Origami mit DNA

Presseaussendung der TU Wien vom 01.02.2021

Wichtige Fragen über das Immunsystem konnte ein Team der TU Wien beantworten – mit einem Trick, der an kompliziertes Papierfalten erinnert.

T-Zellen sind ein wichtiger Bestandteil unseres Immunsystems: An ihrer Oberfläche befinden sich Rezeptoren, mit denen die T-Zellen ganz bestimmte Antigene erkennen können. Wenn auf diese Weise ein Eindringling detektiert wird, kommt es zu einer Immunantwort. Unklar war bisher, was beim Erkennen von Antigenen genau passiert: Welche Rolle spielt die Zahl der vorhandenen Antigene, und wie hängt die Reaktion der T-Zelle von deren räumlicher Anordnung ab?

Diese Effekte spielen sich im Nanometerbereich ab – auf der Größenskala von Molekülen, weit unterhalb von dem, was man mit gewöhnlichen Mikroskopen sehen kann. Um all das zu untersuchen, braucht man winzige Werkzeuge. Daher kam an der TU Wien nun eine ungewöhnliche Methode zum Einsatz: DNA-Moleküle wurden auf ausgeklügelte Weise zusammengefaltet, ähnlich wie bei der Papierfaltkunst Origami. Auf diese Weise entsteht nicht bloß eine Doppelhelix, sondern ein rechteckiges „molekulares Floß“, das über eine Zellmembran treibt und als Werkzeug für neuartige Messungen dient. Die Ergebnisse wurden nun im Fachjournal PNAS publiziert.

Künstliche Zellmembranen

„T-Zellen reagieren auf Antigene, die von bestimmten Zellen an ihrer Oberfläche präsentiert werden. Um diese Interaktion zwischen den T-Zellen und den antigen-präsentierenden Zellen im Detail untersuchen zu können, ersetzen wir die antigen-präsentierende Zelle durch eine künstliche Zellmembran. So können wir die Zahl und Art der Antigene selbst festlegen“, sagt Prof. Eva Sevcsik, Biophysikerin am Institut für Angewandte Physik der TU Wien.

„Es gab einige Hinweise, dass der räumliche Abstand zwischen den Antigenen bei der T-Zell-Aktivierung eine wichtige Rolle spielt“, sagt Joschka Hellmeier, der im Rahmen seiner Dissertation an diesem Projekt forschte. „Allerdings ist es schwierig, diese Effekte genau zu untersuchen: Der Abstand zwischen den einzelnen Antigenen lässt sich nicht so einfach bestimmen.“

Die Zellmembran ist keine feste Struktur, in der jedes Molekül an seinem Platz bleibt. Die Antigene in der Zellmembran können sich frei bewegen, ähnlich wie aufblasbares Plastikspielzeug, das auf der Wasseroberfläche treibt. „Daher wollten wir eine Methode etablieren, mit der man bestimmte Abstände zwischen den Antigenen exakt einstellen kann, um dann die Reaktion der T-Zellen zu untersuchen“, erklärt Eva Sevcsik.

DNA-Origami

Dazu bedienten sich die Forschenden eines Phänomens, das die Natur selbst nutzt: Die DNA, der Träger der Erbinformation in unserem Körper, besteht aus zwei genau zueinander passenden Einzelsträngen, die sich ohne äußeres Zutun zu einer DNA Doppelhelix zusammenfügen.

Diese Eigenschaft macht man sich in der DNA Nanotechnologie zunutze: „Durch cleveres Design von Einzelsträngen, die nur abschnittsweise zueinander passen, kann man mehrere Doppelhelices miteinander verbinden und so komplizierte Strukturen herstellen“, erklärt Eva Sevcsik. „Diese Technik bezeichnet man als DNA-Origami – statt Papier falten wir eben DNA-Stränge.“

Auf diese Weise stellte das Forschungsteam rechteckige DNA-Flächen her, an denen man ein Antigen fixieren kann. Dieses DNA-Rechteck wird auf die künstliche Membran gesetzt, und es bewegt sich dort wie ein Floß.

