Mikro-Bohrturbine verbessert Effizienz der Geothermie

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 03.01.2022

Als saubere und vor allem grundlastfähige Energiequelle wird Geothermie immer wichtiger. Doch die teilweise mehrere tausend Meter tiefen Bohrungen sind riskant und können manchmal auch fehlgehen. Fraunhofer-Wissenschaftler haben nun ein innovatives Werkzeug entwickelt, das zusätzliche Zweigbohrungen von der Hauptbohrung aus ermöglicht. Das senkt das Risiko von Fehlbohrungen und verbessert die Förderleistung.

Erdwärme ist eine unerschöpfliche Energiequelle. Tief in der ca. 30 Kilometer dicken Erdkruste findet sich heißes Wasser in Reservoiren, Klüften oder Rissen. Bereits in 5000 Meter Tiefe hat das Wasser bis zu 200 °C. In Geothermie-Anwendungen wird es über eine Förderbohrung nach oben gepumpt. Dann kann es beispielsweise Dampfturbinen zur Stromerzeugung antreiben oder über Wärmepumpensysteme für Gebäudeheizungen genutzt werden. Das abgekühlte Wasser fließt über eine zweite Bohrung, die Injektionsbohrung, zurück ins Erdinnere und wird im heißen Gestein aufs Neue erhitzt. Es entsteht ein geschlossener Kreislauf. Diese erneuerbare Energiequelle kann einen wichtigen Beitrag im Kampf gegen den Klimawandel leisten.

Doch die mehrere Tausend Meter tief reichenden Bohrungen sind aufwendig und gleichzeitig riskant. Das Risiko danebenzuliegen und nichts zu finden – Fachleute sprechen vom Fündigkeitsrisiko – liegt bei etwa 30 Prozent. Das wollen die Expertinnen und Experten der Fraunhofer-Einrichtung für Energieinfrastrukturen und Geothermie IEG in Bochum ändern. Die Idee: Ein Minibohrer perforiert das Umfeld der Bohrung in einem Umkreis von etwa 50 Metern. Dabei stößt er in benachbarte Risse und Klüfte vor und erschließt diese für die Heißwassergewinnung. Das Wasser fließt in die Förderbohrung und kann nach oben gepumpt werden.

Zweitbohrung erkundet das Umfeld

Entwickelt wurde die Technologie Micro Turbine Drilling (MTD) von Niklas Geißler, der am Fraunhofer IEG in Bochum und am Fraunhofer-Chalmers Research Center for Industrial Mathematics FCC in Schweden forscht. »Bohrungen, die mehrere Kilometer in die Erdkruste vordringen, kosten mehrere Millionen Euro. Die mit dem MTD herstellbaren Zweigbohrungen vergrößern das Einzugsgebiet für das Heißwasser, und das Fündigkeitsrisiko sinkt deutlich«, erklärt Geißler.

Herzstück von Micro Turbine Drilling (MTD) ist eine kompakte Mikro-Bohrturbine, die mit einem speziellen Bohrmeißel ausgestattet ist. Mit Abmessungen von gerade einmal 3,6 Zentimetern im Durchmesser und 10 Zentimetern in der Länge ist das Gerät extrem klein. Die Mikro-Bohrturbine ist an einem hochdrucktauglichen Schlauch befestigt, über den sie mit bis zu 200 Liter Wasser pro Minute bei etwa 100 bar Eingangsdruck angetrieben wird, um den Meißel in Rotation zu versetzen. Dieser besteht aus einer Wolframcarbid-Matrix mit eingearbeiteten Diamantkörnern und schleift sich mit bis zu 80 000 Umdrehungen pro Minute in das Gestein. Dabei ist er besonders für sehr hartes, kristallines Gestein wie Granit geeignet. Er ist aber auch in der Lage, Stahl zu durchbohren. Das ist wichtig, da die Bohrungen für bessere Stabilität häufig mit einer Stahlverrohrung ausgekleidet sind. Ohne das Bohrwerkzeug zu tauschen, kann mit dem MTD in einem Schritt zuerst die Stahlverrohrung und dann das Gestein bearbeitet werden. »In der Stunde schaffen wir zwei bis drei Meter. Das Wasser, das die Mikroturbine antreibt, dient zugleich als Kühlung, damit der Bohrer nicht heiß läuft, und auch als Spülung, um den Bohrstaub abzutransportieren«, erklärt Geißler. Ähnliche Verfahren gab es in der Vergangenheit bereits. Doch das ebenfalls druckwasserbasierte Radial Jet Drilling (RJD) beispielsweise funktioniert nur in weichem Gestein. Für die Geothermie ist es damit ungeeignet, da geothermische Reservoire nur mit wenigen Ausnahmen im Hartgestein zu finden sind.

