Cholera-Erreger machtlos gegen eigenes Immunsystem

Pressemitteilung der Universität Tübingen vom 19.01.2024

Molekulares Abwehrsystem schützt Bakterien vor Viren und macht sie gleichzeitig anfällig für Antibiotika

Auch Bakterien haben ein eigenes Immunsystem, dass sie gegen spezielle Viren – sogenannte Bakteriophagen – schützt. Ein Forschungsteam der Universitäten Tübingen und Würzburg zeigt nun, wie das Immunsystem die Wirkung von bestimmten Antibiotika gegen den Cholera-Erreger Vibrio cholerae verstärkt. Das Immunsystem ist der Grund, warum dieses Bakterium besonders empfindlich auf eine der ältesten bekannten Antibiotikaklassen – die Antifolate – reagiert. Die Ergebnisse wurden in der Fachzeitschrift Nature Microbiology veröffentlicht.

Vibrio cholerae ist weltweit für schwere Cholera-Ausbrüche verantwortlich und in vielen Entwicklungsländern endemisch. Das Immunsystem von Vibrio cholerae besteht aus mehreren molekularen Abwehrsystemen, die das Bakterium gegen Angriffe verschiedener Bakteriophagen schützen. Eines dieser Abwehrsysteme heißt CBASS (cyclic-oligonucleotide-based antiphage signaling system). Wird das Bakterium von Bakteriophagen angegriffen, wird CBASS aktiviert. CBASS bringt das infizierte Bakterium dazu, sich selbst zu zerstören und verhindert so eine weitere Infektion der Bakterienpopulation. Das Forschungsteam von Professor Dr. Ana Brochado konnte zeigen, dass Antifolat-Antibiotika das Abwehrsystem CBASS auch in Abwesenheit von Bakteriophagen aktivieren. Das aktivierte CBASS verstärkte somit zusätzlich die Wirkung des Antibiotikums und führte zum Zelltod von Vibrio cholerae. „Wie bei einer Autoimmunerkrankung schadete die eigene Immunantwort dem Bakterium,“ sagt Dr. Susanne Brenzinger, die Erstautorin der Studie.

Das Forschungsteam von Professor Dr. Ana Brochado untersucht die Wirkung von Antibiotika mithilfe von Hochdurchsatz-Screenings und Computeranalysen. Beim Hochdurchsatz-Screening handelt es sich um eine automatisierte Methode, bei der die Wirkung von Tausenden von Substanzen auf Bakterien getestet wird. Diese Methode ermöglichte die Entdeckung der Wechselwirkungen zwischen CBASS und Antibiotika. „Antifolate gehörten zu den ersten Antibiotika auf dem Markt. Sie hemmen die Synthese von Folaten, die Bausteine der DNA sind. Unsere Ergebnisse zeigen, dass wir mehr als neunzig Jahre nach der Einführung der Antifolate immer noch nicht alles über sie wissen. Überraschenderweise ändert das bakterielle Immunsystem ihre Wirkung,“ sagt Professor Brochado, die im Tübinger Exzellenzcluster „Controlling Microbes to Fight Infections“ (CMFI) zur Systembiologie von Antibiotika forscht.

Professor Brochado ergänzt: „Wir können Antibiotika zielgerichteter einsetzen, je mehr wir über ihre Wirkweise wissen. Dies kann uns zukünftig bei der Entscheidung helfen, ob wir sie allein, in Kombination mit anderen Antibiotika oder sogar parallel zu einer Phagen-Therapie einsetzen. Nicht nur bei Cholera, sondern auch bei anderen bakteriellen Infektionen. Der angemessene und effektive Einsatz von Antibiotika hilft dabei, die Entstehung weiterer Antibiotikaresistenzen zu verhindern.“

Originalpublikation:
Brenzinger S, Airoldi M, Ogunleye AJ, Jugovic K, Amstalden MK, Brochado AR. The Vibrio cholerae CBASS phage defence system modulates resistance and killing by antifolate antibiotics. Nat Microbiol 2024 Jan;9(1):251-262.

