Faden-Kunst aus Roboterhand

Presseaussendung der TU Wien vom 10.09.2018

Als „String Art“ bezeichnet man Bilder aus kunstvoll gespannten Fäden. Was bisher Erfahrung und eine ruhige Hand benötigte, gelingt an der TU Wien nun mit einem Roboter – ein Beispiel, welch komplexe Aufgaben digitale Fabrikation mittlerweile lösen kann.

Die Grundidee ist einfach: Auf einem Brett befinden sich Nägel, und zwischen ihnen soll ein langer Faden so hin und her gespannt werden, dass er ein bestimmtes Bild ergibt. Recht einfach lassen sich so interessante geometrische Muster produzieren. Den wahren Profis gelingt es sogar, durch eine ausgeklügelte Anordnung der Fadenlinien ein Portrait zu erstellen.

An der TU Wien hat man diese Kunstform nun automatisiert: Beliebige Bilder können verwendet werden, der Computer berechnet den optimalen Faden-Weg, der das gewünschte Bild möglichst exakt wiedergibt. Ein Industrie-Roboter übernimmt dann die Arbeit des Fadenspannens und erzeugt ein kreisrundes Fadenbild.

Unzählige Möglichkeiten

„Aus wissenschaftlicher Sicht ist das ein sehr interessantes Problem, weil es ganz besonders schwer zu lösen ist“, sagt Przemyslaw Musialski vom Institut für Diskrete Mathematik und Geometrie der TU Wien. Im Allgemeinen lässt sich ein Bild auf diese Weise nicht exakt reproduzieren – schließlich kann man mit der Faden-Methode keine einzelnen Bildpunkte setzen, sondern nur durchgängige Linien ziehen. Man muss daher eine möglichst gute Näherungslösung finden.

Außerdem ist die Anzahl der Möglichkeiten, wie man einen Faden zwischen einer größeren Anzahl von Nägeln spannen kann, astronomisch hoch. Es ist völlig unmöglich, alle denkbaren Varianten durchzuprobieren. „Es handelt sich um ein sogenanntes NP-schweres Problem“, sagt Musialski. „Zu dieser Klasse von Aufgaben gehören Rechenprobleme, die mit Computern in überschaubarer Zeit nicht exakt gelöst werden können.“

Für die Erstellung des Bildes verwendet man einen Kreis aus 256 Haken. „Unsere Rechnungen haben gezeigt, dass eine größere Anzahl von Haken das Endergebnis nur noch marginal verbessert“, sagt Przemyslaw Musialski. Der Faden kann jeweils von der rechten oder linken Seite jedes Hakens zur rechten oder linken Seite jedes anderen Hakens gespannt werden. Schon bei ungefähr 30 Fadenlinien ergeben sich somit mehr mögliche Varianten als das beobachtbare Universum Atome hat – und um ein erkennbares Bild wiederzugeben, braucht man noch viel mehr Linien. Es ist daher eine große mathematische Herausforderung, aus der unüberblickbaren Vielzahl an möglichen Wegen einen herauszufinden, der das gewünschte Bild möglichst gut reproduziert.

Der Präzisions-Roboterarm als Fadenkünstler

Die mathematische Lösung des Problems war dem Forschungsteam aber noch nicht genug. Das Ziel war, echte „String Art“ völlig automatisiert zu produzieren. Daher setzte man einen hochpräzisen Industrie-Roboter ein, der normalerweise an der Fakultät für Architektur der TU Wien zum Fräsen komplizierter 3D-Formen verwendet wird. Der Roboterarm spannt einen einzigen langen Faden zwischen den 256 Haken, sodass am Ende ein kreisrundes Fadenbild mit 63cm Durchmesser entsteht. Auch für den Industrieroboter ist die Aufgabe nicht im Handumdrehen erledigt: Je nach Bildmotiv dauert die Produktion 2-5 Stunden und benötigt zwischen 2 und 6 Kilometer Faden.