Eine Herausforderung beim Verfahren liegt darin, die Mikro-Turbine aus der Hauptbohrung heraus abzulenken und bei relativ großem Angriffswinkel ins umliegende Gestein zu treiben. Dafür haben die IEG-Forschenden eine spezielle Ablenkvorrichtung entwickelt. Mit diesem sogenannten Ablenkschuh kann das kompakte Werkzeug in einem Winkel von ca. 45 Grad aus der Hauptbohrung herausgeführt werden. So erschließt das Bohrwerkzeug rund um die Hauptbohrung neue Risse und Klüfte mit Heißwasser. Durch den hydraulischen Druck, der entsteht, wenn das Wasser nach oben gepumpt wird, fließt das Wasser aus den Rissen und Klüften nun ebenfalls in die Hauptbohrung.

»Wir sind sehr dankbar dafür, dass wir das Micro Turbine Drilling bereits mehrfach im schweizerischen Bedretto Underground Laboratory (BUL) in der Nähe des Gotthard-Tunnels in bis zu 350 Metern Tiefe testen durften. Das Verfahren funktioniert sehr solide und arbeitet nahezu fehlerfrei«, freut sich Geißler.

Audioaufnahmen der Bohrgeräusche

Auch die Politik hat die Bedeutung des Themas erkannt. Seit März 2021 fördert das Bundesministerium für Wirtschaft und Energie das Projekt mit mehr als 430 000 Euro.

Die Fraunhofer IEG-Forschenden treiben das Vorhaben unterdessen weiter voran. Im nächsten Schritt sollen die Bohrgeräusche aufgenommen werden. Als akustische Referenz bei der Analyse kann dabei auch das Geräusch der Mikro-Bohrturbine dienen, deren Schaufeln bei der Rotation ein charakteristisches Pulsmuster aussenden. Mit der Analyse der Audioaufnahme lassen sich die Gesteinsarten, die der Meißel bearbeitet, erkennen und lässt sich zugleich feststellen, ob der Bohrer sich in der richtigen Geschwindigkeit dreht, gerade feststeckt oder gar leerläuft. Die Geräusche werden dabei auf die stählerne Rohrleitung als Körperschall übertragen und aufgenommen.

Die Technologie ist nicht nur für Geothermie-Anwendungen einsetzbar. »Generell kann das MTD in jeder Tiefbohrung eingesetzt werden, wo es darauf ankommt, die Umgebung einer Bohrung mit möglicherweise heterogenen Gesteinsarten zu erkunden, etwa für die Öl- oder Gasindustrie. Im Bereich Geotechnologien oder Tunnelbau können mit dieser Mikro-Bohrtechnologie beispielsweise Ankerbohrungen an schlecht zugänglichen Stellen gesetzt werden, an denen der Einsatz konventioneller Geräte aus Platzgründen nicht möglich ist«, erläutert Geißler.

Eine Hauptanwendung der 2020 zum Patent angemeldeten Technologie wird aber sicherlich die Gewinnung von Erdwärme sein. Fachleute schätzen, dass sich die Zahl der Geothermie-Kraftwerke in Europa in den nächsten fünf bis acht Jahren verdoppeln wird. Micro Turbine Drilling aus dem Fraunhofer IEG kann einen wichtigen Beitrag dazu leisten, die Förderbohrungen weniger riskant, weniger aufwendig und noch wirtschaftlicher zu gestalten.

Externer Link: www.fraunhofer.de

Bakterien als Klima-Helden

Presseaussendung der TU Wien vom 17.11.2021

Um in Zukunft eine kohlenstoffneutrale Kreislaufwirtschaft zu etablieren, werden Technologien benötigt, die als Rohstoff CO2 verwenden. In Form von Formiat kann CO2 von bestimmten Bakterien verstoffwechselt werden.

Acetogene sind eine Gruppe von Bakterien, die Formiat verstoffwechseln können. Sie bilden beispielsweise Essigsäure – eine wichtige Basischemikalie. Manipuliert man diese Bakterien dahingehend, dass sie Ethanol oder Milchsäure produzieren, ließe sich eine umfassende Kreislaufwirtschaft für das Treibhausgas CO2 realisieren. Damit der Prozess nachhaltig ist, wird das CO2 direkt aus der Luft gewonnen und unter Verwendung von erneuerbarer Energie zu Formiat umgewandelt.