Externer Link: www.uni-tuebingen.de

Gezielte Schädlingskontrolle mit RNA-Spray

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 02.01.2024

Schädlinge auf Pflanzen wirkungsvoll bekämpfen, ohne dabei anderen Organismen zu schaden – daran arbeiten Forschende in dem vom Julius Kühn-Institut (JKI) koordinierten Verbundprojekt ViVe_Beet, das vom Bundesministerium für Ernährung und Landwirtschaft (BMEL) gefördert wird. An dem Projekt beteiligt sind Wissenschaftlerinnen und Wissenschaftler des JKI-Instituts für Pflanzenschutz in Ackerbau und Grünland, des Fraunhofer-Instituts für Molekularbiologie und Angewandte Oekologie IME und des Instituts für Zuckerrübenforschung (IfZ). Die Projektpartner verfolgen den Ansatz, speziell zugeschnittene doppelsträngige RNA-Moleküle zu nutzen, welche mittels gängiger Auftragsmethoden in geeigneter Formulierung ausgebracht werden, um Zuckerrüben zukünftig vor Vergilbungsviren zu schützen.

Der Einsatz von chemisch-synthetischen Insektiziden und Pestiziden in der Landwirtschaft hat einen negativen Einfluss auf die Insektenvielfalt und Bienengesundheit. Deshalb hat die EU 2019 die Zulassung von systemisch wirksamen Neonikotinoiden auslaufen lassen, was jedoch zu neuen Problemen in der Landwirtschaft führte: Die Grüne Pfirsichblattlaus (Myzus persicae), eines der Insekten mit den meisten Resistenzen gegen chemisch-synthetische Insektizide, lässt sich seitdem schwer bekämpfen. Vor allem die Zuckerrübe ist stark betroffen, da die Pflanzenlaus Überträger von mehreren Vergilbungsviren ist, welche zu enormen Einbußen in der Zuckerrübenernte führen. »Wir reden hier von 20 bis 50 Prozent Ertragsverlust nur durch die Viren«, erläutert Maurice Pierry, der das Projekt ViVe_Beet am Institutsteil Bioressourcen des Fraunhofer IME in Gießen von Beginn an begleitet.

Neuer Ansatz der Schädlingsbekämpfung: RNA-Interferenz (RNAi)

Um die Pflanzenlaus nachhaltig und wirksam zu bekämpfen, sind neue Ansätze der Schädlingsbekämpfung dringend erforderlich. Das Fraunhofer IME und die Projektpartner JKI und Ifz wählen hierfür einen biologischen, artspezifischen Ansatz und arbeiten gemeinsam daran, die Pflanzenlaus durch RNA-Interferenz (RNAi) zu bekämpfen.

Die RNAi ist eine natürliche Immunantwort der Wirte auf fremdes virales Erbgut, welches oftmals als doppelsträngige RNA (dsRNA) vorliegt. Maurice Pierry erklärt: »Viren haben RNA als Erbgut, und wenn diese in die Zelle eines Lebewesens eindringt, in unserem Fall vom Insekt, dann wird diese von einem Enzym namens Dicer in kleinere sogenannte small interfering RNA (siRNA) zerteilt. Das Ganze wird dann in einen weiteren Enzymkomplex aufgenommen und als Schablone benutzt, um darauf passende mRNA-Sequenzen abzubauen. Wenn wir diese dsRNA so auswählen, dass sie auf ein lebenswichtiges Gen des Insekts passt, dann kann man den Organismus dahin bringen, sich durch sein eigenes RNAi-System wirksam zu kontrollieren.«

Vom Labortest bis zum Feldeinsatz

Zu Beginn des Projekts, mit einer Laufzeit von Oktober 2021 bis September 2024, mussten potenziell wirksame Gene und ihre Basensequenzen identifiziert werden. Darauffolgend wurde dsRNA, welche spezifisch auf diese Basensequenzen angepasst ist, über biologische Verfahren hergestellt. Pierry erläutert: »Als Erstes mussten wir ein Gen finden, das einen Effekt hat, wenn man es mit dem RNA-Interferenz-Mechanismus ausschaltet. Die Effekte variieren von Häutungsproblemen über Rückgang der Nachkommen bis hin zur erhöhten Mortalität der Schädlinge. Nach einigen Tests haben wir schließlich mehrere Gene gefunden, die zu einer hohen Mortalität bei der Blattlaus führen, wenn man sie ausschaltet. Damit war die erste Hürde geschafft.«

