Neues Wirkprinzip für Kaliumkanäle entdeckt

Medienmitteilung der Universität Basel vom 28.01.2014

Nervenzellen übertragen Informationen mithilfe von speziell für Kaliumionen durchlässigen Kanälen. Defekte Kaliumkanäle sind für Epilepsie und Depression mitverantwortlich. Die Forscher um Prof. Henning Stahlberg vom Biozentrum der Universität Basel ermittelten nun erstmals die vollständige 3-D-Struktur eines Kaliumkanals des Typs HCN. Daraus konnten sie Rückschlüsse über den Wirkungsmechanismus gewinnen, welchen sie in der aktuellen Ausgabe von «Nature Communications» beschreiben.

Nervenzellen leiten Informationen über elektrische Impulse durch unseren Körper. Ein zentrales Bauelement dieses elektrischen Schaltkreises sind Kaliumkanäle, die entweder durch einen Impuls oder auch durch Signalmoleküle gesteuert werden. Beim Menschen werden Fehlfunktionen solcher sogenannter HCN-Kaliumkanäle mit neuronalen Erkrankungen wie Epilepsie und Depression in Verbindung gebracht. Die Forschungsgruppe um Prof. Henning Stahlberg vom Biozentrum der Universität Basel hat nun erstmals die komplette Struktur eines bakteriellen Pendants dieser Art von Kaliumkanälen aufgeklärt und neue Hinweise auf deren Funktionsweise erhalten.

Neues Wirkprinzip dank 3-D-Struktur

Kaliumkanäle sind in der Membran von Zellen verankert. Sie bilden eine Pore mit einem Filter, der ausschliesslich für Kaliumionen durchlässig ist und durch das Signalmolekül cAMP gesteuert wird. Bisher ging man davon aus, dass sich die Pore öffnen und schliessen kann und so den Fluss der Kaliumionen reguliert. Stahlbergs Team fand nun Anhaltspunkte für ein anderes Wirkprinzip. Die Forscher rekonstruierten mithilfe von Kristallisationstechniken und der Elektronenmikroskopie die intakte dreidimensionale Struktur des bakteriellen Kaliumkanals in seiner natürlichen Umgebung in An- und Abwesenheit von cAMP.

Anhand dieser Strukturanalysen konnten sie feststellen, dass die Pore entgegen der landläufigen Meinung immer geöffnet ist. «Wenn das Signalmolekül cAMP an den Kaliumkanal andockt, kommt es zu Umlagerungen und Verschiebungen im Proteingerüst», erläutert Julia Kowal, Erstautorin der Studie. «Wir vermuten, dass cAMP stattdessen den Filter etwas weitet und damit den Durchfluss der Kaliumionen regelt.» Die neuen strukturellen Details ermöglichten den Forschern, die Funktionsweise dieser Kanäle aus einem anderen Blickwinkel zu betrachten.

Mechanismus relevant für neue Wirkstoffe

Stahlberg möchte nun die Filterregion mit einer extrem hoch auflösenden Kamera genauer untersuchen, um auch die letzten Fragen über den Mechanismus zu klären. Signalgesteuerte Kaliumkanäle werden auch als «Schrittmacher-Kanäle» bezeichnet. Sie steuern den Herzrhythmus sowie die rhythmische Erregbarkeit von Neuronen. Das genaue Verständnis des Wirkmechanismus ist daher die Grundlage für die Entwicklung spezifischer Arzneistoffe zur Behandlung von Epilepsie oder Herzrhythmusstörungen.

Originalbeitrag:
Julia Kowal, Mohamed Chami, Paul Baumgartner, Marcel Arheit, Po-Lin Chiu, Martina Rangl, Simon Scheuring, Gunnar F. Schröder, Crina M. Nimigean, and Henning Stahlberg
Ligand-induced structural changes in the cyclic nucleotide-modulated potassium channel MloK1.
Nature Communications, Published Online 28 January 2014
DOI: 10.1038/ncomms4106