„Dadurch können wir aber garantieren, dass die Antigene einander nicht beliebig nahekommen“, sagt Joschka Hellmeier. „Selbst wenn zwei dieser DNA-Flöße dicht aneinanderrücken, bleibt immer noch ein Mindestabstand zwischen den Antigenen, wenn auf jedem DNA-Floß nur ein einziges Antigen fixiert ist.“ Zusätzlich kann man DNA-Floß-Varianten herstellen, die jeweils gleich zwei Antigene an Bord haben und so untersuchen, wie die T-Zellen auf unterschiedliche Antigen-Abstände reagieren.

Altes Rätsel gelöst

Auf diese Weise konnte man die teilweise widersprüchlichen Beobachtungen erklären, die in den vergangenen Jahren im Bereich der molekularen Immunologie für Verwirrung sorgten: Manchmal schienen mehrere benachbarte Antigene nötig zu sein, um T-Zellen zu aktivieren, in anderen Fällen genügte ein einziges. „Mithilfe unserer DNA-Origami-Technik konnten wir die Rolle von molekularen Abständen für die T-Zellaktivierung aufklären“, sagt Eva Sevcsik.

Für natürlich vorkommende Antigene spielt der Abstand keine Rolle – sie agieren „solo“ und sind so sehr effizient in der T-Zellaktivierung. In der Forschung verwendet man allerdings statt Antigenen oft künstliche T-Zell-Aktivatoren, die besonders stark an den T-Zell-Rezeptor binden – und in diesem Fall sind mindestens zwei benachbarte Moleküle nötig, um die T-Zelle zu aktivieren. „Das ist ein wichtiges Ergebnis“, sagt Eva Sevcsik. „Wir konnten erstmals zeigen, dass es hier zwei unterschiedliche Mechanismen gibt, das wird für künftige Studien und die Entwicklung von T-Zell-basierten Immuntherapien von Krebserkrankungen eine wichtige Rolle spielen.“ (Florian Aigner)

Originalpublikation:
J. Hellmeier et al., DNA origami demonstrate the unique stimulatory power of single pMHCs as T cell antigens, PNAS 2021

Externer Link: www.tuwien.at

Virtual-Reality-App hilft gegen Höhenangst

Medienmitteilung der Universität Basel vom 10.02.2021

Forschende der Universität Basel haben eine Virtual Reality App für Smartphones entwickelt, um Höhenangst zu reduzieren. Die Wirksamkeit stellten sie nun mit einer klinischen Studie unter Beweis. Höhenängstliche Probanden, die mit der App insgesamt vier Stunden zuhause trainierten, konnten anschliessend mit einer realen Höhensituation besser umgehen.

Höhenangst ist ein weit verbreitetes Phänomen. Bei ungefähr fünf Prozent der Bevölkerung ist das Unwohlsein in Höhensituationen derart ausgeprägt, dass sie darunter leiden. Betroffene nehmen jedoch selten vorhandene Behandlungsmöglichkeiten wie eine Expositionstherapie in Anspruch, bei der sie sich unter professioneller Anleitung in die gefürchtete Situation begeben. Einerseits setzen sich Betroffene nur widerwillig ihrer Höhenangst aus, anderseits spielen Schwierigkeiten eine Rolle, passende Höhensituationen im therapeutischen Setting zu schaffen.

Das interdisziplinäre Forschungsteam um Prof. Dr. Dominique de Quervain von der Universität Basel hat deshalb «Easyheights» entwickelt – eine Virtual-Reality-App, mit der sich eine Exposition auf dem Smartphone simulieren lässt. Die App arbeitet mit 360°-Bildern von realen Orten, welche die Forschenden mit einer Drohne aufgenommen haben. Betroffene können die App auf ihrem eigenen Smartphone nutzen, das sie hierfür in ein Virtual-Reality-Headset einsetzen.