Im nächsten Schritt musste eine Formulierung gefunden werden, die das doppelsträngige RNA-Molekül vor möglichen Umweltfaktoren wie Temperatur, Feuchtigkeit, UV und RNA-abbauenden Enzymen beschützt, bis es am Zielort angekommen ist, z. B. im Darm der Blattlaus, wo es dann von der Zelle aufgenommen wird. »Auch da haben wir gute Ergebnisse erlangt. Das heißt unsere dsRNA ist geschützt von einer Formulierung, die den Effekt verbessert und lange haltbar ist«, so Pierry.

Inzwischen sind die Forschenden schon beim dritten Schritt: den ersten Sprühversuchen direkt an der Zielpflanze. »Wir haben eine RNA-Spray-Methode entwickelt, die wir in Gewächshausversuchen getestet haben. Bei unseren Sprühversuchen kommen wir bisher auf 70 Prozent Mortalität sowie einer Minderung der Populationsgröße. Das ist ein sehr guter Wert«, erläutert Pierry.

Der letzte Schritt sind dann Feldversuche, bei denen alle bisher ausgeklammerten Umweltfaktoren einbezogen werden. Diese werden im kommenden Sommer vom JKI und dem IfZ durchgeführt.

Selektives Pflanzenschutzmittel ist ungefährlich für andere Organismen

Der innovative Ansatz des Projektes ViVe_Beet birgt das Potenzial, künftig vollkommen neue, umweltverträgliche, selektive Pflanzenschutzmittel zu entwickeln. Denn die spezifischen natürlichen Moleküle könnten dabei nicht nur gegen Insekten, sondern auch gegen Viren oder Pilzerreger wirken. »Das Besondere daran ist also, dass die spezifisch angepasste dsRNA eine Wirkung auf den Ziel-Organismus hat, in unserem Fall die Grüne Pfirsichblattlaus, und nicht auf andere Organismen wie uns Menschen oder Nützlingen wie z. B. der Biene«, erklärt Pierry. Diese neue Methode der Schädlingsbekämpfung weckt Hoffnung auf nachhaltigen Pflanzenschutz und zeigt hohes Potenzial für die Zukunft.

Externer Link: www.fraunhofer.de

Vorbild Miesmuschel: Druckbarer Klebstoff für Gewebe und Knochen

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.12.2023

Hüftimplantate aus Titan halten nicht ewig. Sie lockern sich früher oder später und verlieren ihren Halt im Knochen, da sich dieser mit der Zeit zurückbildet. Forschende am Fraunhofer-Institut für Angewandte Polymerforschung IAP haben gemeinsam mit dem Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB und dem Fraunhofer USA Center for Manufacturing Innovation CMI einen Gewebekleber entwickelt, mit dem sich der frühzeitige Austausch von Prothesen künftig vermeiden lässt. Auf die Titanoberfläche des Implantats aufgebracht, stellt das biomimetische, antimikrobielle Material die Verbindung zum Knochen her – es haftet selbstständig an. Der Clou: Der Gewebekleber, der die haftende Eigenschaft von Miesmuscheln nachahmt, ist druckbar und lässt sich sogar auf gekrümmte, unebene Flächen drucken.

Sie sind das Ärgernis eines jeden Reeders: Miesmuscheln haften fest an Außen- und Unterseiten von Schiffen, der Bewuchs lässt sich nur schwer entfernen. Ein Protein, das die Aminosäure Dihydroxyphenylalanin – auch DOPA genannt – enthält, ist verantwortlich für die haftende Wirkung der Muscheln an Oberflächen. Forschende am Fraunhofer IAP im Potsdam Science Park haben in Zusammenarbeit mit dem Fraunhofer IGB und dem Fraunhofer USA CMI einen biomimetischen Kleber entwickelt, der diese Eigenschaft nachahmt. Er zeichnet sich durch außergewöhnliche Haftungs- und Bindungseigenschaften aus und hat daher das Potenzial, in verschiedenen biomedizinischen Anwendungen eingesetzt zu werden. So lassen sich etwa offene Wunden damit verschließen. Auch können Titanoberflächen von Implantaten damit beklebt werden, damit der Körper die Oberfläche als knochenähnliche Substanz erkennt und die Verbindung zum Knochen herstellt.