Um herauszufinden, wie genau sich Formiat durch das Acetobakterium woodii (kurz A. woodii) verwerten lässt, untersuchte ein Team um Stefan Pflügl vom Institut für Verfahrenstechnik, Umwelttechnik und technische Biowissenschaften der TU Wien, wie das Bakterium verschiedene Substrate – darunter auch Formiat – verstoffwechselt. Weiters schauten sich die Forschenden über ein metabolisches Modell an, wie sich A. woodii gentechnisch verändern ließe, um andere Substanzen als Essigsäure zu produzieren.

Kreislaufwirtschaft für CO2

„Die Wirtschaft der Zukunft muss kohlenstoffneutral sein“, fordert Stefan Pflügl. Da Kohlenstoff jedoch ein wichtiger Bestandteil vieler Produkte ist – wie beispielsweise Kraftstoff oder Plastik – sollte das vorhandene CO2 recycelt und in den Kreislauf zurückgeführt werden. Eine klimaneutrale Möglichkeit dazu ist, das CO2 aus der Luft zu fixieren und mithilfe erneuerbarer Energie in Formiat umzuwandeln. Diese Verbindung aus Kohlen-, Sauer- und Wasserstoff kann schließlich ein Grundbaustein der Bioökonomie sein. Vorteile von Formiat sind, dass es sich leicht transportieren lässt und flexibel für die Herstellung von Chemikalien und Treibstoffen verwendet werden kann. Die Herstellung dieser Stoffe kann mithilfe von acetogenen Bakterien erfolgen, die sich von Kohlenstoffverbindungen ernähren und daraus Essigsäure produzieren.

Formiatverwertung durch A. woodii

Um Acetogene für die Produktion von Rohstoffen zu nutzen, muss man deren Stoffwechsel und Physiologie verstehen. Zwar handelt es sich bei A. woodii um einen Modellorganismus, das heißt, das Bakterium wurde bereits umfangreich untersucht, doch wollte das Forschungsteam eine vergleichende Beobachtung durchführen. So untersuchten Stefan Pflügl und sein Team, wie sich Substrate wie Formiat, Wasserstoff, Kohlenmonoxid, Kohlendioxid oder Fruktose auf den Stoffwechsel von A. woodii auswirken.

„Der größte Unterschied, hervorgerufen durch die unterschiedlichen Substrate, besteht in der Energiemenge, die A. woodii gewinnt“, beobachtet Stefan Pflügl. Dies erklärt er wie folgt: „Acetogene sind wahre Überlebenskünstler, die auch Substrate wie CO, CO2 oder Formiat verstoffwechseln können. Dies ist darauf zurückzuführen, dass Acetogene den wahrscheinlich ältesten Stoffwechselweg für die CO2-Fixierung verwenden. So gelingt es ihnen auch, unter extremen Bedingungen und aus alternativen Nahrungsquellen genug Energie zum Überleben zu erzeugen.“

Damit sind Acetogene nicht nur dazu fähig, CO2 zu verwerten, auch gehen sie dabei sehr effizient vor. Folglich muss nur wenig Energie aufgewendet werden, um CO2 in Formiat umzuwandeln, das dann in die Basischemikalie Essigsäure umgewandelt wird.

Austausch Öl-basierter Produkte

Um das volle Potenzial von A. woodii auszuschöpfen, untersuchten die Forschenden außerdem, wie sich das Bakterium gentechnisch verändern lässt, um statt Essigsäure Ethanol oder Milchsäure zu produzieren. Während Ethanol die Basis für Kraftstoff bildet, lässt sich aus Milchsäure biologisch abbaubarer Kunststoff herstellen. Öl-basierte Stoffe könnten folglich durch nachhaltigere Alternativen ausgetauscht werden. „Dies wäre nicht nur im Sinne der Bioökonomie, auch könnten CO2 und Kohlenmonoxid, die bei der Verbrennung von Kraft- oder Kunststoff entsteht, wieder zum Ursprungsprodukt werden,“ stellt Stefan Pflügl in Aussicht.