Schrittweise höher

Im virtuellen Erlebnis steht die Nutzerin oder der Nutzer auf einer Plattform, die sich zunächst einen Meter über dem Boden befindet. Nach einer Gewöhnungszeit wird die Plattform automatisch weiter angehoben. Auf diese Weise steigt die wahrgenommene Position über dem Boden langsam aber stetig an, ohne dass das Angstniveau zunimmt.

Die Wirksamkeit dieses Ansatzes konnte das Forschungsteam in einer randomisierten kontrollierten Studie nachweisen, deren Ergebnisse im Fachjournal «NPJ Digital Medicine» erschienen sind. 50 Studienteilnehmende mit Höhenangst absolvierten entweder ein insgesamt vierstündiges Höhentraining (einmal 60 Minuten und sechsmal 30 Minuten innerhalb von zwei Wochen) in der virtuellen Realität oder wurden der Kontrollgruppe ohne solches Training zugewiesen.

Vor und nach der Trainingsphase – beziehungsweise der gleichen Zeitspanne ohne Training – bestiegen die Probanden den Aussichtsturm Uetliberg bei Zürich so weit, wie es ihre Höhenangst zuliess. Dabei protokollierten die Forschenden die erreichte Höhe sowie die Stärke der empfundenen Angst auf jeder Etage des Aussichtsturms. Letztlich konnten die Forschenden die Ergebnisse von 22 Probanden mit «Easyheights»-Training und 25 aus der Kontrollgruppe auswerten.

Die Gruppe, die mit der App trainiert hatte, zeigte weniger Angst auf dem Turm und war in der Lage, höher in Richtung Spitze zu klettern als vor dem Training. In der Kontrollgruppe fand keine positive Veränderung statt. Die Wirksamkeit des Höhentrainings mit «Easyheights» erwies sich als vergleichbar mit der einer klassischen Expositionstherapie.

Therapie im heimischen Wohnzimmer

Der Einsatz von virtueller Realität zur Behandlung von Höhenangst wird bereits seit mehr als zwei Jahrzehnten erforscht. «Neu ist jedoch, dass Smartphones die virtuellen Szenarien erzeugen und diese sonst technisch aufwendige Therapieform damit deutlich zugänglicher wird», erklärt Dr. Dorothée Bentz, Erstautorin der Studie.

Die Studienergebnisse legen nahe, dass die wiederholte Nutzung einer virtuellen Expositionstherapie auf dem Smartphone das Verhalten und das subjektive Befinden in Höhensituationen deutlich verbessern kann. Betroffene mit leichten Formen der Höhenangst können sich die kostenlose Applikation in Kürze aus gängigen App-Stores herunterladen und in Eigenregie üben. Bei Betroffenen mit einer ausgeprägten Höhenangst empfehlen die Forschenden jedoch, die App nur in Begleitung einer Fachperson zu nutzen.

Die aktuelle Studie gehört zu einer Reihe von Projekten der transfakultären Forschungsplattform Molecular and Cognitive Neurosciences, welche von Prof. Dr. Andreas Papassotiropoulos und Prof. Dr. Dominique de Quervain geleitet wird. Sie verfolgen das Ziel, die Behandlung von psychischen Störungen durch den Einsatz neuer Technologien zu verbessern und diese breit verfügbar zu machen.

Originalpublikation:
Dorothée Bentz, Nan Wang, Merle K Ibach, Nathalie S Schicktanz, Anja Zimmer, Andreas Papassotiropoulos, Dominique JF de Quervain
Effectiveness of a stand-alone, smartphone-based virtual reality exposure app to reduce fear of heights in real-life: a randomized trial
NPJ Digital Medicine (2021), doi: 10.1038/s41746-021-00387-7

Externer Link: www.unibas.ch

technologiewerte.de – MOOCblick Februar 2021

Spannende Themen, herausragende Dozenten und flexible Lernmöglichkeiten tragen zum wachsenden Erfolg der Massively Open Online Courses (MOOCs) bei – offene, internetgestützte Kurse mit einer Vielzahl an Teilnehmern rund um den Globus.

