Laser fügen leichte Sandwichstrukturen

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 03.04.2023

Moderner Leichtbau hilft längst im Automobilbau und in der Flugzeugindustrie, Kraftstoff und Material zu sparen und die Umwelt zu entlasten. Forschende des Fraunhofer-Instituts für Werkstoff- und Strahltechnik IWS haben nun einen Weg gefunden, um solche erprobten Konstruktionsprinzipien auf weitere Branchen zu übertragen. Dafür verschweißen sie mit Lasern filigrane Hohlkammerstrukturen mit Deckblechen zu leichten Sandwichplatten. Diese Metallstrukturen lassen sich besonders effizient im Rolle-zu-Rolle-Verfahren des Fraunhofer IWS produzieren. Die neuartige Technologie sorgt für höheres Produktionstempo und mehr Einsatzbreite von Leichtbauplatten. Dadurch eröffnen sich Leichtbauperspektiven etwa für die Konstruktion von Schiffsaufbauten, Eisenbahnen und Fabrikhallen.

Die neue, laserbasierte »Sandwichplattierung« bietet viel technologisches, wirtschaftliches wie auch ökologisches Potenzial für die Industrie: »Mit dieser Technologie lassen sich Leichtbauplatten und -profile deutlich schneller und kostengünstiger herstellen als mit herkömmlichen Methoden wie dem Strangpressen«, betont Andrea Berger, Forscherin am Fraunhofer IWS. »Zudem kommt das neue Verfahren ohne Klebstoffe und andere Zusatzmaterialien aus. Dies erleichtert das Recycling der damit produzierten Leichtbaustrukturen.«

Statt zentimeterdicker schwerer Stahlplatten setzen viele Leichtbauer häufig Sandwichplatten ein. Diese sind trotz ihres bedeutend geringeren Gewichts im Vergleich zu massivem Stahl belastbar genug für Zwischenwände und -decken in Fahrzeugen, Flugzeugen oder Hallen. Solche Sandwichplatten und Profile bestehen aus waben-, trapez-, steg- oder kugelartigen Hohlkammerstrukturen. Typische Ausgangsmaterialien sind dünner Stahl, Aluminium, Kunststoffe oder andere Werkstoffe. Auf diese Innenstrukturen schweißen oder kleben die Hersteller beidseitig dünne Bleche.

Klassisches Strangpressen stößt an Grenzen

Ausgangspunkt für das neue Laser-Walz-Verfahren war eine Herausforderung, mit der ein großes Waggonbau-Unternehmen an das Fraunhofer IWS herangetreten war: Der Konzern verwendete zwar bereits Leichtbauprofile aus Aluminium für seine Fahrzeugtechnik. Das verwendete Strangpressverfahren ermöglichte aber keine beliebig dünnen Innenstege. Etwa 1,5 Millimeter galten hier als technologisch bedingte Untergrenze. Dem stand und steht der Wunsch gegenüber, möglichst viel Material und Gewicht einzusparen beziehungsweise filigrane Innenstrukturen zu verwenden.

Die Forschenden des Fraunhofer IWS lösten diese Herausforderung mit einer Laserschweiß-Walzanlage. Durch diese Anlage führen sie eine flexible Kernlage aus sehr leichten Innenstrukturen zwischen zwei Walzen, über die sich je ein Deckblech oben und unten abrollt. Dabei zielen Scanner-gesteuerte Laser schräg von beiden Seiten in die dünne Spalte zwischen Kernlage und Deckblech. Dort erhitzen sie die Metalloberflächen punktgenau. Dabei entstehen lokal – abhängig vom gewählten Blechmaterial – Temperaturen zwischen 660 und über 1400 Grad. Die Walzen pressen dann die leicht aufgeschmolzenen Oberflächen von Kernlage und Decke so fest zusammen, dass sie sich dauerhaft verbinden.

