zyklenstabilität, Kapazität sowie Spannung geht.

Mit diesen Materialien ist nun ein wichtiger Schritt hin zur Entwicklung kostengünstiger und umweltfreundlicher Natrium-Ionen-Batterien gemacht worden. (dm)

Publikationen:

„Apple Biowaste-Derived Hard Carbon as a Powerful Anode Material for Na-Ion Batteries“ ChemElectroChem, doi: 10.1002/celc.201500437

“Layered Na-Ion Cathodes with Outstanding Performance Resulting from the Synergetic Effect of Mixed P- and O-type Phases” Advanced Energy Materials, doi: 10.1002/aenm.201501555

Externer Link: www.kit.edu

Satelliten finden nachhaltige Energie in Städten

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 15.12.2015

Forscher des KIT ermitteln unterirdische Wärmeinseln anhand von Oberflächentemperatur und Bebauungsdichte – Publikation in „Environmental Science & Technology“

Unterirdische Wärmeinseln in Städten bergen ein enormes geothermisches Potenzial. Aus dem erwärmten Grundwasser lässt sich nachhaltige Energie zum Heizen und Kühlen gewinnen. Forscher am Karlsruher Institut für Technologie (KIT) haben nun eine neue Methode entwickelt, die unterirdischen Wärmeinseln aufzuspüren: Sie schätzen die Grundwassertemperatur anhand der satellitengestützt gemessenen Oberflächentemperatur und der Bebauungsdichte. In der Zeitschrift „Environmental Science & Technology“ berichten sie darüber.

In größeren Städten liegen die Temperaturen üblicherweise deutlich höher als im ländlichen Umland. Diese sogenannten urbanen Wärmeinseln entstehen durch das Zusammenwirken verschiedener Faktoren wie dichte Besiedlung, Flächenversiegelung, Wärmeabstrahlung von Gebäuden, Industrie und Verkehr sowie fehlende Vegetation. Betroffen von dem Phänomen sind Atmosphäre, Oberfläche und Untergrund in modernen Städten.

Die Temperaturanomalien können zu regionaler Luftverschmutzung und zu einer erhöhten Sterblichkeit während sommerlicher Hitzeperioden beitragen. Erhöhte Grundwassertemperaturen beeinflussen die Ökosysteme im Untergrund und können das Wachstum von Krankheitserregern im Grundwasser begünstigen. Die Wärmeinseln im Untergrund bergen aber auch große Chancen für Energieversorgung und Klimaschutz: So lässt sich die Energie aus oberflächennahen Grundwasserschichten mithilfe von Erdwärme- und Grundwasserwärmepumpen zum Heizen im Winter und zum Kühlen im Sommer einsetzen. Würde dieses geothermische Potenzial genutzt, ließe sich damit ein Teil des wachsenden Energiebedarfs der Städte decken. Dies würde auch die Emission von Treibhausgasen reduzieren und damit wiederum der Erwärmung entgegenwirken.

Oberirdische und unterirdische Wärmeinseln sind vor allem durch Wärmeleitung miteinander verbunden. Bisher untersuchte die Forschung die einzelnen Wärmeinseln meist getrennt voneinander, sodass über die Prozesse und das Verhältnis von ober- und unterirdischen Temperaturen wenig bekannt war. Eine Gruppe von Wissenschaftlern vom Institut für Angewandte Geowissenschaften (AGW) und vom Institut für Meteorologie und Klimaforschung – Atmosphärische Spurengase und Fernerkundung (IMK-ASF) des KIT sowie von der ETH Zürich haben nun ober- und unterirdische Wärmeinseln in vier deutschen Großstädten in ihrem Verhältnis zueinander untersucht. Über die Ergebnisse berichten sie in der Zeitschrift „Environmental Science & Technology“.