Externer Link: www.unibas.ch

Einblick in die Struktur eines Proteintransporthelfers

Pressemitteilung der Universität des Saarlandes vom 16.01.2014

Proteine sind die molekularen Baustoffe und Maschinen der Zelle und an praktisch allen Lebensprozessen beteiligt. Um ihre Aufgaben korrekt ausführen zu können, werden viele Proteine nach ihrer Herstellung mit Anhängen wie Zuckerresten versehen. Dieser Prozess ist direkt an den Transport durch eine Membran gekoppelt. Wissenschaftlern am Max-Planck-Institut (MPI) für Biochemie ist es jetzt mit Hilfe verschiedener strukturbiologischer Methoden gelungen, einen Einblick in die Architektur des verantwortlichen Proteinkomplexes (ER-Translokon) zu gewinnen. Die Ergebnisse des Gemeinschaftsprojekts mit Kollegen des Universitätsklinikums Homburg an der Saar und der Ludwig-Maximilians-Universität München wurden jetzt in Nature Communications veröffentlicht.

Ein Protein herzustellen, ist für die Zelle ein hoch komplexer Prozess und beinhaltet viele einzelne Schritte. Je nachdem für welchen Zweck ein Protein gebraucht wird, gibt es verschiedene Orte der Proteinproduktion: das Zellinnere, auch Zellplasma genannt, oder das Endoplasmatische Retikulum (ER). Das ER ist durch eine Membran von seiner Umgebung, dem Zellplasma, getrennt. Proteine, die am ER hergestellt werden, gelangen noch während der Synthese über diese Membran in das Innere des ERs und werden dabei durch das Anhängen von Zuckerresten verändert. Ohne diese Anhänge können sich Proteine nicht korrekt falten und so auch ihre Aufgaben in der Zelle nicht erfüllen.

Wissenschaftler der Forschungsgruppe „Modellierung von Proteinkomplexen“ konnten jetzt die Architektur des Proteinkomplexes beschreiben, der für den Transport und die Veränderung des neu produzierten Proteins verantwortlich ist: das ER-Translokon. „Es befindet sich in der Membran des ERs, was neben seiner Größe und komplexen Zusammensetzung bisherige strukturelle Untersuchungen erheblich erschwert hat“, beschreibt Friedrich Förster, Gruppenleiter am MPI für Biochemie, die Ausgangssituation. Die Strukturen vieler Untereinheiten sowie ihre Anordnung im Gesamtkomplex des ER-Translokons waren daher bisher unbekannt.

Erst durch die Verwendung der Kryo-Elektronentomographie konnten die Forscher einen ersten Einblick in die Architektur des ER-Translokons erhalten. Die Probe wird „schockgefroren“, sodass ihre natürliche Struktur erhalten bleibt. Dann nehmen die Wissenschaftler aus verschiedenen Blickwinkeln zweidimensionale Bilder des Objekts im Elektronenmikroskop auf, aus denen sie schließlich ein dreidimensionales Bild rekonstruieren. Weitere Untersuchungen machten es möglich, einzelne Untereinheiten in der Struktur zu identifizieren. Darunter ist auch die Untereinheit, die Zuckerreste an das neu produzierte Protein knüpft.

„Basierend auf dieser Methodik wollen wir jetzt versuchen, die Struktur und Lage weiterer Komponenten des ER-Translokons zu bestimmen“, so Förster. Kennen die Forscher die einzelnen Strukturen des ER-Translokons, können sie indirekt auf die genaue Funktionsweise und das Zusammenwirken aller Bestandteile rückschließen.

Originalveröffentlichung:
Pfeffer, S., Dudek, J., Gogala, M., Schorr, S., Linxweiler, J., Lang, S., Becker, T., Beckmann, R., Zimmermann, R., Förster, F.: Structure of the mammalian oligosaccharyl-transferase complex in the native ER protein translocon. Nature Commun, January 10, 2014
Doi: 10.1038/ncomms4072 (2013).