Laser-Verfahren drückt Energieverbrauch und erleichtert Recycling

Solche besonders leichten Platten lassen sich im rollenden Verfahren in einem Durchlauf herstellen. Im Vergleich zu klassischen Methoden wie etwa dem Strangpressen bei hohen Temperaturen spart das Laserschweißen viel Energie, da das energiereiche Licht die Metalloberflächen nur hauchdünn lokal aufschmelzen muss. Auch eignet es sich für die preisgünstige Massenproduktion. Schon der Laborprototyp kommt auf ein hohes Fertigungstempo. Zum industriellen Maßstab weiterentwickelt könnten derartige Anlagen mehr als zehn laufende Meter Leichtbaublech pro Minute schaffen, schätzt Andrea Berger. Zudem lassen sich solche Maschinen schnell auf neue Profil- oder Plattenstrukturen umrüsten. Strangpressen hingegen benötigen bei jeder Anwendung ein anderes Werkzeug, wenn der Kunde ein neues Plattenmodell bestellt.

Per Laser-Sandwichplattierung lassen sich zudem nur noch wenige Zehntel Millimeter dünne, stabile Strukturen erzeugen. Dies entschärft zum Beispiel das erwähnte Dilemma beim Waggonbau. Da das Laserwalzplattieren preiswerte Leichtbaulösungen aus purem, hitzeresistentem Stahl ermöglicht, lassen sich derartige Platten auch überall dort verbauen, wo viele konventionelle Leichtbaukonstruktionen aus Brandschutzgründen bisher tabu waren – zum Beispiel an bestimmten Stellen im Schiffbau. Solch ein breiterer Leichtbaueinsatz wiederum reduziert den Materialverbrauch in der Zulieferindustrie, kann das Gewicht von Fahrzeugen, Flugzeugen und Schiffen senken und dadurch fossile Brennstoffe oder Strom sparen. Ein weiterer ökologischer Nutzen ergibt sich am Ende des Bauteillebenszyklus: Lasergefügte Sandwichplatten enthalten weder Klebstoff noch Lötmittel oder andere Fremdstoffe, die später in Recyclinganlagen mühsam wieder getrennt werden müssten.

Anwendungen im Schiffs-, Hallen- und Fahrzeugbau absehbar

Marko Seifert, Abteilungsleiter Wärmebehandeln und Plattieren am Fraunhofer IWS, sieht als mögliche frühe Anwender des neuen Verfahrens unter anderem Zulieferbetriebe für Werften und Fahrzeugbauer. Erste Einsatzszenarien könnten zum Beispiel leichte Treppen oder auch Schiffszwischenwände sein, in denen sich dank der hohlen Innenstrukturen der Platten gleich zum Beispiel Stromkabel unsichtbar verlegen lassen. Auch für Lkw-Anhänger und den Hallenbau könnte sich die neue Technologie rasch durchsetzen. Für die nächsten Schritte suchen die Fraunhofer-Forschenden nach Partnern, um die Idee in die Anwendung zu bringen.

Externer Link: www.fraunhofer.de

Neue Erfindung: Die Sauerstoff-Ionen-Batterie

Presseaussendung der TU Wien vom 22.03.2023

An der TU Wien wurde eine neuartige Batterie erfunden: Die Sauerstoff-Ionen-Batterie soll extrem langlebig sein, ohne seltene Elemente auskommen und das Problem der Brandgefahr lösen.

Lithium-Ionen-Batterien sind heute allgegenwärtig – vom Elektroauto bis zum Smartphone. Das heißt aber nicht, dass sie für alle Einsatzbereiche die beste Lösung sind. An der TU Wien gelang es nun, eine Sauerstoff-Ionen-Batterie zu entwickeln, die einige wichtige Vorteile aufweist. Sie ermöglicht zwar nicht ganz so hohe Energiedichten wie die Lithium-Ionen-Batterie, aber dafür nimmt ihre Speicherkapazität im Lauf der Zeit nicht unwiderruflich ab: Sie lässt sich regenerieren und ermöglicht damit eine extrem lange Lebensdauer.

Außerdem kann man Sauerstoff-Ionen-Batterien herstellen, ohne dafür seltene Elemente zu benötigen, und sie besteht aus unbrennbaren Materialien. Die neue Batterie-Idee wurde zusammen mit Kooperationspartnern aus Spanien bereits zum Patent angemeldet. Für große Energiespeicher, etwa zum Aufbewahren elektrischer Energie aus erneuerbaren Quellen, könnte die Sauerstoff-Ionen-Batterie eine ausgezeichnete Lösung sein.

