Neue Metallschweißverbindungen verbessern Mittelohrimplantate

Pressemitteilung der Universität Kassel vom 01.08.2023

Schweißverbindungen zwischen Titan beziehungsweise nichtrostenden Stählen und sogenannten Nickel-Titan-Formgedächtnislegierungen sind bislang noch anfällig für die Entstehung von Rissen. Die Werkstoffkombinationen weisen daher häufig geringe Festigkeiten auf. Wissenschaftlerinnen und Wissenschaftlern der Universität Kassel ist mit den biokompatiblen Zusatzwerkstoffen Niob, Tantal und Hafnium hier nun ein neues Verfahren gelungen – das eröffnet Möglichkeiten beispielsweise in der Medizintechnik. In einem ersten Projekt verbesserten sie die Materialfestigkeit eines Mittelohrimplantats um den Faktor 3.

Titanlegierungen, Nickel-Titan-Formgedächtnislegierungen (kurz: NiTi) sowie nichtrostende Stähle zeichnen sich unter anderem durch hervorragende Korrosions- und Medienbeständigkeit aus und zählen deshalb zu den am häufigsten genutzten Metallen in der Medizintechnik. Wegen der spezifischen Materialeigenschaften ist es jedoch aus funktionellen, fertigungstechnischen sowie aus wirtschaftlichen Gründen gewünscht, sogenannte artfremde Verbindungen zu anderen Werkstoffen herzustellen und somit deren Vorteile in Bauteilen mit maßgeschneiderten Eigenschaften zu vereinen. Eine beispielhafte Anwendung aus dem Bereich der Medizintechnik sind Stapesprothesen, die als Ersatz für Steigbügel, die kleinsten Knochen im menschlichen Körper, eingesetzt werden. Mit einer Länge von 5 mm ist ein Steigbügel dreimal kleiner als der Durchmesser einer 1-Cent-Münze.

Im Rahmen des von Januar 2021 bis Dezember 2022 durchgeführten Forschungsprojekts „MeTiWeld – Artfremdes Mikro-Strahlschweißen von Titan mit Nitinol und nichtrostenden Stählen zur Herstellung eines biokompatiblen Materialverbunds und Verwendung von Zusatzwerkstoffen“ untersuchten die Forscherinnen und Forscher um Prof. Dr.-Ing. Prof. h.c. Stefan Böhm (Leiter Fachgebiet Trennende und Fügende Fertigungsverfahren) artfremde Strahlschweißverbindungen bei Titanlegierungen, nichtrostenden Stählen und NiTi unter Nutzung biokompatibler Zusatzwerkstoffe wie Niob, Tantal und Hafnium. Zum Einsatz kamen sowohl das Mikro-Elektronenstrahlschweißen als auch das Laserstrahlschweißen. „Bei der Verwendung der Zusatzwerkstoffe konnten wir herausragende Zug- und Biegefestigkeiten erzielen, welche die Ergebnisse bisheriger Studien zum artfremden Strahlschweißen der Grundwerkstoffe deutlich übertreffen“, erklärt Michael Wiegand, Wissenschaftlicher Mitarbeiter des Fachgebiets und Leiter des Projekts.

Auch ein zweites Medizinprodukt verbesserte das Forschungsteam: Am Beispiel eines Führungsdrahtes, der bei einer Herzkatheter-Untersuchung benötigt wird, zeigt das Forschungsteam, dass etwa die Zusatzwerkstoffe Niob oder Tantal zwischen nichtrostendem Stahl und NiTi-Draht zu einer fast doppelt so hohen Zugfestigkeit der Materialverbindungen gegenüber der des Strahlschweißens ohne Zusatzwerkstoffe führt. Im Falle der Stapesprothese, deren Schaft aus reinem Titan und das Ankopplungselement aus superelastischem NiTi besteht, konnte die Zugfestigkeit durch das Einschweißen einer dünnen Niob-Folie um mehr als das Dreifache gesteigert werden. „Unsere Forschungsergebnisse bestätigen auch im Hinblick auf die Biokompatibilität, dass mit dem Forschungsvorhaben eine essentielle Basis für die Übertragung auf medizintechnische Bauteile geschaffen wurde“, erläutert Prof. Böhm.

