Wasserwellen und Quantensplitter

Presseaussendung der TU Wien vom 26.03.2019

Wasserwellen in einem Glas sind etwas ganz anderes als die Scherben, in die das Glas zerbricht. Aber in der Quantenphysik ultrakalter Atome ist beides verwandt, zeigt eine Studie mit Beteiligung der TU Wien und der Universität Wien.

Wenn man ein Wassergefäß sanft schüttelt, werden an der Wasseroberfläche charakteristische Wellenmuster sichtbar – man bezeichnet sie als „Faraday-Wellen“. Denselben Effekt konnte ein internationales Forschungsteam mit Beteiligung der TU Wien nun auch in einer Wolke ultrakalter Atome nachweisen. Allerdings gibt es hier noch eine bemerkenswerte Besonderheit: Unter bestimmten Bedingungen kann man die Atomwolke dazu bringen, auf zufällige, unvorhersagbare Weise zu zerbrechen, wie ein Glas, das in Scherben zersplittert. Diesen spontanen Zerfall nennt man „Granulation“. Aus dem Zusammenhang zwischen den Faraday-Wellen und der Granulation kann man einiges über komplizierte quantenphysikalische Vielteilchen-Phänomene lernen. Die Ergebnisse wurden nun im Fachjournal „Physical Review X“ publiziert.

Zufall oder nicht?

„Granulation ist normalerweise ein Zufallsprodukt, das man bei festen Körpern beobachtet – wie das Zerbrechen von Glas oder das Pulverisieren eines Steins in unterschiedlich große Körner“, sagt Axel Lode, der am Atominstitut der TU Wien und am Wolfgang Pauli Institut an der Uni Wien arbeitet. „Faraday-Wellen hingegen sind nicht zufällig. Bei ihnen handelt es sich um regelmäßige, stehende Wellen, die immer wieder genau gleich aussehen, wenn man eine Flüssigkeit auf dieselbe Weise schüttelt.“

Erstaunlicherweise lassen sich aber die quantenphysikalischen Versionen beider Phänomene in ein und demselben Quantensystem hervorrufen. Dafür verwendete man eine Wolke von Lithium-Atomen. Sie werden zunächst bis knapp über den absoluten Nullpunkt gekühlt, sodass sie einen gemeinsamen Quantenzustand annehmen und ein sogenanntes „Bose-Einstein-Kondensat“ bilden.

Durch ein schwaches, langsam oszillierendes Magnetfeld kann man in diesem Bose-Einstein-Kondensat Faraday-Wellen erzeugen – auf klar vorhersagbare und wiederholbare Weise. „Wenn man dieses Magnetfeld allerdings verstärkt und gleichzeitig seine Frequenz senkt, passiert etwas Erstaunliches“, berichtet Axel Lode. „Die Atomwolke zerbricht an zufälligen Positionen.“ Aus dem Kondensat, in dem alle Atome streng quantenphysikalisch miteinander verbunden sind und exakt im gleichen Takt schwingen, werden unterschiedliche Quanten-Körner, deren Größe und Position vom Zufall bestimmt ist.

Gemessen wurde das an der Rice University in Houston, Texas, mit Unterstützung von Forschungsteams aus Brasilien und Österreich. „Es wurden sogenannte single-shot-Bilder aufgenommen, also, ganz simpel gesagt, Fotos vom Quantenzustand der Atomwolke“, erklärt Axel Lode. So lange sich im Kondensat Faraday-Wellen ausbildeten, sahen diese Bilder jedes Mal gleich aus. Doch wenn es zur Granulation kommt, sieht das Bild immer völlig anders aus, auch wenn man das Experiment völlig gleich durchführt.