Keramische Materialien als neue Lösung

„Wir haben schon seit längerer Zeit viel Erfahrung mit keramischen Materialien gesammelt, die man für Brennstoffzellen verwenden kann“, sagt Alexander Schmid vom Institut für Chemische Technologien und Analytik der TU Wien. „Das brachte uns auf die Idee, zu untersuchen, ob solche Materialien vielleicht auch dafür geeignet wären, eine Batterie herzustellen.“

Die keramischen Materialien, die das Team der TU Wien untersuchte, können doppelt negativ geladene Sauerstoff-Ionen aufnehmen und abgeben. Wenn man eine elektrische Spannung anlegt, wandern die Sauerstoff-Ionen von einem keramischen Material zum anderen, danach kann man sie wieder zurückwandern lassen und so elektrischen Strom erzeugen.

„Das Grundprinzip ist eigentlich sehr ähnlich wie bei der Lithium-Ionen-Batterie“, sagt Prof. Jürgen Fleig. „Aber unsere Materialien haben einige wichtige Vorteile.“ Keramik ist nicht brennbar – Brandunfälle, wie sie bei Lithium-Ionen-Batterien immer wieder vorkommen, sind damit also praktisch ausgeschlossen. Außerdem kommt man ohne seltene Elemente aus, die teuer sind oder nur auf umweltschädliche Weise gewonnen werden können.

„In diesem Punkt ist die Verwendung von keramischen Materialien ein großer Vorteil, weil sie sehr gut angepasst werden können“, sagt Tobias Huber. „Man kann relativ problemlos bestimmte Elemente, die nur schwer zu bekommen sind, durch andere ersetzen.“ Der Prototyp der Batterie verwendet noch Lanthan – ein zwar nicht seltenes aber doch nicht völlig alltägliches Element. Doch auch Lanthan soll noch durch etwas Billigeres ersetzt werden, Forschungen daran laufen bereits. Auf Kobalt oder Nickel, die in vielen Batterien verwendet werden, kann man völlig verzichten.

Sehr lange Lebensdauer möglich

Der vielleicht wichtigste Vorteil der neuen Batterietechnik ist aber ihre potentielle Langlebigkeit: „In vielen Batterien hat man das Problem, dass sich die Ladungsträger irgendwann nicht mehr bewegen können“, sagt Alexander Schmid. „Dann können sie nicht mehr zur Stromerzeugung genutzt werden, die Kapazität der Batterie sinkt. Nach vielen Ladungszyklen kann das zum ernsten Problem werden.“

Die Sauerstoff-Ionen-Batterie hingegen lässt sich problemlos regenerieren: Wenn Sauerstoff durch Nebenreaktionen verloren geht, dann kann der Schwund einfach durch Sauerstoff aus der Umgebungsluft ausgeglichen werden.

Für Smartphones oder Elektroautos ist das neue Batterie-Konzept nicht gedacht, denn die Sauerstoff-Ionen-Batterie erreicht nur rund ein Drittel der Energiedichte, die man von Lithium-Ionen-Batterien gewohnt ist und läuft bei Tempersturen zwischen 200 und 400 °C. Höchst interessant aber ist die Technologie zum Speichern großer Energiemengen. „Wenn man etwa einen großen Energiespeicher benötigt, um Solar- oder Windenergie zwischenzuspeichern, wäre die Sauerstoff-Ionen-Batterie eine hervorragende Lösung“, glaubt Alexander Schmid. „Wenn man ohnehin ein ganzes Gebäude mit Energiespeicher-Modulen errichtet, spielt die geringere Energiedichte und erhöhte Betriebstemperatur keine entscheidende Rolle. Die Stärken unserer Batterie wären gerade dort aber besonders wichtig: Die lange Lebensdauer, die Möglichkeit, große Mengen dieser Materialien ohne seltene Elemente herzustellen, und die Tatsache, dass es bei diesen Batterien keine Brandgefahr gibt.“ (Florian Aigner)

Originalpublikation:
A. Schmid, M. Krammer, Jürgen Fleig; Rechargeable Oxide Ion Batteries Based on Mixed Conducting Oxide Electrodes, to be published in: Advanced Energy Materials (2023).

Externer Link: www.tuwien.at

App reduziert CO2: Alumnus gewinnt Ecodesign-Preis

Pressemitteilung der Hochschule Coburg vom 19.12.2022

Er hatte eine Idee. Und als Sascha Greilinger dann an der Hochschule Coburg Integriertes Produktdesign studierte, setzte er sie um: Seine Bachelorarbeit widmete er der App „PeakPick“. Dafür wurde er jetzt mit dem bundesweiten Ecodesign-Preis ausgezeichnet.

