Computergrafik: weniger Rechenzeit für Sand

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 24.08.2015

KIT, Disney Research und Cornell University entwickeln ein Verfahren zur effizienten Berechnung fotorealistischer Bilder von granularen Materialien wie Sand, Schnee, Salz oder Zucker

Computergrafik ist heutzutage in der Lage erstaunlich fotorealistische Bilder zu erzeugen. Jedoch gibt es zahlreiche Motive, die enorm viel Rechenzeit benötigen. Forscher des KIT, von Disney Research in Zürich und der Cornell University haben nun ein Verfahren entwickelt, das es erlaubt körnige Objekte aus beispielsweise Sand, Schnee oder Zucker schneller zu berechnen. Es wurde kürzlich auf der renommierten internationalen Konferenz für Computergrafik in Los Angeles, ACM SIGGRAPH 2015, vorgestellt.

„Objekte aus granularen Medien, etwa eine Sandburg, bestehen aus Millionen oder Milliarden einzelner Körner. Die Rechenzeit um daraus fotorealistische Bilder zu erzeugen beträgt Hunderte bis Tausende Prozessorstunden“, erklärt Professor Carsten Dachsbacher vom Institut für Visualisierung und Datenanalyse des KIT. Materialien wie Sand, Salz oder Zucker, die aus zufällig orientierten, aber bei genauem Hinsehen erkennbaren Körnern bestehen, stellen für die Bildsynthese, dem sogenannten Rendering, große Schwierigkeiten dar, da die Wege von Millionen von Lichtstrahlen durch die Körner hindurch simuliert werden müssen. „Zudem können komplexe Streueigenschaften der einzelnen Körner, sowie ihre Anordnung zu einem Gesamtsystem den Einsatz klassischer Beschleunigungsverfahren verhindern. Das macht es schwierig effiziente Algorithmen zu finden“, fügt Doktorand Johannes Meng hinzu. „Gerade bei transparenten Körnern und langen Lichtlaufwegen wächst die Rechenzeit überproportional.“

Für die Bildsynthese entwickelten die Forscher ein neues mehrskaliges Verfahren, das die Simulation an die Struktur des Lichttransports in granularen Medien auf verschiedenen Größenordnungen anpasst. Auf der feinsten Skala, wenn nur wenige Körner im Bild sind, werden Geometrie, Größe und die Materialeigenschaften einzelner erkennbarer Körner sowie ihre Packungsdichte berücksichtigt und Lichtstrahlen werden, wie bei klassischen Ansätzen, dem sogenannten Path Tracing, durch die virtuellen Körner hindurch verfolgt. Path Tracing berechnet einzelne Lichtpfade von jedem Pixel zurück zu den Lichtquellen. Dieser Ansatz ist allerdings nicht praktikabel bei Millionen oder Milliarden Körnern.

Das neue Verfahren kann daher nach einigen Interaktionen – etwa Reflektionen an Körnern –, wenn die Beiträge einzelner Interaktionen kaum mehr zu trennen sind, zu einer anderen Rendering-Technik, dem Volumetric Path Tracing, wechseln. Die Forscher haben gezeigt, dass diese Technik, normalerweise eingesetzt zur Berechnung von Lichtstreuung in Materialen wie Wolken oder Nebel, auch Lichttransport in granularen Materialien auf diesen Skalen akkurat repräsentieren und effizienter berechnen kann.

Auf noch größeren Skalen kann schließlich eine Diffusionsapproximation eingesetzt werden, die eine analytische, effiziente Lösung für den verbleibenden Lichttransport liefert. Diese ermöglicht vor allem bei hellen, stark reflektierenden Körnern, wie beispielsweise Schnee oder Zucker, eine effiziente Berechnung der fotorealistischen Darstellung.