»DOPA sorgt für eine äußerst effektive Haftung. Diese Eigenschaft haben wir auf unseren Klebstoff übertragen, indem wir Polymere synthetisiert haben, die den Baustein Dopamin enthalten, ein chemisches Analogon von DOPA. Der dopaminbasierte Klebstoff lässt sich mit verschiedenen Additiven, wie Apatit-Partikeln – eine Substanz, aus der Zähne bestehen –, Proteinen und Signalmolekülen versetzen. Diese fördern das Wachstum von Knochenzellen und können als Beschichtungsmaterial etwa für Titanimplantate verwendet werden«, erläutert Dr. Wolfdietrich Meyer, Wissenschaftler am Fraunhofer IAP. Die spezielle Beschichtung lässt das Implantat für den Körper natürlicher erscheinen und kann die Heilung und Integration des Implantats im Körper fördern. Der biobasierte, nachhaltig hergestellte Klebstoff besitzt zudem antimikrobielle Eigenschaften.

Die dopaminbasierten Polymere eignen sich nicht nur für Gewebeklebstoffe, sondern auch für die Entwicklung funktionalisierter Oberflächen, antibakterieller Materialien und intelligenter Beschichtungen mit speziellen Funktionen.

Photoreaktiver Kleber lässt sich auf unebene Flächen drucken

Durch chemische Synthese kann man die Funktionalität des Klebers erweitern. Er lässt sich derart modifizieren, dass er auf Licht reagiert. Wird er mit UV-Licht bestrahlt, so härtet er aus. Dabei verstärkt sich seine haftende Wirkung. Photoreaktive Materialien lassen sich im 3D-Druck in Gegenwart von UV-Strahlung verarbeiten. Auf diese Weise können komplexe Strukturen für maßgeschneiderte medizinische Implantate aufgebaut werden.

Dem Forscherteam an den Fraunhofer-Instituten IAP und IGB ist es gelungen, den Kleber durch Vernetzung der Polymere druckbar zu machen. »Wir haben quasi das Druckmaterial für den 3D-Druck entwickelt«, sagt Meyer. Am Fraunhofer Center for Manufacturing Innovation CMI in Boston, USA, wurde das Material mithilfe eines Bioprinters auf einen dreidimensionalen Titaniumshaft eines Hüftgelenks aufgebracht.

Künftig arbeiten die Forscherinnen und Forscher an Lösungen, wie man den Kleber schaltbar machen kann. »Hat der Chirurg den medizinischen Klebstoff beispielsweise geringfügig falsch platziert, muss er diesen Fehler schnell korrigieren und die klebende Wirkung deaktivieren können«, erklärt der Chemiker.

Externer Link: www.fraunhofer.de

JKU entwickelt in Kooperationsprojekt Knochenschrauben bei Kreuzbandrissen

Pressemeldung der JKU Linz vom 08.11.2023

Egal ob beim Sport oder einfach bei einer unglücklichen Bewegung: Kreuzbandrisse kommen extrem häufig vor.

In einem Kooperationsprojekt mit der Firma surgebright und dem Bezirkskrankenhaus Schwaz in Tirol wurden an der Johannes Kepler Universität Linz neuartige Knochenschrauben entwickelt, die bald die bisher verwendeten Schrauben ersetzen sollen.

Die Kreuzbandrekonstruktion mit Interferenzschrauben ist eine weit verbreitete Operationsmethode. Normalerweise bestehen diese Schrauben aus Metall (vor allem Titan) oder bioresorbierbaren Materialien wie Kunststoff oder Keramik. In beiden Fällen handelt es sich um Fremdkörper, die Probleme bereiten können.