Die Kasseler Wissenschaftlerinnen und Wissenschaftler arbeiten im Projekt MeTiWeld mit dem Naturwissenschaftlichen und Medizinischen Institut an der Universität Tübingen/ Reutlingen zusammen. Das Forschungsprojekt wurde vom Bundesministerium für Wirtschaft und Energie und der Arbeitsgemeinschaft industrieller Fördervereinigungen „Otto von Guericke“ e.V. mit rund 400.000 Euro gefördert.

Die Universität Kassel legt einen ihrer Forschungsschwerpunkte auf Molekulare Komponenten und Multifunktionale Materialien. Das Institut für Werkstofftechnik wiederum beschäftigt sich intensiv mit metallischen Werkstoffen. Hierzu werden regelmäßig zukunftsweisende und mit hohen Fördersummen bedachte Projekte als Teil des Forschungsclusters „BiTWerk – Biologische Transformation technischer Werkstoffe“ gestartet.

Externer Link: www.uni-kassel.de

technologiewerte.de – MOOCblick August 2023

Spannende Themen, herausragende Dozenten und flexible Lernmöglichkeiten tragen zum wachsenden Erfolg der Massively Open Online Courses (MOOCs) bei – offene, internetgestützte Kurse mit einer Vielzahl an Teilnehmern rund um den Globus.

Folgender Kurs – zu finden auf der MOOC-Plattform edX – sollte einen Blick wert sein:

Big Data for Agri-Food: Principles and Tools
Ioannis N. Athanasiadis (Wageningen University & Research) et al.
Start: flexibel / Arbeitsaufwand: 36-60 Stunden

Externer Link: www.edx.org

Damit der Airbag sicher auslöst

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.08.2023

Über 358 000 Menschen kamen in Deutschland 2022 laut Statistischem Bundesamt bei Verkehrsunfällen zu Schaden. Oft verhindert ein Airbag dabei Schlimmeres. Während der Fahrt liegt er gut verborgen unter einer hochwertigen Kunststoff-Oberfläche, die große Teile des Cockpits überzieht: der Slush-Haut. Damit diese an den richtigen Stellen reißt, wenn der Airbag auslöst, wird sie nach der Produktion vorsichtig angeritzt. Doch Material und eingebrachte Sollrissstelle müssen optimal aufeinander abgestimmt sein, sodass der Airbag sich im Ernstfall voll entfalten kann. Um dies sicherzustellen, kommt zur Überprüfung der Slush-Häute nun nutzerfreundliche Spitzentechnologie zum Einsatz: Das Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM in Kaiserslautern hat ein handgeführtes Terahertz-Messsystem entwickelt, mit dem eine individuelle und zerstörungsfreie Qualitätskontrolle von Slush-Häuten möglich ist.

Slush-Häute mit ihrer lederähnlichen Optik werden heute in vielen Fahrzeugen der Mittel- und Oberklasse eingesetzt, um Armaturen zu verkleiden. Sie zeichnen sich durch sehr flexibel gestaltbares Design und Haptik aus und überzeugen zusätzlich in Sicherheitsfragen. Ihr Name leitet sich von ihrem Herstellungsverfahren, dem Pulversintern (engl. powder slush oder slush moulding) ab. Dabei wird eine Negativ-Form aus Metall aufgeheizt, im nächsten Schritt mit Kunststoffpulver gefüllt und gedreht. Das Pulver beginnt zu schmelzen und haftet an; beim Abkühlen entsteht eine durchgängige Haut.

Um Gewicht und Material einzusparen und zugleich eine bessere Anhaftung auf dem Cockpit zu ermöglichen, hat die Antolin Straubing GmbH ein Zweischichtsystem für Slush-Häute entwickelt. Für das neue Produkt galt es, ein serienbegleitendes Prüfverfahren zu konzipieren, welches sicherstellt, dass der Airbag die Slush-Haut bei einem Verkehrsunfall sicher durchdringt und die Personen im Fahrzeug schützt.