Die Forscher konnten in ihrer aktuellen Arbeit auch zeigen, wie die einzelnen Techniken kombiniert werden müssen, sodass konsistente visuelle Resultate über die Skalen hinweg – von einzelnen Körnern bis zu Objekten aus Milliarden Körnern – in Bildern und Animationen erreicht werden. Abhängig vom jeweiligen Material beschleunigt der hybride Ansatz die Berechnung bei gleicher Bildqualität um einen Faktor 10 bis zu mehreren Hundert im Vergleich zum sonst üblichen Path Tracing. (kes)

Externer Link: www.kit.edu

Schnappschüsse von Molekülen bei Raumtemperatur

Pressemitteilung der Universität Regensburg vom 10.08.2015

Wissenschaftler entwickeln neuartiges Verfahren

Forschern der Universität Regensburg ist es in Kooperation mit Kollegen aus Barcelona erstmals gelungen, organische Moleküle bei Raumtemperatur mit atomarer Auflösung darzustellen. Für die „Schnappschüsse“ von den Molekülen nutzten sie eine Kombination aus Rastertunnel- und Rasterkraftmikroskop. Das neue Verfahren ermöglicht unter anderem eine genauere Untersuchung des Ablaufs von chemischen Reaktionen. Die Regensburger Entwicklung wurde vor wenigen Tagen in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht (DOI: 10.1103/PhysRevLett.115.066101).

In den letzten Jahren wurden Aufsehen erregende Abbildungen organischer Moleküle mit Hilfe von Tieftemperatur-Rasterkraftmikroskopen gemacht. Mit einem Rasterkraftmikroskop kann man die interne Struktur einzelner Moleküle untersuchen und abbilden. Allerdings sind diese hochpräzisen Messungen sehr komplex und benötigen normalerweise Temperaturen nahe am absoluten Nullpunkt.

Eine Arbeitsgruppe vom Lehrstuhl für Experimentalphysik der Universität Regensburg (Prof. Dr. Franz J. Gießibl) hat es nun in Zusammenarbeit mit Forschern des Instituts für Materialwissenschaften an der Autonomen Universität Barcelona erstmals geschafft, diese Messungen bei Raumtemperatur durchzuführen. Mit einem neuen Verfahren konnten sie spezielle organische Moleküle (PTCDA–Perylentetracarbonsäuredianhydrid) mit weit weniger Aufwand und bei Raumtemperaturen atomar aufgelöst abbilden. PTCDA-Moleküle werden für die Entwicklung organischer Halbleiter-Bauelemente verwendet.

Mit der vom internationalen Forscherteam benutzten Kombination aus Rastertunnel- und Rasterkraftmikroskop konnte dabei nicht allein die Kräfte der chemischen Bindungen bestimmt, sondern auch die elektronische Ladungsdichte um die Moleküle untersucht werden. Solche Messungen sind die Basis für die Analyse von Donator-Akzeptor-Paaren, bei denen ein Teilchen von einem Reaktionspartner (Donator) auf den anderen (Akzeptor) übertragen wird. Donator-Akzeptor-Paare sind wiederum die Grundlage für die organische Photovoltaik. (Alexander Schlaak)

Externer Link: www.uni-regensburg.de

Neues Materialdesign ermöglicht ungestörte Lichtwellen

Presseaussendung der TU Wien vom 10.08.2015

In Materialien, die Licht abschwächen und verstärken können, sind überraschende Arten von Lichtwellen möglich – das zeigen Berechnungen der TU Wien.

Wenn eine Lichtwelle in ein Material eindringt, ändert sie sich normalerweise drastisch. Sie wird gestreut und abgelenkt, und durch die Überlagerung von Lichtwellen kommt es zu einem Muster aus helleren und dunkleren Bereichen. In maßgeschneiderten High-Tech-Materialien, die das Licht lokal verstärken oder abschwächen können, ergeben sich nun neue Möglichkeiten solche Effekte vollständig zu unterdrücken: Wie eine theoretische Arbeit der TU Wien zeigt, ermöglichen diese neuen Materialien ganz besondere Lichtwellen, die im Inneren des Materials an jedem Ort dieselbe Intensität aufweisen – so als gäbe es keinerlei Wellenüberlagerung. Durch diese ungewöhnlichen Eigenschaften könnten sich diese neuartigen Lösungen der Wellengleichung des Lichts technisch nutzen lassen.