Die Wissenschaftler griffen auf satellitengestützte Messungen der Oberflächentemperatur zurück, über die sich die zeitlichen und räumlichen Gegebenheiten von oberirdischen Wärmeinseln leicht erschließen lassen. Schwieriger ist die Beschreibung der Wärmeinseln im Untergrund. Die Interpolation von Messungen der Grundwassertemperatur an existierenden Monitoringstationen ist zeitaufwendig und teuer. Daher sind andere Methoden gefragt. Die Forscher aus Karlsruhe und Zürich verglichen ober- und unterirdische Wärmeinseln in den vier Städten Berlin, München, Köln und Karlsruhe. Dabei stellten sie eine räumliche Korrelation bis zu 80 Prozent fest. Die Übereinstimmung ist in den älteren Städten wie Köln größer als im verhältnismäßig jungen Karlsruhe, da je älter die Stadt, desto ausgeprägter die Erwärmung des Untergrundes. In 95 Prozent der untersuchten Gebiete war allerdings die Grundwassertemperatur höher als die Oberflächentemperatur, was die Wissenschaftler auf zusätzliche unterirdische anthropogene Wärmequellen wie Gebäudekeller, Abwasserkanäle oder Reinjektion von Kühlwasser zurückführen.

Die satellitengestützt gemessene Oberflächentemperatur allein reicht also nicht aus, um die Grundwassertemperatur zuverlässig zu schätzen: Daher zogen die Forscher zusätzlich Bebauungsdichte und Kellertemperatur heran. So gelang es ihnen, die regionalen Grundwassertemperaturen mit einem mittleren absoluten Fehler von 0,9 Kelvin zu schätzen. „Diese Methode ermöglicht eine erste Bewertung der unterirdischen Wärmeinseln und damit der ökologischen Bedingungen im Grundwasser und des geothermischen Potenzials, ohne dass dafür aufwendige Grundwassertemperaturmessungen und Interpolationen erforderlich sind“, erklärt Philipp Blum, Professor für Ingenieurgeologie am AGW des KIT. (or)

Publikation:
Susanne A. Benz, Peter Bayer, Frank M. Goettsche, Folke S. Olesen, and Philipp Blum: Linking Surface Urban Heat Islands with Groundwater Temperatures. Environmental Science & Technology, November 2015. DOI: 10.1021/acs.est.5b03672

Externer Link: www.kit.edu

LEDs wirtschaftlich recyceln

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 02.11.2015

In Fernsehern und Leuchtmitteln sind sie massenhaft verbaut. Auch in Autoscheinwerfern werden LEDs immer häufiger. Noch gibt es kein geeignetes Recyclingverfahren für die Leuchtdioden. Fraunhofer-Forscher haben eine Methode entwickelt, die Komponenten von LED-Leuchtmitteln mechanisch trennt.

In modernen Leuchtmitteln sind unterschiedliche Materialien verbaut: Glas oder Kunststoff im Gehäuse, Keramik oder Aluminium im Kühlkörper, Kupfer in Widerständen oder Kabeln – und das Wertvollste im Innern der Leuchtdioden, kurz LEDs (engl. light emitting diodes): Indium und Gallium in der Halbleiterdiode und Seltene Erden wie Europium oder Terbium im Leuchtstoff. Die Dioden herzustellen ist deswegen vergleichsweise teuer, die Margen sind gering. »Schon jetzt fallen bei den Recyclern erste LED-Produkte an, die derzeit nur gelagert werden und für die es keinen geeigneten Recyclingprozess gibt. Ziel ist es vor allem, die wertvollen Materialien zurückzugewinnen. Es ist nur eine Frage der Zeit, bis die Verwerter auf das LED-Recycling umsteigen müssen«, sagt Jörg Zimmermann aus der Projektgruppe für Wertstoffkreisläufe und Ressourcenstrategie IWKS in Alzenau und Hanau des Fraunhofer-Instituts für Silicatforschung ISC.