Computersimulation der Quantenkorrelationen

Das hat mit Quantenkorrelationen zu tun – mit den komplizierten Zusammenhängen zwischen Quantenteilchen, die sich mathematisch nur sehr schwer beschreiben lassen. Axel Lode entwickelte an der TU Wien die nötige Software, um das Vielteilchensystem mit seinen Quantenkorrelationen zu beschreiben und so die Messergebnisse korrekt deuten zu können. Das Verhalten von Quanten-Vielteilchensystemen gehört nach wie vor zu den großen ungelösten Rätseln der Physik. Zwar ist die Gleichung bekannt, an die sich die Quantenteilchen zu halten haben – nämlich die Schrödingergleichung, doch machen die Quantenkorrelationen den Zustand der Teilchen viel zu kompliziert, als dass man ein System von hunderten oder gar tausenden Quantenteilchen exakt beschreiben könnte. Zu klären, wie Quantensysteme aus Teilsystemen aufgebaut sind, wie sie miteinander zusammenhängen und wie ein großes System in kleinere, unabhängige Teile zerfallen kann, spielt für die Forschung an den Grundlagen der Physik daher eine wichtige Rolle. Die Forschungsarbeit wird an der TU Wien weiter fortgesetzt: Axel Lode leitet nun ein vom FWF finanziertes Einzelprojekt, das weitere Rätsel rund um diese Vielteilchensysteme lösen soll. (Florian Aigner)

Originalpublikation:
J. Nguyen et al., Phys. Rev. X 9, 011052 (2019)

Externer Link: www.tuwien.ac.at

Alarm! Wie verletzte Pflanzenzellen ihre Nachbarn warnen

Medienmitteilung der Universität Basel vom 22.03.2019

Alle Organismen können verletzt werden. Aber was passiert eigentlich, wenn eine Pflanze verletzt wird? Wie kann sie heilen und Infektionen vermeiden? Über die Mechanismen der Wundreaktion bei Pflanzen berichtet ein internationales Forschungsteam von der Universität Basel und der Universität Gent in der Fachzeitschrift «Science». Die Erkenntnisse über das pflanzliche Immunsystem kann für neue Ansätze im nachhaltigen Pflanzenbau genutzt werden.

Im Fall einer Verletzung reagieren Pflanzen mindestens genauso schnell wie Tiere und Menschen. Sie besitzen ein hochentwickeltes zelluläres Kommunikationssystem, das innerhalb von Sekunden Alarm schlägt. Dabei setzen die Pflanzenzellen ein spezifisches Hormon frei, um Prozesse der Wundheilung und Infektionsabwehr in Gang zu bringen. Als Modellpflanze diente in der vorliegenden Studie die sogenannte Ackerschmalwand, auch bekannt unter dem Namen Arabidopsis thaliana. Die Ergebnisse wurden von der Forschungsgruppe um Prof. Thomas Boller vom Fachbereich Botanik an der Universität Basel sowie Forschenden der Universität Gent, Belgien, erarbeitet.

Calcium-Welle aktiviert Wundhormone

Um die Wundreaktion der Modellpflanze besser zu verstehen, fokussierten die Forschenden einen kurzen Puls eines hochpräzisen Laserstrahls auf einzelne Wurzelzellen. Innerhalb von Sekunden löste diese lokale Verletzung einen starken Anstieg von Calcium-Ionen in den betroffenen Zellen aus. Diese «Calcium-Welle» führte wiederum zur Aktivierung eines proteinspaltenden Enzyms, der sogenannten «Metacaspase 4», welches in der Lage ist, ein Wundhormon aus dem Vorläuferprotein freizusetzen und so die Nachbarzellen zu alarmieren.

Dabei waren die Forschenden besonders überrascht, dass das Alarmsystem der Pflanze so schnell und spezifisch auf Verwundung reagiert. Doktorand Tim Hander aus dem Forschungsteam von Prof. Boller rechnete zunächst mit Viertelstunden, dann mit Minuten und schlussendlich mit Sekunden. Zur Überprüfung der Ergebnisse stellten die Forschenden weiterhin eine experimentelle Mutante der Pflanze her, der die Metacaspase 4 fehlte. Diese war nicht in der Lage, das Wundhormon zu produzieren und den Alarm an die Nachbarzellen weiterzugeben.

Erkenntnisse für nachhaltigen Pflanzenbau nutzen

Die Forschenden weisen darauf hin, dass die gewonnen Erkenntnisse zur Entwicklung neuer Ansätze im nachhaltigen Pflanzenbau dienen könnten. «Wenn man Alarmreaktionen besser versteht, dann lässt sich dieses Wissen nutzen, um Pflanzen effektiver vor Schädlingen zu schützen – indem man in der Pflanzenzüchtung daraufhin arbeitet, die Freisetzung des Wundhormons und seine Wahrnehmung durch die entsprechenden Rezeptoren zu verstärken», so Prof. Boller.