Unterstützt wurde das Team der TU Wien von Peter Wonkas Arbeitsgruppe an der King Abdullah University of Science and Technology in Saudi-Arabien. „Auch wenn unser Roboter hübsche Bilder erzeugt, ist unsere Arbeit natürlich kein Kunstprojekt“, sagt Przemyslaw Musialski. „Letztlich wollen wir zeigen, wie man besonders schwierige technische Probleme am besten lösen kann. Im String-Art-Projekt arbeiten wir mit Methoden, die in Zukunft auch in der digitalen Fabrikation eine wichtige Rolle spielen werden.“ (Florian Aigner)

Externer Link: www.tuwien.ac.at

Umweltfreundlich und effizient

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 03.09.2018

Wärmepumpen machen Umweltenergie für Heizzwecke nutzbar. In der Regel werden sie jedoch mit synthetischen Kältemitteln betrieben, die umweltschädliche, fluorierte Treibhausgase (F-Gase) enthalten. Fraunhofer-Forscherinnen und Forscher haben jetzt im Rahmen eines Konsortiums eine Wärmepumpe mitentwickelt, in der stattdessen Propan eingesetzt wird. Das macht die Pumpe nicht nur klimafreundlicher, sondern auch effizienter.

»Heizung und Warmwasser benötigen in Deutschland rund 40 Prozent der Endenergie. Das Verbrennen von hochwertigen, fossilen Energieträgern wie Erdgas oder Erdöl ist nicht nur energetisch unsinnig, sondern auch klimaschädlich. Wärmepumpen machen aus einer Einheit elektrischer Antriebsenergie, häufig aus erneuerbaren Energien, drei bis fünf Einheiten Wärmeenergie – und das völlig CO2-neutral. Damit sind Wärmepumpen ein wichtiger Baustein für die Umsetzung der Energiewende«, sagt Dr. Marek Miara, Koordinator Wärmepumpen am Fraunhofer-Institut für Solare Energiesysteme ISE in Freiburg.

Eine Wärmepumpe funktioniert ähnlich wie ein Kühlschrank: Das Kältemittel nimmt die Wärme im Innern des Kühlschranks auf und befördert sie nach draußen. Doch während beim Kühlschrank die Wärme an der Rückwand ungenutzt verpufft, wird die Wärme, die eine Wärmepumpe der Erde, dem Grundwasser oder der Umgebungsluft entzieht, zum Heizen oder für die Warmwasserzubereitung verwendet.

Dazu wird das erwärmte, dampfförmige Kältemittel verdichtet und so seine Temperatur und sein Druck erhöht. Das heiße Kältemittelgas gibt seine Wärme an Wasser ab und kondensiert. Das warme Wasser strömt in Fußbodenheizungen, Heizkörper oder Warmwasserspeicher und das abgekühlte, flüssige Kältemittel fließt wieder zurück in den sogenannten Verdampfer, wo es erneut Wärmeenergie aufnimmt. Der Kreislauf beginnt von Neuem.

Als Kältemittel werden in der Regel synthetische Stoffgemische verwendet, die umweltschädliche, fluorierte Treibhausgase (F-Gase) enthalten. Die Europäische Kommission hat im Juni 2014 beschlossen, dass F-Gase schrittweise vom Markt genommen werden müssen. Eine umweltfreundliche, natürliche Alternative zu synthetischen Kältemitteln ist Propan – in Klima- und Kälteanlagen bereits zunehmend im Einsatz, in Wärmepumpen weit weniger verbreitet.

Denn Propan hat zwar sehr gute thermodynamische Eigenschaften, ist aber leicht brennbar und damit eine Herausforderung für die Verwendung im Wärmekreislauf. »Wenn man Propan nutzen will, muss man die Kältemittelmenge so gering wie möglich halten, um das Sicherheitsrisiko zu reduzieren«, sagt Dr. Lena Schnabel, Leiterin der Abteilung für Wärme- und Kältetechnik am Fraunhofer ISE.