Folgender Kurs – zu finden auf der MOOC-Plattform edX – sollte einen Blick wert sein:

Scripting with Python
Gwen Britton (Southern New Hampshire University) et al.
Start: 28.02.2021 / Arbeitsaufwand: 128-160 Stunden

Externer Link: www.edx.org

Antikörperentwicklung in Höchstgeschwindigkeit

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.02.2021

Der Weg zu neuen Biopharmaka ist lang und kostspielig. Von der Entdeckung eines Protein-Wirkstoffs bis zur Marktreife des Medikaments vergehen oft mehr als zehn Jahre. Eine große Hürde stellt der Weg vom Labor in die klinische Prüfung dar. Üblicherweise dauert es anderthalb bis zwei Jahre, um solche Prüfmedikamente für klinische Studien herzustellen. Die Pharmazeutische Biotechnologie des Fraunhofer-Instituts für Toxikologie und Experimentelle Medizin ITEM konnte diesen Schritt durch eine neue Produktionsstrategie auf sechs Monate verkürzen.

Weltweit wird seit Monaten mit Hochdruck an Therapeutika und Impfstoffen gegen das Corona-Virus geforscht. Die Pandemie hat dabei einmal mehr vor Augen geführt, wie unerlässlich es ist, Medikamente schnell zum Patienten zu bringen. Doch die Realität ist eine andere: Allein die Bioprozessentwicklung und Pilotherstellung eines auf Proteinen basierenden Arzneimittelkandidaten dauern anderthalb bis zwei Jahre. Im Anschluss daran beginnt eine aufwändige, aus drei Phasen bestehende klinische Entwicklung. Doch viele der Kandidaten scheitern bereits in der ersten oder zweiten Phase der klinischen Studie durch mangelnde Verträglichkeit oder Wirksamkeit. Darum besteht viel Interesse und Notwendigkeit am schnellen Zugang zu klinischen Ergebnissen. Forscherinnen und Forschern der Pharmazeutischen Biotechnologie des Fraunhofer ITEM in Braunschweig ist es nun gelungen, den Zeitbedarf von der Entdeckung eines neuen Wirkmechanismus‘ bis zur Bereitstellung von klinischer Prüfware deutlich zu reduzieren. »Mit unserer neuen Fast-Track-Herangehensweise bei der Verfahrensentwicklung sparen wir mehrere Monate ein – die Entwicklung inklusive der Pilotherstellung dauert jetzt anstatt anderthalb bis zwei Jahre nur noch ein halbes Jahr«, sagt Prof. Dr. Holger Ziehr, Bereichsleiter Pharmazeutische Biotechnologie am Fraunhofer ITEM. Davon profitieren die Pharmaindustrie und der Patient gleichermaßen. Der neue Weg der Fast-Track-Bioprozessentwicklung wurde aus der Not der COVID-19-Pandemie geboren. »Er ermöglichte uns in enger Zusammenarbeit mit einem Industriepartner, den Zeitbedarf für die Herstellung eines klinischen Antikörperpräparats auf ein Drittel der herkömmlichen Zeit zu verkürzen. Antikörper sind von Immunzellen gebildete Proteine, die u. a. infektiöse Erreger binden und Mechanismen auslösen, um diese zu zerstören. Als Medikament verabreicht, unterstützen sie das Immunsystem«, erläutert der Wissenschaftler.

Entwicklungsstrategie mit Paul-Ehrlich-Institut abgestimmt

Im Labor hergestellte Antikörper können chronische Entzündungen lindern. Sie helfen bei neurodegenerativen Erkrankungen und in der Tumortherapie. Vielversprechend sind darum biotechnologisch hergestellte Antikörper auch zur Therapie von COVID-19. »Will man einen humanen Antikörper gegen SARS-CoV-2 entwickeln, befindet man sich in einem extremen Wettlauf gegen die Zeit. Anderthalb bis zwei Jahre sind schlichtweg zu lang. Das war für uns der Auslöser, eine neue Produktionsstrategie zu wählen, damit ein geeigneter Wirkstoffkandidat viel schneller in die klinischen Studien starten kann«, so Ziehr. Um Planungssicherheit für die neue Entwicklungsstrategie zu haben, wurde diese als erstes der nationalen Zulassungsbehörde, dem Paul-Ehrlich-Institut, vorgestellt.