Komponenten mit Hilfe von Druckwellen ablösen

Mit Hilfe der »elektrohydraulischen Zerkleinerung« zerlegen die Forscher die LED-Leuchtmittel in ihre Einzelteile, ohne dabei die LEDs selbst zu zerstören. Druckwellen elektrischer Impulse lösen in einem Wasserbad die einzelnen Komponenten mechanisch exakt an ihren Sollbruchstellen ab. Die Bauteile können separat wiederverwertet werden. Ihren Versuchsaufbau haben die Forscher für Retrofit-Leuchtmittel angepasst. Sie ähneln in ihrem Aussehen der klassischen Glühbirne oder Leuchtstoffröhre und können genau wie diese in handelsübliche Lampenfassungen geschraubt werden. »Die Methode funktioniert jedoch prinzipiell auch bei anderen Größen – zum Beispiel für LEDs aus Fernsehern und Autoscheinwerfern oder für andere elektronische Bauteile«, erklärt der Experte.

Die Bauteile sauber und rein zu trennen, ist Voraussetzung dafür, den Recyclingprozess wirtschaftlich zu gestalten. »Um alle Komponenten eines LED-basierten Leuchtmittels effizient zu separieren und wiederzuverwerten, bedarf es eines völlig anderen Zerkleinerungskonzepts, welches zu größeren Mengen an Halbleiter- und Leuchtstoff-Komponenten führt«, so Zimmermann. Würde man den Retrofit als Ganzes zerkleinern, wäre es um ein Vielfaches schwerer, die unterschiedlichen Stoffe in der klein gemahlenen Mischung zu sortieren. Durch das Auftrennen in die einzelnen Komponenten lassen sich auch größere Mengen der in ihnen enthaltenen Stoffe leichter zurückgewinnen: Dies gelingt, indem man viele ähnliche Komponenten sammelt, in denen die Konzentration einzelner Stoffe bereits höher ist. »Für Recycler und Hersteller lohnt sich das Wiederverwerten nur, wenn sie größere Mengen verwerten«, beschreibt Zimmermann.

»Wir testen noch, ob man das Zerkleinern zukünftig so oft wiederholen kann, bis man die gewünschten Stoffe separiert hat«, betont Zimmermann. Die Forscher können die Parameter des Versuchaufbaus so einstellen – zum Beispiel die Art und Menge des flüssigen Mediums, Behältergröße, Spannung, die den elektrischen Impuls erzeugt –, dass genau an den Sollbruchstellen getrennt wird. »Insbesondere die Anzahl der Pulse bestimmt, in welcher Weise die Bauteile separiert werden«, sagt der Wissenschaftler.

Die elektrohydraulische Zerkleinerung soll nun im Detail weiter analysiert, verbessert und für weitere Anwendungen ausgeweitet werden. »Mit unserer Forschungsarbeit haben wir gezeigt, dass das mechanische Trennen ein möglicher Weg ist, um zum wirtschaftlichen Recycling von LEDs beizutragen«, so Zimmermann.

Externer Link: www.fraunhofer.de

Feinstaub: Abscheider hilft Grenzwerte einzuhalten

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 28.10.2015

Auf dem Weg zur Marktreife nimmt der Partikelabscheider des KIT-Spin-offs CCA zwei weitere Hürden: Langzeittests erfolgreich absolviert und bauaufsichtliche Zulassung erteilt

Nachwachsende Energieträger wie Hackschnitzel, Pellets und Scheitholz sind beliebt. Damit holzbefeuerte Heizungsanlagen und Öfen auch die neuen Feinstaubgrenzwerte einhalten, werden Partikelabscheider eingesetzt, um das Rauchgas zu reinigen. Der Partikelabscheider des KIT-Spin-offs CCA hat nun die allgemeine bauaufsichtliche Zulassung des Deutschen Instituts für Bautechnik (DIBt) erhalten und im Langzeittest bewiesen, dass er effektiv und wirtschaftlich arbeitet.