Die Studie, die in der Fachzeitschrift „Metabolic Engineering“ erschienen ist, gibt somit Aufschlüsse über das, was Acetogene wie A. woodii unter bestimmten Bedingungen leisten können. Auf Basis der experimentellen Daten und unter Verwendung eines Modells entwickelten die Forschenden außerdem Strategien, wie sich A. woodii gentechnisch manipulieren und für die Produktion weiterer Stoffe nutzen lässt. (Sarah Link)

Originalpublikation:
Neuendorf, C. S., Vignolle, G. A., Derntl, C., Tomin, T., Novak, K., Mach, R. L., … & Pflügl, S. (2021). A quantitative metabolic analysis reveals Acetobacterium woodii as a flexible and robust host for formate-based bioproduction. Metabolic Engineering, 68, 68-85.

Externer Link: www.tuwien.at

Batteriedaten schnell und automatisiert auswerten und für KI-Prozesse bereitstellen

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 02.11.2021

Elektrochemische Energiespeicher- und Brennstoffzellentechnologien sind Schlüsselelemente für eine erfolgreiche Energiewende. Mit modularen Softwarepaketen ermöglicht die Batalyse GmbH, ein Spin-off des Fraunhofer-Instituts für Chemische Technologie ICT, die automatisierte Erfassung, Dokumentation und Auswertung von Testdaten von Batterien, Akkus und Brennstoffzellen. Anhand der visualisierten Ergebnisse können Materialhersteller und Zellentwickler sowie F&E-Abteilungen ihre Produkte gezielt und effektiv weiterentwickeln und optimieren.

In Batterien und Brennstoffzellen entscheiden optimierte Materialien und Komponenten wie Elektroden, Aktivmaterialien, Elektrolyte und Separatoren über die Lebensdauer, Qualität und Leistungsfähigkeit des Systems. Für die Elektromobilität oder stationäre Energiespeicherung werden neue, nachhaltige, recyclingfähige Materialkombinationen benötigt, die sich gegenüber verfügbaren Systemen etwa durch eine höhere Energiedichte oder geringere Herstellungskosten auszeichnen. Um die Suche nach neuen Materialien und dem richtigen Materialmix zu beschleunigen, bietet die Batalyse GmbH eine modulare Softwarelösung für die effektive Datenauswertung und das Informationsmanagement an. Das Spin-off wurde im Mai 2021 als eigenständige Gesellschaft aus dem Fraunhofer ICT in Pfinztal von Dr. Markus Hagen und seinem Kollegen und CTO der Batalyse GmbH, Eran Nave, ausgegründet.

Bestmögliche Batterie der Zukunft

»Hersteller unterziehen ihre Batterien und Materialien fortlaufenden Kontrollen und prüfen zahlreiche Parameter wie die Qualität der Produktionsprozesse oder der Elektroden. Hierbei unterstützen wir die Unternehmen mit unseren drei Softwaremodulen Data Analysis, Collect und Mind, um letztendlich die beste Batterie der Zukunft zu entwickeln«, sagt Dr. Markus Hagen, CEO der Batalyse GmbH. Data Analysis wertet Batteriedaten und elektrochemische Tests sowohl von Labortestzellen als auch von kommerziellen Zellen aus und vergleicht die Werte. Beispielsweise erhalten Käufer von Batteriezellen die Möglichkeit, Lieferanten und Produktionschargen zu vergleichen. Welche Batteriezelle die beste Performance zeigt, ist sofort ersichtlich.

Data Analysis wertet unabhängig vom eingesetzten Testgerät aus und ist kompatibel zu allen Dateiformaten und Dateistrukturen – ein großer Vorteil gegenüber Konkurrenzprodukten. Die Module Collect und Mind sind separat erhältlich, es empfiehlt sich jedoch, das komplette Paket einzusetzen, da alle Module ineinandergreifen. Die Datenmanagement-Software Collect sammelt alle Rohdaten und zugehörige Metadaten automatisiert ein und speichert sie zentral ab. Dabei beschränkt sich das Tool nicht auf Batterien und Brennstoffzellen, sondern erfasst auch Prozess-, Analyse-, Produktions-, und Bilddaten. Mind visualisiert diese Daten aus Collect und ergänzt zusätzliche Informationen wie Kunden-, Prüflings-, Material- und Projektdaten, die kategorisiert, gefiltert und vernetzt werden können. Ein Berechtigungsmanagement regelt, wer Zugriff auf die jeweiligen Daten erhält, und ermöglicht das Teilen von Projekten mit Kunden. Die Ergebnisse, die Data Analysis liefert, lassen sich darüber hinaus in Collect wieder speichern und in Mind darstellen. Collect und Mind erfassen sämtliche Daten und Informationen und liefern so die Basis für den Einsatz von Künstlicher Intelligenz. »In der Forschung, Entwicklung und Produktion kostet die Datenauswertung und -dokumentation viel Zeit. Hinter einer einfachen Messung stehen Informationsketten mit hunderten Parametern zu Materialien, Prozessen und Werkzeugen. Durch die Kombination unserer Softwaremodule automatisieren wir die komplette Datenverarbeitung und können Daten und Informationen für einen KI-Einsatz vorbereiten«, ergänzt der CEO.