„Wir versorgen allein in unserem Krankenhaus jedes Jahr hunderte Patient*innen mit Kreuzbandrissen. Sehr weit verbreitet sind Schrauben aus Kunststoffen, die sich später auflösen sollen. Durch diesen Auflöseprozess bleiben oft große Defekte im Knochen, sogenannte Osteolysen, zurück. Reißt das Kreuzband dann erneut, stehen Patient*innen und Chirurg*innen vor schwer zu lösenden Problemen. Durch diese Knochendefekte hält das neue Kreuzband nicht mehr“, so Prim. Dr. Markus Reichkendler vom Bezirkskrankenhaus Schwaz. Eine Alternative: Schrauben aus Knochen, wie sie die Firma surgebright aus Lichtenberg (OÖ) anbietet.

Knochenmaterial wird in den Körper eingebaut

„Schrauben aus menschlichen Knochen werden von körpereigenen Knochenzellen besiedelt und in körpereigenen Knochen umgewandelt. Osteolysen sind damit Geschichte. Dieser Vorgang bei der sogenannten Shark-Screw konnte bereits in einigen Publikationen in internationalen Topp-Fachzeitschriften nachgewiesen werden“, erklärt Surgebright-Geschäftsführer Thomas Pastl. Um maximale Patient*innensicherheit gewährleisten zu können, werden die Knochenschrauben sterilisiert. „Diese österreichische Entwicklung ist ein großer Meilenstein für Chirurg*innen und Patient*innen und nicht zuletzt für das weltweite Gesundheitswesen“, so Pastl.

Dass Schrauben aus Knochen hervorragend funktionieren, ist längst bekannt und wird im klinischen Alltag jährlich tausendfach verwendet – allerdings gab es bislang keine Knochenschrauben, die technisch für Kreuzbandrisse geeignet waren. Sie waren entweder zu klein und hielten dem Drehmoment nicht stand oder waren so groß, dass der Schraubenkopf im Körper abgesägt werden musste.

Hier kam das Institut für Medizin- und Biomechatronik der JKU ins Spiel. „Wir haben das Problem gemeinsam erörtert und dann Schrauben mit einer speziellen Konstruktion entwickelt. Die Schrauben- und Gewindeform erlaubt es endlich, diese Schrauben auch zur Befestigung von Kreuzbandplastiken nach einem Kreuzbandriss zu verwenden“, so Institutsleiter Univ.-Prof. Dr. Werner Baumgartner. Notwendig waren dazu sowohl umfangreiche Berechnungen als auch zahlreiche praktische Experimente.

„Am Ende haben wir es geschafft – in den Tests hat sich die neue Schraube bestens bewährt“, freut sich DI Sebastian Lifka (Institut für Medizin- und Biomechatronik der JKU).

Klinische Studie geplant

Die neuen Schrauben sind somit speziell für die Behandlung von Kreuzbandrissen geeignet, sind für den Körper verträglicher und heilen schneller. Das neue Verfahren für die speziellen Schrauben wurde bereits im renommierten Fachmagazin „Bioengineering“ publiziert. Die bessere Wirksamkeit der Schrauben soll demnächst in einer klinischen Studie wissenschaftlich analysiert werden, um schon bald Patient*innen mit Kreuzbandriss zur Verfügung zu stehen.

Externer Link: www.jku.at

TU Graz-Forschende erzeugen Pseudouridin mittels biokatalytischer Synthese

Pressemeldung der TU Graz vom 25.04.2023

Effizienter, nachhaltiger und kostengünstiger als die bisher eingesetzte chemische Synthese ist die neue und patentierte Methode zur Herstellung des wichtigen mRNA-Impfstoffbestandteils Pseudouridin.

Forschende des Instituts für Biotechnologie und Bioprozesstechnik der TU Graz sowie des Austrian Centre of Industrial Biotechnology (acib) haben eine neuartige Methode zur Herstellung zentraler Bestandteile von mRNA-Impfstoffen entwickelt und diese zum Patent angemeldet. In einem in der Fachpublikation „Nature Communications“ veröffentlichten Artikel legen Bernd Nidetzky, Martin Pfeiffer und Andrej Ribar dar, wie sie den wesentlichen Impfstoffbestandteil Pseudouridin mittels biokatalytischer Synthese erzeugen und damit eine Alternative zur bisherigen Methode der chemischen Synthese geschaffen haben.