Der Anteil erneuerbarer Energien im Stromnetz ist stark von Wetter und Tageszeit abhängig. Die App PeakPick ist ein Saisonkalender für grünen Strom, der hilft, den Verbrauch an die Erzeugung durch Wind- und Solaranlagen anzupassen. In der Industrie wird dies bereits mit sogenannter „Lastverschiebung“ praktiziert. PeakPick aktiviert dieses Potential auch in Privathaushalten und ermöglicht einen Einstieg in den flexiblen Stromverbrauch. „Mittags steht die Sonne im Zenit, da wird am meisten Solarstrom erzeugt“, sagt Sascha Greilinger. „Bei schönem Wetter mittags kochen, abends kalt essen und CO2 sparen!“ Oder die Waschmaschine dann laufen lassen, wenn der Wind weht. Indem das Einschalten von Geräten in einen Zeitraum mit hohem Anteil an regenerativer Erzeugung verschoben wird, kann jeder einen wertvollen Beitrag zur Energiewende leisten.

Das Projekt profitierte von einem interdisziplinären Ansatz: Professor Michael Markert aus dem Produktdesign betreute Greilingers Arbeit und gab ihm den Tipp, wegen der Programmierung bei Prof. Dr. Thomas Wieland in der Fakultät für Elektrotechnik und Informatik nachzufragen. Das Ergebnis überzeugte nun auch die Jury des Bundespreises Ecodesign: „Die klar und nutzerfreundlich gestaltete Anwendung informiert aktuell und lokal darüber, wann grüner Strom reichlich zur Verfügung steht und wann nicht“, erklärt Prof. Matthias Held, Juryvorsitzender und Prorektor für Forschung und Transfer an der Hochschule für Gestaltung Schwäbisch Gmünd. „Nutzer:innen werden so für die Thematik sensibilisiert; ihr Verbrauchsverhalten wird geschult bis sich der Service, durchaus beabsichtigt, durch die erlangte Routine selbst überflüssig macht.“

In dem seit 2012 jährlich ausgelobten Wettbewerb werden innovative Produkte, Dienstleistungen und Konzepte ausgezeichnet, die aus Umwelt- und Designsicht überzeugen. Der Preis wurde überreicht von Bundesumweltministerin Steffi Lemke und Prof. Dr. Dirk Messner, Präsident des Umweltbundesamtes. Der Coburger Alumnus Sascha Greilinger wurde in der Kategorie „Nachwuchs“ ausgezeichnet. „Ich hoffe“, sagt er, „dass die Notwendigkeit der Transformation auf gesellschaftlicher Ebene sowie der Nutzen für die Energiewende erkannt werden und das Projekt entsprechend gefördert wird.“

Externer Link: www.hs-coburg.de

THI-Studierende konstruieren innovative Agri-Photovoltaikanlage

Pressemitteilung der TH Ingolstadt vom 27.10.2022

Projekt zeigt gute Wirtschaftlichkeit der vertikalen Agri-Photovoltaikanlage (PV) mit bifacialen Modulen.

Neun Studierende der Technischen Hochschule Ingolstadt (THI) haben in einem Pilotprojekt eine vertikale Agri-PV-Anlage konstruiert und untersucht – in Kooperation mit Schletter Solar aus Kirchdorf sowie den Energieanbietern E.ON Deutschland und LEW Lechwerke aus Augsburg. Verwendet wurden für das Semesterprojekt bifaciale, also zweiseitige Module. Sie können auch Sonnenlicht, welches auf die Modulrückseite einstrahlt, in Strom umwandeln.