Während Data Analysis bereits erhältlich ist, werden die Prototypen Mind und Collect aktuell am Fraunhofer ICT eingesetzt. Anfang 2022 sollen sie verfügbar sein. Industriekunden können beide Module jedoch schon jetzt testen.

Externer Link: www.fraunhofer.de

Lebensmittelbetrug effizient und kostengünstig aufklären

Medienmitteilung der Universität Basel vom 11.10.2021

Durch gefälschte Lebensmittel, insbesondere durch falsche Angaben zur geografischen Herkunft, entsteht jährlich ein wirtschaftlicher Schaden in Milliardenhöhe. Botaniker der Universität Basel haben nun ein Modell entwickelt, mit dessen Hilfe die Herkunft von Lebensmitteln effizient und kostengünstig bestimmt werden kann.

Erdbeeren aus der Schweiz oder Olivenöl aus Italien können im Laden deutlich teurer verkauft werden als wenn diese Produkte aus anderen Ländern stammen. Immer wieder kämpfen Behörden und die Lebensmittelindustrie deshalb gegen Falschdeklarationen der geografischen Herkunft von Produkten. Der jährliche wirtschaftliche Schaden wird auf 30 bis 40 Milliarden Dollar geschätzt.

Eine Methode, um Lebensmittelbetrug aufzudecken, ist die Bestimmung des Delta-O-18-Wertes einer Produktprobe, welche das Sauerstoffisotopenverhältnis charakterisiert. Bislang war dieses Verfahren sehr aufwändig und kostspielig. Bei einem Betrugsverdacht müssen nicht nur Referenzdaten aus dem angeblichen Herkunftsland gesammelt werden, sondern auch Vergleichsdaten aus anderen Regionen, um die Herkunft des Produkts zu validieren oder widerlegen.

Kostengünstig dank Modellrechnung

Der Basler Botaniker Dr. Florian Cueni hat nun in Zusammenarbeit mit der auf Isotopenanalytik spezialisierten Agroisolab GmbH ein Modell entwickelt, mit dem sie das Sauerstoffisotopenverhältnis in Pflanzen einzelner Regionen simulieren können, wodurch das aufwändige Sammeln von Referenzdaten entfällt. Das Modell basiert auf Temperatur-, Niederschlags- und Luftfeuchtigkeitsdaten und Informationen über die Wachstumszeit einer Pflanze. Diese Informationen beziehen sie aus öffentlich zugänglichen Datenbanken.

Überprüft und validiert hat Cueni das Modell an einem einzigartigen Delta-O-18-Referenzdatensatz für Erdbeeren, der europaweit über 11 Jahre zusammengetragen wurde. Die Fallstudie hat gezeigt, dass das Modell die Herkunft der Erdbeeren mit hoher Präzision simulieren kann.

Vielfältig einsetzbar

«Mit geringfügigen Anpassungen der Parameter kann unser Modell zur Bestimmung aller pflanzlichen Produkte genutzt werden», sagt Prof. Dr. Ansgar Kahmen, der das Forschungsprojekt geleitet hat. Somit liesse sich die herkömmliche Isotopenanalytik durch die präzise Simulierung der Herkunftsgebiete landwirtschaftlicher Lebensmittel vereinfachen und beschleunigen.

Von Interesse ist das Modell der Basler Botaniker einerseits für die behördliche Lebensmittelforensik oder die Ermittlungsbehörden, wenn es beispielsweise um die Herkunft konfiszierter Drogen geht, aber auch für private forensische Institute, die Lebensmittel kontrollieren oder als Gutachter vor Gericht auftreten. Andererseits interessieren sich NGOs wie WWF oder Greenpeace dafür – vor allem im Hinblick auf die Bestimmung der Herkunft von illegal eingeschlagenem Holz – und schliesslich auch die Lebensmittelindustrie, für die der Verkauf potenziell falsch deklarierter Lebensmittel rufschädigend ist.