Nach Angaben der Fachagentur Nachwachsende Rohstoffe werden in Deutschland circa 850.000 holzbefeuerte Kesselanlagen betrieben. Die Holzverbrennung ist eine wichtige Emissionsquelle, die häufig die Partikelemission aus dem Automobilverkehr übertrifft. Die zweite Stufe der 1.Bundesimmissionsschutzverordnung (1.BImSchV) hat die Grenzwerte für die Partikelemissionen auf 20 Milligramm pro Kubikmeter abgesenkt. Niedrigere Emissionswerte sollen sowohl durch neue Feuerungsanlagen als auch durch den Einbau von Filteranlagen erreicht werden.

Der Abscheider der Ausgründung Carola Clean Air (CCA) wird zwischen Heizkessel und Kamin in den Rauchgasweg eingebaut und vermindert die Konzentration von Ruß und Feinstaub um bis zu 90 Prozent. Jetzt hat das Deutsche Institut für Bautechnik (DIBt) den Feinstaubabscheider der Typenserie „CCA25 bis CCA200“ die allgemeine bauaufsichtliche Zulassung erteilt. Damit ist der Carola-Abscheider der erste in Deutschland zugelassene Trockenabscheider, der an größeren Kesselanlagen bis zu 200 kW eingebaut werden kann.

Das Funktionsprinzip des CCA-Abscheiders ist sehr einfach: Der Abscheider besteht im Prinzip aus zwei Kammern. In der Ionisationskammer werden die Partikel des Rauchgases mittels einer Corona-Entladung elektrisch aufgeladen. In der nachgeschalteten Kollektorkammer lagern sich die geladenen Ruß- und Staubpartikel auf einer wendelförmigen Bürste ab. Diese dreht sich regelmäßig über eine Abstreifkante und die angesammelten Partikel fallen in den Auffangbehälter. „Alle paar Monate den Behälter zu leeren, ist die einzige Wartungsarbeit für den Nutzer“, erklärt Dr. Hanns-R. Paur, Mitarbeiter des KIT und einer der Gründer von CCA. Der Abscheider eignet sich durch seine intelligente Konstruktion zur Ergänzung einer vorhandenen Heizkesselanlage ebenso wie zur Integration in neuentwickelte Anlagen. Bei Bedarf lassen sich sogar mehrere Anlagen parallel beziehungsweise hintereinanderschalten. Im Rahmen eines Feldtests unter typischen Betriebsbedingungen wurde nun gezeigt, dass der Abscheider auch im realitätsnahen Langzeitbetrieb über 5000 Stunden stabil läuft und seine Vorteile wie hohe Abscheiderate, geringe elektrische Leistungsaufnahme und niedrigen Druckverlust beibehält.

„Die Vorteile unseres Abscheide-Systems gegenüber anderen Wirkprinzipien liegen auf der Hand“, stellt Dr. Hans P. Rheinheimer fest, Geschäftsführer der CCA GmbH. „Das System ist nahezu wartungsfrei, kann sogar in den Kessel integriert werden und es verbraucht im Betrieb weniger Energie als eine Glühbirne. Anders als bei Schwebstofffiltern müssen keine Verschleißteile ausgetauscht werden und der Abluftzug im Kamin wird kaum reduziert. Mit einer Abscheideeffizienz von bis zu 90 Prozent können moderne Heizkessel, die nachgerüstet werden, die Grenzwerte der zweiten Stufe der Bundesimmissionsschutzverordnung (1. BImSchV) aus dem Jahr 2015 einhalten.“

Das KIT hat sein Know-how zu Abscheidesystemen für holzgefeuerte Kessel in das Start-up-Unternehmen Carola Clean Air GmbH ausgegründet. Industriepartner sind die Heizkesselhersteller HDG Bavaria und Heizomat.

Für das innovative Verfahren haben die Erfinder schon Preise eingeheimst, etwa den Innovationspreis der IHK Karlsruhe und den Umweltpreis der Sparkasse Pforzheim Calw. Die Entwicklung des CCA-Partikelabscheiders wurde durch das Bundesministerium für Wirtschaft und Energie, das Bundesministerium für Ernährung und Landwirtschaft sowie den HGF Enterprise Fund gefördert. (kes)

Externer Link: www.kit.edu