Externer Link: www.uni-saarland.de

KIT-Forscher entwickeln künstliches Knochenmark

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 03.01.2014

Gezielte Vermehrung von blutbildenden Stammzellen außerhalb des Körpers könnte in einigen Jahren die Therapie von Leukämie vereinfachen

Künstliches Knochenmark kann dazu dienen, blutbildende Stammzellen zu vermehren. Einen Prototypen haben Wissenschaftler des KIT sowie des Max-Planck-Instituts für Intelligente Systeme Stuttgart und der Universität Tübingen nun entwickelt. Die poröse Struktur bildet die grundlegenden Eigenschaften des natürlichen Knochenmarks nach und weist den Weg zur Vermehrung von Stammzellen im Labor. Dies könnte in einigen Jahren die Behandlung von Leukämie vereinfachen. In der Zeitschrift „Biomaterials“ stellen die Forscher ihre Arbeit nun vor. (DOI: 10.1016/j.biomaterials.2013.10.038)

Die Zellen des Bluts, wie rote Blutkörperchen oder Immunzellen, werden laufend durch neue ersetzt. Für den Nachschub sorgen die blutbildenden Stammzellen – Vorläufer für alle. Sie befinden sich in einer spezialisierten Nische im Knochenmark. Blutbildende Stammzellen lassen sich zur Behandlung von Krankheiten des Bluts einsetzen, beispielsweise bei Leukämie. Dabei werden die kranken Zellen des Patienten durch gesunde blutbildende Stammzellen von einem passenden Spender ersetzt.

Allerdings kann derzeit nicht jeder Leukämiepatient auf diese Weise behandelt werden, da nicht genügend passende Transplantate verfügbar sind. Eine einfache Lösung dieses Problems wäre, blutbildende Stammzellen zu vermehren. Dies ist bisher jedoch nicht möglich, denn diese Zellen behalten ihre Stammzelleigenschaften nur in ihrer natürlichen Umgebung, das heißt in ihrer Nische im Knochenmark. Außerhalb dieser Nische verändern sie sich. Zu ihrer Vermehrung bedarf es daher einer Umgebung, die der Stammzellnische im Knochenmark ähnelt.

Bei der Stammzellnische handelt es sich um eine komplexe Mikroumgebung mit spezifischen Eigenschaften. Die betreffenden Bereiche im Knochen sind hochporös, ähnlich wie ein Badeschwamm. In dieser dreidimensionalen Umgebung befinden sich neben Knochenzellen und blutbildenden Stammzellen noch verschiedene andere Zelltypen, mit denen die blutbildenden Stammzellen Signalstoffe austauschen. Zudem weist der Raum zwischen den Zellen eine Matrix auf, die ihm eine gewisse Stabilität verleiht und den Zellen Punkte zum Verankern bietet. Darüber hinaus werden die Zellen in der Stammzellnische mit Nährstoffen und Sauerstoff versorgt.

Wissenschaftler der Nachwuchsgruppe „Stammzell-Material-Wechselwirkungen“ unter Leitung von Dr. Cornelia Lee-Thedieck am Institut für Funktionelle Grenzflächen (IFG) des KIT sowie des Max-Planck-Instituts für Intelligente Systeme Stuttgart und der Universität Tübingen haben grundlegende Eigenschaften des natürlichen Knochenmarks nun künstlich im Labor nachgebildet. Dazu schufen sie mithilfe von synthetischen Polymeren eine poröse Struktur, welche die schwammartige Struktur des Knochens im Bereich des blutbildenden Knochenmarks nachahmt. Außerdem bauten sie Eiweißbausteine mit ein, wie sie in der Matrix des Knochenmarks vorkommen und als Verankerungsmöglichkeiten für die Zellen dienen. Die Wissenschaftler setzten darüber hinaus weitere Zelltypen aus der Stammzellnische in die Struktur ein, um den blutbildenden Stammzellen den gewohnten Austausch mit diesen Zellen zu ermöglichen.

In dieses künstliche Knochenmark brachten die Forscher frisch aus Nabelschnurblut isolierte blutbildende Stammzellen ein und bebrüteten sie über mehrere Tage. Analysen mit verschiedenen Methoden zeigten, dass sich die Zellen in dem neu entwickelten künstlichen Knochenmark tatsächlich vermehren. Im Vergleich zu Standardmethoden zur Zellkultivierung behält in dem künstlichen Knochenmark ein deutlich erhöhter Anteil der Stammzellen die spezifischen Eigenschaften bei.