Bei einer vertikalen Agri-PV-Anlage werden diese Module als senkrechte Wand montiert, die in Nord-Südrichtung verläuft. Die eine Modulseite ist dadurch nach Osten ausgerichtet und erzeugt ab früh morgens bis zum späten Vormittag Strom, die Rückseite der Module liefert vom frühen Nachmittag bis abends ihren Beitrag. „In Summe kann eine solche Anlage sogar mehr Strom als eine übliche, nach Süden ausgerichtete Freiflächen-Photovoltaikanlage gleicher Leistung produzieren“, sagt Sigrid del Rio, PV-Projektleiterin bei LEW Lechwerke, die bereits seit letztem Jahr eine Testanlage ähnlicher Bauart betreiben. Thomas Pellkofer, Leiter Solarprojekte bei E.ON Deutschland, fügt hinzu: „Vertikale Agri-PV-Anlagen mit Nord-Süd-Ausrichtung können eine sinnvolle Ergänzung für die Stromversorgung sein, weil sie vor allem morgens und abends Strom erzeugen, während klassische Südsolaranlagen ihr Ertragsmaximum mittags erreichen. Morgens und abends produzierter Sonnenstrom trifft daher auch oft auf eine höhere Nachfrage an der Strombörse.“

Das zeigen auch die Berechnungen der Studierenden, wie Prof. Dr. Peter Weitz, Betreuer der Studierenden an der Technischen Hochschule Ingolstadt, berichtet: „Im Jahresmittel ergeben sich fast zehn Prozent Mehrerlös für den mit dieser Anlage zu Tagesrandzeiten erzeugten Strom. Dieser Mehrerlös wird in der Zukunft durch den geplanten Zubau klassischer PV-Anlagen und dem damit verbundenen größeren Angebot von Solarstrom zur Tagesmitte sogar noch steigen“, ist sich Prof. Dr. Peter Weitz sicher.

Da die Flächen zwischen den Modulreihen weiter landwirtschaftlich genutzt werden können – bevorzugt für Futterwiesen und Weiden, wie die Studierenden herausgefunden haben –, erhalten solche vertikalen Agri-PV-Anlagen durch die EEG-Novelle 2022 auf fast allen landwirtschaftlichen Flächen in Deutschland eine EEG-Vergütung. „Die ausgeklügelte Konstruktion der Studierenden ist geringfügig teurer als eine übliche Südanlage, auch durch die hohen Windlasten und eine aufwändigere Verkabelung,“ erklärt Dr. Cedrik Zapfe, CTO bei Schletter. Seiner Ansicht nach überkompensiert der höhere Verkaufspreis des Stroms die Mehrkosten deutlich, sodass sich eine bessere Wirtschaftlichkeit ergibt. Schletter Solar wird daher nächstes Jahr die Unterkonstruktion für eine vertikale PV-Anlage im Markt anbieten; die Nachfrage steigt deutlich.

Neben der Wirtschaftlichkeit stand auch der Beitrag zur Energiewende im Fokus des Projektes. Prof. Dr. Peter Weitz zeigt den Zusammenhang auf: „Die Solarstromerzeugungslücke morgens und abends von südausgerichteten PV-Anlagen könnte mit Stromspeicherung geschlossen werden.“ Es ist viel nachhaltiger, Strom zu diesem Zeitpunkt direkt mit vertikalen Agri-PV-Anlagen zu erzeugen; kostbare und teure Speicherkapazitäten werden so für die Nachtstunden reserviert. Eine erfolgreiche Energiewende verlangt auch, Erzeugung und Verbrauch zeitlich anzugleichen. Dies bedeutet Lastverschiebung – wie Elektroautos tagsüber zu laden –, aber ebenso die Verschiebung des Erzeugungszeitpunkts.

Externer Link: www.thi.de

Stromversorgung: Instabile Netze verstehen

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 29.09.2022

Neue Leitungen können Stabilität verringern – Forschende präsentieren Vorhersageinstrument in der Zeitschrift Nature Communications

Eine nachhaltige Energieversorgung erfordert den Ausbau der Stromnetze. Neue Leitungen können aber auch dazu führen, dass Netze nicht wie erwartet stabiler, sondern instabiler werden. Das Phänomen nennt sich Braess-Paradoxon. Dieses hat nun ein internationales Team, an dem auch Forschende des Karlsruher Instituts für Technologie (KIT) beteiligt sind, erstmals für Stromnetze im Detail simuliert, in größerem Maßstab demonstriert und ein Vorhersageinstrument entwickelt. Es soll Netzbetreiber bei Entscheidungen unterstützen. Die Forschenden berichten in der Zeitschrift Nature Communications.