Wie lässt sich jede einzelne Slush-Haut überprüfen?

Mit dieser Problemstellung trat der Automobilzulieferer an das Fraunhofer ITWM heran. Gemäß neuen Vorgaben sollten die zweischichtigen Slush-Häute nicht mehr nur stichprobenartig durch Analyse unter dem Mikroskop, sondern individuell und zugleich zerstörungsfrei kontrolliert werden. Die Expertise der Forschenden am Fraunhofer ITWM im Bereich der Dickenmessung von Mehrschichtlacken vor Augen nahm der Zulieferbetrieb Kontakt zur Abteilung Materialcharakterisierung und -prüfung auf. Seit mehreren Jahren arbeitet die Forschungsgruppe »Optische Terahertz-Messtechnik« unter Leitung von Dr. Daniel Molter am Einsatz von Terahertz-Technologien für die Industrie und erzielte dabei vielversprechende Resultate, indem sie etwa eine zuverlässige und schonende Prüfmethode für lackierte Oberflächen im Automobilbereich entwickelte. Nun stellte sich die Frage: Lässt sich Terahertz-Messtechnik auch für die ungleichmäßige Struktur von Slush-Häuten einsetzen, sodass die Dicke beider Schichten sicher bestimmt werden kann?

Schichtdickenmessung mit Terahertz-Technologie

Terahertz-Wellen sind elektromagnetische Wellen, die mit einer Länge von etwa 300 µm zwischen dem Mikrowellen- und dem Infrarotbereich liegen. »Die Terahertz-Technologie ist im Vergleich zur Technologie anderer Spektralbereiche vergleichsweise jung, und über die letzten Jahre hat sich die Schichtdickenmessung als einer der vielversprechendsten Anwendungsfälle herausgestellt«, beschreibt Daniel Molter das Arbeitsgebiet der Gruppe. »Dafür nutzen wir Femtosekundenlaser, deren Pulse wir mit einem photoleitenden Schalter in Terahertz-Pulse umwandeln. Damit entsteht ein kurzer elektromagnetischer Impuls. Dieser wird dann auf ein Mehrschichtsystem geschickt, und bei jedem Schichtübergang – z. B. von der Luft zum überprüften Material und dann zu einem Metall – entsteht ein Zwischenreflex. Der zeitliche Unterschied zwischen den Reflexen lässt Rückschlüsse auf die Dicke der einzelnen Schichten zu, wenn man deren optische Eigenschaften kennt.«

Bei Mehrschichtlacksystemen funktioniert die bisherige Auswertungstechnik der Signale zuverlässig, weil ihre Struktur homogen ist und Grenzschichten gut definiert sind. Um die ungleichmäßig aufgebauten und mit Luftblasen durchsetzen Schichten von Slush-Häuten vermessen zu können, mussten die Forschenden die bestehende Methodik weiterentwickeln. Anstatt die einzelnen Schichtantworten mathematisch zu modellieren, arbeiteten sie mit einer Reihe von Filteralgorithmen und der Dekonvolution (Entfaltung) von Signalen: Unter Kenntnis einer Eingangsgröße (einem Referenzsignal bzw. der Systemcharakteristik) und des Ergebnisses (Messergebnis) konnten sie die zweite Eingangsgröße – nämlich das Schichtmodell der vorliegenden Slush-Haut – berechnen.

Mobiles, handgehaltenes Messsystem

Damit die Messung direkt vor Ort nach der Produktion der Slush-Häute durchgeführt werden kann, hat die Projektgruppe das neue Messsystem als mobilen Rollwagen mit handgeführtem, 3D-gedrucktem Messkopf konzipiert. Neben einer eigens entwickelten Software verfügt es unter anderem über eine unterbrechungsfreie Stromversorgung, einen Touchscreen mit ausziehbarerer Tastatur sowie einen drahtlosen Barcode/QR-Scanner zur Produkterfassung und ist einfach zu bedienen. Zur Qualitätskontrolle einer fertig produzierten Slush-Haut wird der Messkopf an vorab definierten Punkten aufgesetzt. Bei erfolgreicher Messung ertönt ein akustisches Signal, und die Schichtdicken lassen sich auf einen Blick im Display ablesen.