Der Produktionsprozess am Fraunhofer ITEM basiert, wie fast alle anderen Antikörper-herstellungsprozesse auch, auf CHO-Zellen, kurz für Chinese Hamster Ovary. So wird eine immortalisierte Zelllinie aus Ovarien des Chinesischen Zwerghamsters bezeichnet. Rund 80 Prozent aller biotechnologisch hergestellten Pharmaproteine werden mit dieser Zelllinie hergestellt. Einer der Hauptgründe: Die Zuckerketten, die in der CHO-Zelle an ein neu synthetisiertes Protein angehängt werden, ähneln denen des Menschen.

Zellfabrik für die Antikörper-Produktion

Doch wie ist es den Forschern nun gelungen, den Wirkstoffkandidaten in so kurzer Zeit zu produzieren? Um Antikörper herzustellen, müssen deren Gene in CHO-Zellen eingebracht werden. Sprich, die genetische Information, also die DNA, die das entsprechende Antikörpergen enthält, wird in die CHO-Zelle eingebracht. »Hierfür nutzen wir ringförmige DNA-Moleküle, sogenannte Plasmide, die wir über einen als Transfektion bezeichneten Prozess in die CHO-Zellen einschleusen«, führt der Biologe aus. Die Transfektion erfolgt in einem Gefäß mit wenigen Millilitern Nährflüssigkeit und Millionen von Zellen. In diese Kultur werden die Plasmide gegeben, die in die Zellen eindringen und sich danach nach dem Zufallsprinzip in das Chromosom integrieren. Durch die Zusammensetzung der Kulturflüssigkeit wird erreicht, dass sich im Folgenden nur die Zellen teilen, die auch das Antikörpergen aufgenommen haben. Bei der klassischen Herangehensweise müssen anschließend in einem langwierigen nächsten Schritt die Zellen so lange vereinzelt und untersucht werden, bis am Ende ein CHO-Zellklon übrig bleibt, der das Antikörpergen optimal in das Genom integriert hat.

Dieser Prozess ist enorm zeitaufwändig, da eine Zelle für eine einzige Teilung schnell einmal 48 Stunden benötigt. »Bis ich also einen brauchbaren Klon erhalte, kann durchaus ein Jahr vergehen. Das ist viel zu lang, insbesondere wenn es um ein COVID-19-Medikament geht. Daher haben wir auf den zeitraubenden Schritt der Vereinzelung verzichtet und gleich mit dem Zellpool aus der Transfektion weitergearbeitet. Wir haben also in Kauf genommen, dass einige Zellen die genetische Information für den Antikörper sehr gut eingebaut haben und andere weniger gut. Die dem Pool auferlegten Selektionsbedingungen haben aber dafür gesorgt, dass die am meisten Antikörper produzierenden Zellen auch am besten wachsen – die eine erzeugt dabei mehr, die andere etwas weniger Antikörper, aber alle produzieren den gleichen Antikörper.«

Neues Geschäftsmodell etabliert

Diese Risikobereitschaft hat sich gelohnt: Das Ergebnis ist ein stabiler Zellpool, der gut wächst und dabei in der Summe große Mengen an Antikörpern produziert. Die Forscher haben mit ihrer Produktionsstrategie nach nur sechs Monaten eine große Menge an Antikörper-Wirkstoff in Pharmaqualität erhalten und konnten bereits 3500 Dosen für eine klinische Prüfung abfüllen. Der Clou: Die High-Speed-Entwicklung lässt sich auf die Herstellung nahezu beliebiger Pharmaproteine übertragen und eröffnet damit für die Pharmazeutische Biotechnologe des Fraunhofer ITEM ein völlig neues Geschäftsmodell.

Externer Link: www.fraunhofer.de