Die nachhaltige Transformation des Energiesystems erfordert einen Ausbau der Netze, um regenerative Quellen einzubinden und Strom über weite Strecken zu transportieren. Dieser Ausbau verlangt große Investitionen und zielt darauf ab, die Netze stabiler zu machen. Durch das Aufrüsten bestehender oder das Hinzufügen neuer Leitungen kann es aber auch geschehen, dass das Netz nicht stabiler, sondern instabiler wird und es zu Stromausfällen kommt. „Wir sprechen dann vom Braess-Paradoxon. Dieses besagt, dass eine zusätzliche Option anstatt zur Verbesserung zur Verschlechterung der Gesamtsituation führt“, sagt Dr. Benjamin Schäfer, Leiter der Forschungsgruppe Datengetriebene Analyse komplexer Systeme (DRACOS) am Institut für Automation und angewandte Informatik des KIT.

Benannt ist das Phänomen nach dem deutschen Mathematiker Dietrich Braess, der es erstmals für Straßenverkehrsnetze erörterte: Unter bestimmten Bedingungen kann der Bau einer neuen Straße die Fahrzeit für alle Verkehrsteilnehmenden verlängern. Dieser Effekt wurde in Verkehrssystemen beobachtet und für biologische Systeme diskutiert, für Stromnetze aber bisher nur theoretisch prognostiziert und in sehr kleinem Maßstab dargestellt.

Forschende simulieren Stromnetz in Deutschland einschließlich geplanter Ausbauten

Das Phänomen haben die Forschenden um Schäfer nun erstmals im Detail für Stromnetze simuliert sowie in größerem Maßstab demonstriert. Sie nahmen eine Simulation des Stromnetzes in Deutschland einschließlich geplanter Verstärkungen und Ausbauten vor. Bei einem Versuchsaufbau im Labor, der das Braess-Paradoxon in einem Wechselstromnetz zeigt, beobachteten die Forschenden das Phänomen in der Simulation sowie im Experiment. Wesentlich dabei war eine Betrachtung von Kreisflüssen. Denn diese sind entscheidend, um das Braess-Paradoxon zu verstehen: Eine Leitung wird verbessert, indem beispielsweise der Widerstand verringert wird, und kann daraufhin mehr Strom transportieren. „Aufgrund von Erhaltungssätzen gibt es dadurch effektiv einen neuen Kreisfluss, und in manchen Leitungen fließt mehr, in anderen weniger Strom“, erläutert Schäfer. „Zum Problem wird dies, wenn die schon am meisten belastete Leitung nun noch mehr Strom führen muss, die Leitung damit überlastet wird und stillgelegt werden muss. Dadurch wird das Netz instabiler und bricht schlimmstenfalls zusammen.“

Intuitives Verständnis ermöglicht schnelle Entscheidungen

Die meisten Stromnetze verfügen über ausreichende Reservekapazitäten, um dem Braess-Paradoxon standzuhalten. Beim Bau neuer Leitungen und während des Betriebs prüfen die Netzbetreiber alle möglichen Szenarien. Wenn allerdings kurzfristig Entscheidungen zu treffen sind, beispielsweise um Leitungen stillzulegen oder Kraftwerksleistungen zu verschieben, genügt die Zeit nicht immer, um alle Szenarien durchzurechnen. „Dann bedarf es eines intuitiven Verständnisses von Kreisflüssen, um einschätzen zu können, wann das Braess-Paradoxons auftritt und so schnell die richtigen Entscheidungen zu treffen“, sagt Schäfer. Zusammen mit einem internationalen und interdisziplinären Team hat der Wissenschaftler deshalb ein Vorhersageinstrument entwickelt, das Netzbetreiber dabei unterstützt, das Braess-Paradoxon bei ihren Entscheidungen zu berücksichtigen. Die Ergebnisse der Forschung ermöglichten nun das theoretische Verständnis des Braess-Paradoxons und lieferten praktische Leitlinien, um Netzerweiterungen sinnvoll zu planen und die Stabilität des Netzes zu unterstützen, so Schäfer. (or)

Originalpublikation:
Benjamin Schäfer, Thiemo Pesch, Debsankha Manik, Julian Gollenstede, Guosong Lin, Hans-Peter Beck, Dirk Witthaut, and Marc Timme: Understanding Braess‘ Paradox in power grids. Nature Communications, 2022. DOI: 10.1038/s41467-022-32917-6

Externer Link: www.kit.edu