Mit der erfolgreichen Entwicklung des Messystems für diesen sehr speziellen Anwendungsfall hat die Gruppe um Daniel Molter Pionierarbeit geleistet: »Trotz unserer bisherigen Erfahrung in der Schichtdickenmessung ist das Projekt einzigartig, da wir viele kundenspezifische Anforderungen adressieren mussten.« Zukünftig seien auch weitere Einsatzmöglichkeiten von der Messung anderer Kunststoffschichten im Autocockpit bis hin zur Prüfung von Rohr-Wandstärken vorstellbar. »Im Prinzip eignet sich das System überall dort, wo Wandstärken von etwa 10 µm bis hin zu wenigen Millimetern gemessen werden sollen und ein handgehaltenes System von Vorteil ist«, so Molter. Schon jetzt steht fest: Mit dem von ihnen entwickelten Terahertz-Prüfsystem leisten die Forschenden einen Beitrag für mehr Sicherheit und Nachhaltigkeit in der Automobilproduktion.

Externer Link: www.fraunhofer.de

Materialforschung: Biokatalytische Schäume mit enormer Haltbarkeit und Aktivität

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 27.07.2023

Forschende des KIT entwickeln aus Enzymen eine neue Material-Klasse für Biokatalyse-Prozesse

Die industrielle Biokatalyse mit Enzymen gilt als „Gamechanger“ bei der Entwicklung einer nachhaltigen chemischen Industrie. Mithilfe von Enzymen kann eine eindrucksvolle Bandbreite an komplexen Molekülen wie pharmazeutische Wirkstoffe unter umweltfreundlichen Bedingungen synthetisiert werden. Forschende des Karlsruher Instituts für Technologie (KIT) haben nun eine neue Klasse von Materialien entwickelt, indem sie Enzyme als Schäume hergestellt haben, die eine enorme Haltbarkeit und Aktivität besitzen. Über ihre Ergebnisse berichten die Forschenden in der Fachzeitschrift Advanced Materials. Das neuartige Herstellungsverfahren der Enzym-Schäume wurde bereits zum Patent angemeldet.

Um das Gebiet der industriellen Biokatalyse, die vor allem bei der Herstellung von Pharmazeutika und Spezialchemikalien zum Einsatz kommt, weiterzuentwickeln, arbeiten Forschende intensiv an neuen Prozesstechnologien. Bei der Biokatalyse beschleunigen Enzyme statt chemischer Katalysatoren die Reaktionen, damit lassen sich Rohstoffe und Energie einsparen. Ziel ist es nun, Enzym-Biokatalysatoren unter möglichst schonenden Bedingungen kontinuierlich und in großen Mengen bereitzustellen. Damit effiziente Stoffumwandlungen realisierbar sind, werden die Enzyme in mikrostrukturierten Durchflussreaktoren immobilisiert. Sie sind dabei räumlich fixiert und an ein reaktionsträges Material gebunden und somit eingeschränkt mobil, was zu einer höheren Konzentrierung der Enzyme und damit verbunden zu einer höheren Produktivität führt.

Aufgeschäumte Mikrotröpfchen aus selbstorganisierenden Enzymen

Normalerweise verändern Enzyme beim Verschäumen ihre Struktur und verlieren damit ihre biokatalytische Aktivität. Die neuen Proteinschäume haben aber eine enorme Haltbarkeit und Aktivität. Die Aktivität ist ein Maß für die Wirksamkeit des Enzyms, das dafür sorgt, dass Ausgangsstoffe möglichst schnell miteinander reagieren. Für die Herstellung der Proteinschäume werden zwei Dehydrogenase-Enzyme gemischt, die zueinander passende Verknüpfungsstellen tragen, sodass sie spontan ein stabiles Proteinnetzwerk ausbilden können. „Dieses Gemisch wird dann in einem mikrofluidischen Chip mit einem Gasstrom versetzt, damit sich kontrolliert mikroskopische Blasen einheitlicher Größe bilden“, erklärt Professor Christof Niemeyer vom Institut für Biologische Grenzflächen-1 den Prozess. Der so hergestellte Schaum mit einheitlicher Blasengröße wird direkt auf Kunststoffchips aufgebracht und getrocknet, wodurch die Proteine polymerisieren und ein stabiles, hexagonales Gitter ausbilden.