Bionische Struktur sorgt für gleichmäßige Verteilung

Die ISE-Forscherinnen und Forscher haben daher gemeinsam mit europäischen Forschungspartnern hochkompakte, gelötete Lamellenwärmeübertrager eingesetzt, die mit geringen Flüssigkeitsmengen gut funktionieren. In Wärmeübertragern wird die thermische Energie von einem Stoffstrom auf den anderen übertragen. Sie bestehen aus vielen parallel verlaufenden Kanälen, in denen das Kältemittel zirkuliert und Wärme aufnimmt, dann nennt man sie Verdampfer, oder abgibt, dann heißen sie Verflüssiger. »Die Flüssigkeit soll über die Lauflänge vollständig verdampfen beziehungsweise wieder kondensieren. Um einen effizienten Betrieb zu gewährleisten, muss in allen Kanälen das gleiche Dampf-Flüssigkeitsverhältnis herrschen. Das ist generell nicht einfach und wird besonders schwierig, wenn man gleichzeitig Kältemittel reduzieren will.«

Um das Problem zu lösen, entwickelten Schnabel und ihr Team einen Verteiler mit einer bionischen Struktur: »Herkömmliche Venturiverteiler sehen aus wie ein Spaghettihaufen aus vielen dünnen Rohren, die in den Verdampfer münden. Unser Verteiler hat im Gegensatz dazu eine kontinuierlich verzweigende Struktur wie die Äste und Zweige eines Baumes, die eine gleichmäßige Verteilung des Kältemittels in die einzelnen Verdampferkanäle bei geringer Kältemittelmenge ermöglichen.« Damit kann die gesamte Wärmeübertragerfläche optimal genutzt und so die Effizienz gesteigert werden.

Um bei der Kompression des Propans keine Explosion zu riskieren, verwendeten Schnabel und ihr Team einen speziellen Verdichter, in dem sämtliche Zündquellen gekapselt wurden. Damit kein Propan entweichen kann, wurden die einzelnen Bauteile der Pumpe besonders sorgfältig miteinander verbunden. »Zurzeit modifizieren wir die technische Gestaltung der Wärmepumpe, prüfen die Bauteile im Langzeitverhalten und erstellen tragfähige Sicherheitskonzepte«, sagt Schnabel.

Externer Link: www.fraunhofer.de

technologiewerte.de – MOOCblick September 2018

Spannende Themen, herausragende Dozenten und flexible Lernmöglichkeiten tragen zum wachsenden Erfolg der Massively Open Online Courses (MOOCs) bei – offene, internetgestützte Kurse mit einer Vielzahl an Teilnehmern rund um den Globus.

Folgender Kurs – zu finden auf der MOOC-Plattform edX – sollte einen Blick wert sein:

Low Emission Technologies and Supply Systems
Geoff Bongers (The University of Queensland) et al.
Start: 18.09.2018 / Arbeitsaufwand: 80 Stunden

Externer Link: www.edx.org

Neuer Mechanismus der Elektronenspinrelaxation nachgewiesen

Medienmitteilung der Universität Basel vom 27.08.2018

Physiker der Universität Basel möchten den Spin von einzelnen Elektronen als Informationseinheit für potenzielle Quantencomputer nutzen. Nun konnten sie erstmals einen vor 15 Jahren vorhergesagten Mechanismus beim Kippen des Elektronenspins experimentell nachweisen. Gleichzeitig gelang es den Wissenschaftlern, die Richtung des Elektronenspins für fast eine Minute konstant zu halten – ein neuer Weltrekord. «Nature Communications» hat die Ergebnisse einer Zusammenarbeit mit Forschenden aus Japan, der Slowakei und den USA veröffentlicht.

Der Eigendrehimpuls von Elektronen (Spin) lässt sich in einem zukünftigen Quantencomputer zur Speicherung von Informationen nutzen. Dieses Konzept hat Professor Daniel Loss vom Departement Physik und Swiss Nanoscience Institute der Universität Basel zusammen mit Professor David DiVincenzo (RWTH Aachen) bereits vor 20 Jahren entwickelt und vorgeschlagen, den Elektronenspin in Quantenpunkten als kleinste Informationseinheit (Qubit) zu verwenden.

Theoretisch geeignet, experimentell herausfordernd

Der Elektronenspin erfüllt die dafür notwendigen Anforderungen: Wird ein Magnetfeld angelegt, kann der Spin in den beiden Zuständen «Spin-up» und «Spin-down» auftreten, die sich schnell hin und her schalten lassen.