Hindernisse verändern die Lichtintensität

Wenn sich eine Lichtwelle gerade und eben durch den freien Raum bewegt, dann kann sie überall dieselbe Intensität haben, ihr Licht ist demnach überall gleich hell. Trifft sie allerdings auf ein Hindernis, dann wird die Welle abgelenkt, das Licht ist danach an manchen Stellen heller, an anderen Stellen dunkler als es ohne Hindernis gewesen wäre. Erst durch solche Überlagerungs- oder Interferenzeffekte können wir Objekte sehen, die selbst kein Licht ausstrahlen.

In den letzten Jahren gab es allerdings immer wieder Experimente mit neuen Materialien, die Lichtwellen auf ganz besondere Weise verändern können: Sie können das Licht lokal verstärken (ähnlich wie das in einem Laser geschieht) oder auch abschwächen (wie in einer Sonnenbrille). „Wenn solche Prozesse möglich sind, muss man die Lichtwelle mathematisch anders beschreiben, als man es in gewöhnlichen, transparenten Materialien tut“, erklärt Prof. Stefan Rotter (Institut für Theoretische Physik, TU Wien). „Wir sprechen dann von sogenannten nicht-hermitischen Medien.“

Eine neue Lösung für die Wellengleichung

Konstantinos Makris und Stefan Rotter entdeckten gemeinsam mit Kollegen aus den USA, dass sich damit neuartige Lösungen der Wellengleichung finden lassen. „Man erhält Lichtwellen, die überall gleich hell sind, wie bei einer ebenen Welle im freien Raum, obwohl die Welle ein stark strukturiertes Material durchdringt“, sagt Konstantinos Makris. „Für die Welle ist das Material in gewissem Sinn unsichtbar, obwohl sie es durchdringt und mit ihm stark wechselwirkt.“

Das neue Konzept der Physiker erinnert an sogenannte „Metamaterialien“, mit denen in den letzten Jahren viel experimentiert wurde. Dabei handelt es sich um strukturierte Materialien, die Licht auf ungewöhnliche Weise ablenken und in bestimmten Fällen um ein Objekt herum führen können, sodass das Objekt wie durch Harry Potters Tarnumhang („invisibility cloak“) unsichtbar gemacht wird. „Unsere nicht-hermitischen Materialien funktionieren allerdings auf Basis eines anderen Prinzips“, betont Stefan Rotter. „Die Lichtwelle wird nicht außen herumgelenkt, sondern sie durchdringt das Material. Aber der Effekt, den das Material auf die Intensität der Welle hat, wird durch ein genau justiertes Wechselspiel aus Verlust und Verstärkung ausgeglichen.“ Am Ende ist die Welle überall im Raum genauso hell, wie sie ohne das Objekt gewesen wäre.

Bis es tatsächlich gelingt, Objekte herzustellen, die Lichtwellen unberührt passieren lassen, ist noch eine Reihe technischer Details zu lösen – gearbeitet wird daran bereits. Mathematisch ist allerdings nun bewiesen, dass es neben Metamaterialien auch noch einen anderen, äußerst vielversprechenden Pfad gibt, Wellen auf ungewöhnliche Weise zu manipulieren. „In einem gewissen Sinn haben wir mit unserer ersten Arbeit zu diesem Thema eine Tür aufgestoßen, hinter der wir noch eine Vielzahl an neuen Einsichten vermuten“, erklärt Konstantinos Makris. (Florian Aigner)

Originalpublikation:
Nature Communications

Externer Link: www.tuwien.ac.at

Quantenzustände in einem Nanoobjekt lassen sich durch mechanisches System manipulieren

Medienmitteilung der Universität Basel vom 03.08.2015

Wissenschaftler des Swiss Nanoscience Institute der Universität Basel haben mithilfe von Federbalken aus einkristallinen Diamanten ein neuartiges Bauteil entwickelt, bei dem ein Quantensystem in ein mechanisches schwingendes System integriert ist. Erstmals konnten die Forschenden zeigen, dass sich mit diesem mechanischen System ein im Federbalken eingebetteter Elektronenspin kohärent manipulieren lässt – und zwar ohne externe Antennen oder komplexe mikroelektronische Strukturen. Die Ergebnisse dieser experimentellen Studie werden in «Nature Physics» veröffentlicht.