„Es handelt sich dabei um monodisperse „Voll-Enzym-Schäume“, also dreidimensionale, poröse Netzwerke, die ausschließlich aus biokatalytisch aktiven Proteinen bestehen“, charakterisiert Niemeyer die Zusammensetzung der neuen Materialien. Die stabile hexagonale Wabenstruktur der Schäume besitzt einen mittleren Porendurchmesser von 160 µm und einer Lamellendicke von 8 µm und wird aus den frisch hergestellten, etwa gleich großen kugelförmigen Blasen nach wenigen Minuten gebildet.

Aktive und stabile Voll-Enzym-Schäume effizient einsetzen

Um Enzyme effizient für Stoffumwandlungen nutzen zu können, müssen sie in großen Mengen unter möglichst schonenden Bedingungen immobilisiert werden, um ihre Aktivität zu erhalten. Bisher wurden Enzyme auf Polymeren oder Trägerpartikeln immobilisiert, allerdings wird hierfür wertvoller Reaktorraum benötigt und die Aktivität kann beeinträchtigt werden. „Im Vergleich zu unseren bereits entwickelten „Voll-Enzym-Hydrogelen“ entsteht bei den neuen Materialien auf Schaumbasis eine deutlich größere Oberfläche, an der die gewünschte Reaktion stattfinden kann“, beschreibt Niemeyer die wesentliche Verbesserung. Im Gegensatz zu theoretisch erwarteten Ergebnissen zeigen die neuen Schäume überraschenderweise eine auffallend hohe Haltbarkeit, mechanische Widerstandsfähigkeit und katalytische Aktivität der Enzyme, was bisher beim Schäumen von Proteinen nicht gelungen war.

Die Stabilität kommt, so vermuten die Forschenden, durch die zueinander passenden Verknüpfungsstellen zustande, mit der die Enzyme ausgestattet sind. Hierdurch können sie sich von selbst zusammenfügen und so während des Trocknens ein hochvernetztes Gitter bilden, das dem neuen Material eine einzigartige Stabilität verleiht. „Erstaunlicherweise sind die neu entwickelten Enzymschäume nach der Trocknung für vier Wochen deutlich stabiler als die gleichen Enzyme ohne Schäume“, erläutert Niemeyer die Vorteile, „dies ist für die Vermarktung von großem Interesse, da hierdurch Vorratsproduktion und Versand erheblich vereinfacht werden.“

Die neuen Biomaterialien eröffnen vielseitige Wege für Innovationen in der industriellen Biotechnologie, den Materialwissenschaften oder auch für die Lebensmitteltechnologie. So könnten die Proteinschäume in biotechnologischen Prozessen eingesetzt werden, um wertvolle Verbindungen effizienter und nachhaltiger herzustellen. Das Forschungsteam konnte zeigen, dass mithilfe der Schäume der industriell wertvolle Zucker Tagatose hergestellt werden kann, der eine vielversprechende Alternative zu raffiniertem Zucker als Süßungsmittel darstellt. (sfo)

Originalpublikation:
Julian S. Hertel, Patrick Bitterwolf, Sandra Kröll, Astrid Winterhalter, Annika J. Weber, Maximilian Grösche, Laurenz B. Walkowsky, Stefan Heißler, Matthias Schwotzer, Christof Wöll, Thomas van de Kamp, Marcus Zuber, Tilo Baumbach, Kersten S. Rabe, Christof M. Niemeyer: Biocatalytic Foams from Microdroplet-Formulated Self-Assembling Enzymes. Advanced Materials, 2023. DOI: 10.1002/adma.202303952

Externer Link: www.kit.edu