Herkömmliche Zuchtstrategien von Lebens- oder Futtermitteln priorisieren in der Regel Ertrag und Qualität in Kombination mit intensivem Pestizideinsatz, ohne das pflanzliche Immunsystem zu berücksichtigen. Mit der Identifizierung der Metacaspasen als essentiellen Katalysatoren einer effizienten natürlichen Abwehrreaktion entstehen potenziell neue Möglichkeiten für den Pflanzenbau.

Originalarbeit:
Tim Hander, Álvaro D. Fernández-Fernández, Robert P. Kumpf, Patrick Willems, Hendrik Schatowitz, Debbie Rombaut, An Staes, Jonah Nolf, Robin Pottie, Panfeng Yao, Amanda Gonçalves, Benjamin Pavie, Thomas Boller, Kris Gevaert, Frank Van Breusegem, Sebastian Bartels, Simon Stael
Damage on plants activates Ca2+-dependent metacaspases for release of immunomodulatory peptides
Science (2019), doi: 10.1126/science.aar7486

Externer Link: www.unibas.ch

Ein Transistor für alle Fälle

Presseinformation der LMU München vom 19.03.2019

Ob Handy, Kühlschrank oder Flugzeug: Transistoren sind überall verbaut. LMU-Physiker haben jetzt einen nanoskopisch kleinen Transistor aus organischem Halbleitermaterial entwickelt, der sowohl bei niedrigem als auch hohem Strom bestens funktioniert.

Transistoren sind Halbleiter-Bauelemente, die in elektrischen Schaltungen Spannungen und Ströme steuern. Im gleichen Maße wie viele elektrische Geräte immer leistungsfähiger und gleichzeitig kleiner werden, gilt dies auch für Transistoren. Bei anorganischen Bauelementen sind Abmessungen unter 100 Nanometer bereits Standard.

Organische Halbleiter können hier noch nicht mithalten, denn ihre Leistung bezüglich des Ladungstransports ist deutlich geringer. Doch ihre Strukturen bieten andere Vorteile. Sie lassen sich großindustriell drucken, die Materialkosten sind niedrig und sie können transparent auf flexible Oberflächen wie Folien aufgebracht werden. Daher arbeiten Thomas Weitz, Professor für Physik an der LMU und Mitglied in der Nanosystems Initiative Munich, und seine Gruppe an der Optimierung der organischen Transistoren. In ihrer aktuellen Publikation in Nature Nanotechnology präsentieren sie Transistoren, die durch ihren ungewöhnlichen Aufbau sehr klein, leistungsstark und anpassungsfähig sind. Über wenige Parameter lässt sich beispielsweise bei der Herstellung steuern, ob der Halbleiter für hohe oder niedrige Stromdichten optimiert sein soll. Das Besondere ist eine untypische Geometrie, die es zudem erlaubt, die nanoskopisch kleinen Transistoren leichter herzustellen.

„Unser Ziel war es, Bauteile zu entwickeln, die zwei Aufgaben kombinieren“, sagt Thomas Weitz „Einerseits die Fähigkeit, bei hohen Strömen als klassische Transistoren zu fungieren, und andererseits bei Niedrigstrom arbeiten zu können.“ Potenzielle Einsatzgebiete sind organische LEDs oder Sensoren, denn hier werden niedrige Spannungen, hohe Ströme oder große Transkonduktanzen benötigt. Besonders interessant könnte die Verwendung in sogenannten memristiven Elementen sein. „Man kann sich einen Memristor als ein Element vorstellen, das sich beim Verarbeiten elektrischer Signale wie ein Netzwerk von Neuronen verhält und seine Eigenschaften abhängig von dem Zustand, in dem es sich befindet, verändert“, erklärt Weitz. „Durch das genaue Anpassen der Geometrie unserer memristiven Elemente können diese für verschiedene Anwendungen wie beispielsweise Lernprozesse in künstlichen Synapsen eingesetzt werden.“

Die Forscher haben ihren Transistor bereits zum Patent angemeldet, damit er für die industrielle Anwendung weiterentwickelt werden kann.

Externer Link: www.uni-muenchen.de