Die Gruppe um den Georg-H.-Endress-Professor Patrick Maletinsky hat bereits in vorangegangen Veröffentlichungen beschrieben, dass sich Federbalken aus einkristallinen Diamanten mit einzelnen eingebetteten Elektronen bestens eignen, um den Spin dieser Elektronen zu adressieren. Diese Diamant-Federbalken wurden an mehreren Stellen so modifiziert, dass in ihrem Kristallgitter ein Kohlenstoffatom durch ein Stickstoffatom ersetzt wurde und gleich daneben eine Leerstelle entstand. In diesen «Stickstoff-Vakanzzentren» kreisen einzelne Elektronen, deren Spin oder Eigendrehimpuls in dieser Arbeit untersucht wurde.

Wird nun der Federbalken in Schwingung versetzt, entstehen Spannungen in der Kristallstruktur des Diamanten. Dies hat wiederum einen Einfluss auf den Spin der Elektronen, der bei einer Messung in zwei mögliche Richtungen (nach «oben» oder «unten») zeigen kann. Mithilfe von Fluoreszenzspektroskopie lässt sich diese Ausrichtung des Spins auslesen.

Extrem schnelle Spin-Oszillation

In der aktuellen Veröffentlichung haben die Wissenschaftler die Federbalken nun so geschüttelt, dass sie dadurch erstmals eine kohärente Oszillation des gekoppelten Spins induzieren konnten. Das bedeutet, dass der Eigendrehimpuls der Elektronen kontrolliert in einem schnellen Rhythmus von oben nach unten und umgekehrt wechselt und die Wissenschaftler zu jedem Zeitpunkt den Spinzustand kontrollieren können. Dabei ist diese Oszillation des Spins schnell verglichen mit der Frequenz des Federbalkens. Sie schützt den Spin zudem vor schädlichen Dekohärenz-Mechanismen.

Gut vorstellbar ist eine Anwendung dieser Diamant-Federbalken in der Sensorik, da sich die Auslenkung des Federbalkens über den veränderten Spin erfassen lässt, und zwar potenziell auf eine sehr sensitive Art und Weise. Zudem kann nach den neuen Erkenntnissen der Spin über einen recht langen Zeitraum von annähernd hundert Mikrosekunden kohärent rotiert werden, was die Präzision der Messung erhöht. Eventuell liessen sich Stickstoff-Vakanzzentren auch zur Entwicklung eines Quantencomputers heranziehen. In diesem Fall wäre die in dieser Arbeit gezeigte schnelle Manipulation ihrer Quantenzustände ein entscheidender Vorteil.

Originalbeitrag:
Arne Barfuss, Jean Teissier, Elke Neu, Andreas Nunnenkamp, Patrick Maletinsky
Strong mechanical driving of a single electron spin
Nature Physics (2015), doi: 10.1038/nphys3411

Externer Link: www.unibas.ch

In die Zange genommen

Presseinformation der LMU München vom 03.08.2015

Zuerst wird das Gerüst geknackt, dann werden defekte Bauteile ausgetauscht: Zellen reparieren beschädigte DNA anders als bisher angenommen, wie LMU-Chemiker zeigen.

Defekte in der DNA können schwere Schäden im Organismus auslösen bis hin zum Zelltod oder der Entstehung von Krebs. Effiziente Reparaturmechanismen sind daher essenziell. Die LMU-Chemiker Professor Christian Ochsenfeld, Inhaber des Lehrstuhls für Theoretische Chemie der LMU, und Dr. Keyarash Sadeghian aus seiner Arbeitsgruppe haben erstmals die Arbeitsweise eines menschlichen DNA-Reparaturenzyms detailliert aufgeklärt. Ihre Computersimulationen zeigen, dass die Reparatur anders abläuft als bisher gedacht. Über ihre Ergebnisse berichten die Wissenschaftler in der aktuellen Ausgabe des Journal of the American Chemical Society.