Ein Prozessschritt genügt

Diese Alternative bietet einige entscheidende Vorteile: Bei der chemischen Synthese von Pseudouridin kommen nicht nur toxische Reagenzien und seltene Rohstoffe zur Anwendung, sondern sie ist aufgrund der notwendigen vier bis acht Prozessschritte und der Kühlung auf minus 20 Grad sehr energie- und zeitaufwendig. Bei der Biokatalyse hingegen ist nur ein Prozessschritt mit vier parallellaufenden Reaktionen erforderlich, die bei Raumtemperatur stattfinden. Zudem braucht es als Katalysatoren nur vier Enzyme (Uridin Phosphorylase, Phosphopentose Mutase, Pseudouridin Monophosphate Glycosidase, Phosphatase), die recht einfach mit E.coli Bakterien hergestellt werden können. Bei der Biokatalyse fallen auch keine Abfallstoffe an, der einzige Abfall ist Phosphat, das aber während des Katalyseprozesses wieder rezykliert wird.

Ein weiterer gewichtiger Vorteil ist die Effizienz. Da bei der chemischen Herstellung von Pseudouridin, verkürzt gesagt, das für Impfstoffe weniger effiziente, natürlich vorkommende Uridin umgewandelt wird, gibt es während des Umwandlungsprozesses keine hundertprozentige Ausbeute. Mit der biokatalytischen Synthese gelingt aufgrund der geringeren Anzahl an Prozessschritten allerdings eine Ausbeute von 92 bis 95 Prozent, während es bei den bisher publizierten chemischen Prozessen gerade einmal 40 bis 50 Prozent sind.

Inspiration aus der Natur

Um dieses neue Verfahren zu entwickeln, haben die Forschenden auf eine ihrer früheren Studien aufgebaut, bei der sie das Enzym YeiN als Biokatalysator für die Herstellung von C-Nukleotiden entdeckt hatten. Da Pseudouridin das C-Nukleoside des RNA-Bausteins Uridin ist, hatten sie die Idee, das mittels bakterieller Fermentationen in großen Mengen herstellbare Uridin als Rohstoff zu nehmen und die Bindung zwischen dessen Grundbausteinen neu zu knüpfen. Die Inspiration dafür kam aus der Natur.

So hat Uridin, im Gegensatz zu Pseudouridin, eine N-glykosidische Bindung, die beim natürlichen Abbau in den Zellen mittels des Enzyms Uridin Phosphorylase in Ribose-1-phosphat (Zucker) und Uracil gespalten wird. Danach kommt das Enzym Phosphopentose Mutase zum Einsatz, welches das Ribose-1-phosphat zu Ribose-5-phosphat umlagert, das in den Zellen verstoffwechselt wird. Es folgt die Anwendung des YeiN-Enzyms, mit dem die Verknüpfung des Ribose-5-phosphats und des Uracils zu Pseudouridin-5-phosphat erfolgt. Mittels Phosphatase wird das Phosphat noch vom Pseudouridin abgespalten und man ist am Ziel. Da das Pseudouridin noch dazu wesentlich weniger wasserlöslich ist als Uridin, kristallisiert es im Laufe der Reaktion einfach aus und lässt sich daher unkompliziert durch Abfiltern des Reaktionsüberstandes gewinnen.

Herstellung bald im größeren Maßstab

„Unsere Arbeit zeigt, dass die Biokatalyse eine potente Alternative zur chemischen Synthese von C-Nukleotiden wie Pseudouridin darstellt“, erklärt Bernd Nidetzky, der Leiter des Instituts für Biotechnologie und Bioprozesstechnik der TU Graz. „Wir hoffen, die Herstellung bald im größeren Maßstab umzusetzen und so Pseudouridin nachhaltig und billig in größeren Mengen zur Verfügung zu stellen. Das könnte mittelfristig eventuell auch die Herstellung von mRNA-Impfstoffen günstiger machen, da potenzielle Partner aus der Industrie unsere Anwendung recht zeitnah implementieren könnten.“ (Falko Schoklitsch)

Externer Link: www.tugraz.at