Das neu entwickelte künstliche Knochenmark, das grundlegende Eigenschaften natürlichen Knochenmarks nachbildet, erlaubt es den Wissenschaftlern nun, die Wechselwirkungen zwischen Materialien und Stammzellen detailliert im Labor zu untersuchen. Dadurch lässt sich feststellen, wie sich Stammzellverhalten durch synthetische Materialien beeinflussen und steuern lässt. Dieses Wissen kann in 10 bis 15 Jahren dazu beitragen, eine künstliche Stammzellnische für die gezielte Vermehrung von Stammzellen zur Behandlung von Leukämie-Patienten zu realisieren. (or)

Publikation:
Annamarija Raic, Lisa Rödling, Hubert Kalbacher, Cornelia Lee-Thedieck: Biomimetic macroporous PEG hydrogels as 3D scaffolds for the multiplication of human hematopoietic stem and progenitor cells. Biomaterials. DOI: 10.1016/j.biomaterials.2013.10.038

Externer Link: www.kit.edu

Zusammenspiel zweier Leukämiewirkstoffe geklärt

Medienmitteilung der Universität Basel vom 05.11.2013

Für fünf Prozent aller an chronisch myeloischer Leukämie erkrankten Patienten gibt es derzeit keine Therapiemöglichkeit, da sie Resistenzen gegen herkömmliche Medikamente entwickelt haben. Die Gruppe von Prof. Stephan Grzesiek vom Biozentrum der Universität Basel hat in Zusammenarbeit mit Dr. Wolfgang Jahnke von Novartis und Kollegen die kombinierte Wirkungsweise zweier verschiedener Wirkstoffe gegen Leukämie untersucht. Sie konnten auf atomarer Ebene aufklären, wie genau beide Wirkstoffe die Struktur eines Enzyms verändern und ihre Kombination die Resistenz überwinden kann. Die Ergebnisse sind jetzt im Fachjournal PNAS veröffentlicht.

Die chronische myeloische Leukämie (CML) ist eine Form von Blutkrebs, die auf einer genetischen Störung beruht und zu einer Überproduktion von weissen Blutkörperchen führt. 95 Prozent der erkrankten Patienten können mittlerweile erfolgreich mit dem von der Firma Novartis entwickelten Wirkstoff Imatinib, auch bekannt als Medikament Glivec®, behandelt werden. Imatinib ist ein Hemmstoff, der die ATP-Bindungsstelle der spezifischen Tyrosinkinase Bcr-Abl in erkrankten Blutzellen blockiert und so ihre überschiessende Aktivität senkt. Infolgedessen wird die krankhafte Überproduktion von Leukozyten gestoppt, das Blutbild normalisiert sich.

Imatinib heilt fünf Prozent aller Patienten nicht

Bei fünf Prozent aller CML-Patienten, typischerweise Patienten im fortgeschrittenen Krankheitsstadium, wirkt Imatinib jedoch nicht. Auch andere Hemmstoffe, die in ähnlicher Weise die Tyrosinkinase Bcr-Abl blockieren, sind bei einem Teil der Patienten wirkungslos. Ein Grund dafür ist, dass diese Patienten Mutationen an der ATP-Bindungstelle aufweisen und Imatinib das Enzym nicht mehr inaktivieren kann. Derzeit steht man vor der Entwicklung neuer Therapien, die auch bei Imatinib-resistenten Patienten wirken. Eine der Möglichkeiten basiert auf der Kombination von ATP-Bindungstelle-Inhibitoren mit sogenannten allosterischen Inhibitoren, die an einer anderen Stelle binden.