Die DNA setzt sich aus bestimmten Grundbausteinen zusammen, die aus jeweils einer Nukleinbase, einem Zucker und einer Phosphatgruppe bestehen. In der Abfolge der Nukleinbasen sind die Erbanlagen kodiert. Die über die Phosphatgruppen miteinander verbundenen Zucker, an die jeweils eine Nukleinbase gebunden ist, bilden das Gerüst der DNA. Reaktive Sauerstoffspezies, die als Nebenprodukt der Atmung in jeder Zelle entstehen, attackieren die DNA. Sie greifen oft die Nukleinbase Guanin an und oxidieren diese zu einer sogenannten 8OG-Base. Dieser Defekt kann zu einer fehlerhaften DNA-Replikation und damit zu schädlichen Mutationen führen. DNA-Reparaturenzyme sind deshalb dafür zuständig, solche Basen zu erkennen, in ihrem Reaktionszentrum zu binden und aus dem DNA-Strang zu entfernen.

„Es ist sehr bemerkenswert, dass das menschliche Reparaturenzym hOGG1 nur die oxidierte Guanin-Form aus der DNA herausschneidet, die normale Base aber nicht, obwohl es auch das normale ungeschädigte Guanin in seiner aktiven Tasche binden kann und beide Formen identische Positionen einnehmen“, sagt Sadeghian, der Erstautor der Studie.

Umweg führt zum Ziel

Mithilfe von komplexen quantenmechanischen Computersimulationen, die in Ochsenfelds Gruppe entwickelt wurden, konnten die Wissenschaftler nun erstmals aufklären, wie das Reparaturenzym zwischen normaler und oxidierter Base unterscheidet. Der Trick dabei ist: Das Enzym nimmt einen Umweg. „Im Gegensatz zu der bisherigen Annahme, dass für die Reparatur zuerst die oxidierte Form des Guanins aktiviert werden muss, haben wir nun zeigen können, dass der mit ihm verbundene Zucker für den ersten Schritt eine entscheidende Rolle spielt“, sagt Sadeghian. „Das Reparaturenzym öffnet zuerst die Ringstruktur des Zuckers, indem es ihn wie eine Zange von zwei Seiten gleichzeitig angreift. Dieser Schritt funktioniert nur, wenn der Zucker mit der oxidierten Form der Base verbunden ist. Ist sein Partner ein normales Guanin, wird das Enzym gestoppt und kann seine Aktivität nicht mehr fortsetzen.“ Die Öffnung des Zuckers destabilisiert die sonst sehr stabile chemische Bindung zwischen der oxidierten Nukleinbase und dem DNA-Strang, die dann in weiteren Schritten gelöst wird.

Diese clevere Strategie verfolgt nicht nur das menschliche Reparaturenzym hOGG1, sondern auch ein bakterielles Reparaturenzym, das sich strukturell von ihm unterscheidet, wie die Wissenschaftler zeigen konnten. „Unser Fund, dass DNA-Reparaturenzyme einen Umweg gefunden haben und ihr Zielobjekt nicht direkt im ersten Schritt angreifen, öffnet neue Perspektiven für ein Verständnis dieser Prozesse“, sagt Ochsenfeld. „Mithilfe unserer Computersimulationen können wir erstmals chemische Reaktionen verfolgen, die in der Natur so hochkomplex ablaufen, dass sie experimentell nicht immer einzufangen sind. So können wir in Zukunft hoffentlich klären, ob diese DNA-Reparaturmechanismen auch für weitere Enzyme mit ähnlicher Funktion in Frage kommen.“ (göd)

Publikation:
JACS 2015

Externer Link: www.uni-muenchen.de