Zudem unterliegt der Elektronenspin den besonderen Gesetzen der Quantenphysik. Die beiden Zustände können nämlich für einen bestimmten Zeitraum, der sogenannten Kohärenzzeit, gleichzeitig existieren. Spins lassen sich ausserdem miteinander koppeln. Wird der Zustand des einen Spins manipuliert, ändert sich sofort auch der Zustand des verschränkten Spins. Ein spin-basierter Quantencomputer könnte damit Millionen von Rechenoperationen gleichzeitig ausführen und Aufgaben erledigen, die für heutige Supercomputer undenkbar sind.

Schwierig ist jedoch die experimentelle Umsetzung der Theorie, unter anderem auch, weil die untersuchten Elektronen sowie ihr Spin winzig klein sind. Messungen und Manipulationen des Spins sind daher nur mit grossem technischen Aufwand möglich.

Neuer Mechanismus des Kippvorgangs

Eine Grundvoraussetzung, um die Richtung eines Spins zu messen, ist dessen Richtungsstabilität über einen möglichst langen Zeitraum. Unbeeinflusst tendiert der Spin dazu, relativ schnell auf den energetisch tieferen Zustand Spin-up zu kippen.

Diesen Kippvorgang, Relaxation genannt, untersucht die Gruppe von Professor Dominik Zumbühl vom Departement Physik und Swiss Nanoscience Institut der Universität Basel bereits seit einigen Jahren, da die so wichtige Kohärenzzeit immer auch durch die Relaxationszeit limitiert ist.

Erstmals konnten die Physiker nun einen neuen Mechanismus der Spinrelaxation experimentell nachweisen, der vor etwa 15 Jahren vorausgesagt worden war. Beim Kippen des Elektronenspins kippt dabei gleichzeitig ein Kernspin in die entgegengesetzte Richtung. Die überschüssige Energie wird dabei in Form einer Gitterschwingung abgegeben.

Technische Verbesserungen bringen den Fortschritt

Dank der technischen Neuerungen, welche diesen experimentellen Nachweis möglich machte, halten die Basler Wissenschaftler auch den Weltrekord in der Elektronenspinstabilität. Im Mittel konnten sie den Elektronenspin für 57 Sekunden auf dem energetisch hohen Spin-down Zustand halten.

Sie erreichten diesen Rekord, indem sie ihre Experimente mit hohem technischem Aufwand bei Temperaturen ganz knapp über dem absoluten Nullpunkt von -273,15 °C durchführten und einen piezoelektrischen Rotator verwendeten, mit dem sie die Richtung des Magnetfeldes genau steuern konnten.

Für die Experimente entwarfen die Basler Forscher einen etwa 2 mal 2 Millimeter grossen Chip aus dem Halbleitermaterial Galliumarsenid, auf dem sie in einem Quantenpunkt mithilfe von nanofabrizierten Metallelektroden ein einzelnes Elektron einfingen. Gekühlt auf extrem tiefe 60 Millikelvin konnten die Wissenschaftler den Zeitraum von Tausenden der Kippvorgänge messen und erhielten für eine optimale Konfiguration mit dem kleinsten Magnetfeld den Durchschnittswert von 57 Sekunden.

«Mit dem experimentellen Nachweis des neuen Relaxationsmechanismus haben wir unser Verständnis über die Physik der Elektronenspins in Nanostrukturen, die als Qubits eingesetzt werden sollen, wesentlich erweitert», erläutert Dominik Zumbühl. «Diese Fortschritte, den Spin besser zu kontrollieren und zu messen, sind wichtige Zwischenschritte auf dem Weg zu einem Quantencomputer», ergänzt er.

Originalbeitrag:
Leon C. Camenzind, Liuqi Yu, Peter Stano, Jeramy D. Zimmerman, Arthur C. Gossard, Daniel Loss, and Dominik M. Zumbühl
Hyperfine-phonon spin relaxation in a single-electron GaAs quantum dot
Nature Communications (2018), doi: 10.1038/s41467-018-05879-x

Externer Link: www.unibas.ch