Originalpublikation:
Florian Cueni, Daniel B. Nelson, Markus Boner, Ansgar Kahmen
Using plant physiological stable oxygen isotope models to counter food fraud.
Scientific Reports (2021)

Externer Link: www.unibas.ch

Klimafester Baum

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 06.07.2021

Gegen den Trockenstress: Neues Verfahren aus der Biomechanik lässt Wurzeln in die Tiefe wachsen

Baumwurzeln werden von feuchten Bodenbereichen angelockt, ein Phänomen, das als Hydrotropismus bekannt ist. Oberflächliches Bewässern führt deshalb dazu, dass Wurzeln nahe der Oberfläche bleiben, statt in die Tiefe zu wachsen. Biomechaniker des Karlsruher Instituts für Technologie (KIT) haben mit der Methode der Splittzylinder ein leicht anzuwendendes Verfahren entwickelt, mit dem die Baumwurzeln in tiefere, feuchtere Bodenschichten gelockt werden. Damit sollen die Bäume widerstandsfähiger gegen Folgen des Klimawandels werden.

Stadt- und Parkbäume, aber auch Bäume auf den Grundstücken privater Hausbesitzer leiden durch den Klimawandel und die damit bei uns einhergehenden geringeren Niederschläge immer stärker unter Trockenstress. Pflanzenwurzeln wachsen durch sogenannten Hydrotropismus normalerweise in Richtung höherer Bodenfeuchte. „Regelmäßiges oberflächliches Bewässern führt dazu, dass die Wurzeln Richtung Oberfläche gezogen werden, statt in die Tiefe, wo sie mehr Feuchtigkeit finden“, erläutert Professor Claus Mattheck von der Abteilung Biomechanik am Institut für Angewandte Materialwissenschaften des KIT. „Wir müssen den Wurzeln also einen Anreiz bieten, nach unten zu wachsen.“ Modernere Bewässerungsmethoden bringen bereits mit vertikal eingesetzten Rohren Wasser in tiefere Bodenschichten, locken Wurzeln somit nach unten, wo die Erde nicht so schnell austrocknet.

Mit Splitt gegen Trockenheit

Mit der nun am KIT entwickelten Methode der Splittzylinder könnten sich Straßenbäume in der Stadt, Bestandsbäume in Parks oder im heimischen Garten mit einem einfachen Verfahren besser gegen Trockenheit wappnen. Grundlage dafür ist eine Mischung aus grobem Splitt und Terra preta, einem ursprünglich aus dem Amazonasgebiet kommenden fruchtbaren schwarzen Boden. Diese Mischung soll möglichst tief in die Erde eingebracht werden, etwa durch Bohren eines 20 bis 30 Zentimeter breiten Lochs.

„Wir gehen davon aus, dass die Wurzeln der Bäume von der gut durchlüfteten, durch Verkehrsschwingungen kaum verdichtbaren und mit Terra preta angereicherten Splittsäule angelockt werden und diese zunehmend durchwurzeln“, beschreibt Mattheck das Ziel des Verfahrens. Experimente mit Maispflanzen bestätigen diese Hypothese. Untersuchungen an Bäumen laufen an mehreren Standorten.

Die Idee, hier Terra preta als Dünger zu verwenden, stammt von Siegfried Fink, Professor für Forstbotanik an der Universität Freiburg, der am Amazonas forschte.

Nun sind tiefere Bodenschichten zumeist etwas feuchter und ziehen die Wurzeln somit an. „Wenn im unteren Ende des Splittzylinders die Wurzeldichte zu hoch wird, ist zu erwarten, dass die Wurzeln sich in dieser tiefen und feuchteren Bodenschicht auch außerhalb des vorgegebenen Zylinders breitmachen. Eine dauerhafte Bewässerung ist dann nicht mehr notwendig“, so Mattheck. In der größeren Tiefe finden die Wurzeln auch bei Dürre mehr Wasser.

„Der Splittzylinder ist für die Bäume sozusagen Futterstelle und Wurzeltauchstation in einem und damit Hilfe zur Selbsthilfe“, zeigt sich der Wissenschaftler mit dem neuen Verfahren zufrieden. „Die Durchwurzelung der Splittzylinder braucht aber etwas Zeit und damit der Baumfreund Geduld.“ Lehmböden seien jedoch ungeeignet für diese Methode, weil sie bei Starkregen voll Wasser laufen und die Wurzeln ersticken würden. (jh)

Externer Link: www.kit.edu