Warum Wirkstoffkombination erfolgreich bei resistenter CML ist

Warum die Kombination der beiden Wirkstoffe im Tiermodell erfolgreich ist, konnte nun erstmals die Gruppe von Prof. Stephan Grzesiek vom Biozentrum der Universität Basel in Zusammenarbeit mit Dr. Wolfgang Jahnke von Novartis durch Strukturanalyse mittels Kernspinresonanzspektroskopie (NMR) aufklären. Unter physiologischen Bedingungen liegt die Tyrosinkinase Abl in zwei verschiedenen räumlichen Strukturen vor, einer offenen und einer geschlossen. Beide befinden sich in einem sensiblen Gleichgewicht. Die Forscher konnten nun zeigen, dass das Andocken von Imatinib an Abl unerwarteterweise das Gleichgewicht hin zu einer geöffneten Struktur verschiebt. Obwohl selbst blockiert, kann das Enzym in diesem Zustand durch andere Tyrosinkinasen leichter wieder aktiviert werden. Der alternative, allosterische Hemmstoff GNF-5 dagegen festigt den geschlossenen inaktiven Zustand, auch in Kombination mit Imatinib.

«Beide Wirkstoffe zusammen addieren so ihr Potenzial zur Hemmung der Kinaseaktivität. Erst die Strukturanalyse lässt uns verstehen, wie genau GNF-5 die Resistenz gegenüber Imatinib aufheben kann», sagt Lukasz Skora, ehemaliger Postdoktorand im Labor von Stephan Grzesiek. Die Ergebnisse geben erstmals einen vertieften Einblick, wie sich die Abl-Kinase unter dem Einfluss von Inhibitoren verhält, und lassen auf einen Erfolg einer Kombinationstherapie hoffen.

Originalbeitrag:
Lukasz Skora, Jürgen Mestan, Doriano Fabbro, Wolfgang Jahnke, and Stephan Grzesiek.
NMR reveals the allosteric opening and closing of Abelson kinase by ATP-site and myristoyl pocket inhibitors.
Proceedings of the National Academy of Sciences PNAS, Published online 4 November 2013.

Externer Link: www.unibas.ch

Die zwei Seiten eines Moleküls

Presseinformation der LMU München vom 27.09.2013

LMU-Forscher um Christian Weber klären auf, welche Rolle das Molekül JAM-A bei der Einwanderung von Entzündungszellen im Rahmen der Entstehung von Gefäßverkalkungen spielt.

Bei der Atherosklerose bilden sich in den Arterien Ablagerungen an der Gefäßinnenwand. Das kann den Blutfluss behindern und schließlich ganz blockieren. Eine entscheidende Rolle bei der Entstehung von Atherosklerose spielen die Monozyten, eine Gruppe der weißen Blutzellen, die zum Immunsystem gehören und wichtig für die Abwehr von Krankheiten sind. Bei der Atherosklerose sammeln sie sich jedoch in der Gefäßwand. Dort produzieren sie Signalstoffe, die weitere Zellen an die Entzündungsstelle locken. So bilden sich atherosklerotische Ablagerungen, die die Gefäße verengen, was Herzinfarkte und Schlaganfälle auslösen kann.

Welche molekularen Prozesse die Einwanderung der Zellen in das entzündete Gewebe steuern, untersucht Professor Christian Weber vom Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten an der LMU. In der Fachzeitschrift Circulation berichtet er nun über die Ergebnisse einer Untersuchung, die gemeinsam mit Kollegen von der Universität Maastricht durchgeführt wurde. Die Wissenschaftler haben analysiert, wie das Molekül JAM-A an der Entstehung von Atherosklerose beteiligt ist.

Wechselwirkungen berücksichtigen

Als ein Protein mit vielfältigen Bindungsstellen trägt JAM-A zur Organisation und Integrität von Zellkontakten bei und kann als molekularer Reissverschluss für Entzündungszellen dienen. In aktuellen Untersuchungen konnte das Team um Christian Weber zeigen, welche Auswirkungen es hat, wenn das Molekül in verschiedenen Zelltypen fehlt.

Die innerste Wandschicht der Gefäße ist mit einer Lage Endothelzellen ausgekleidet. Hier sorgt JAM-A für den Durchtritt von Entzündungszellen, insbesondere wenn es bei gestörten Flussverhältnissen oder erhöhten Blutfettspiegeln umverteilt wird. Fehlt das Molekül in den Endothelzellen, wandern weniger Monozyten ein. Dadurch können sich weniger Ablagerungen in den Gefäßen bilden.

Dennoch wäre es fatal, bei der Entwicklung von Therapeutika darauf zu setzen, JAM-A einfach zu blockieren. Denn fehlt das Molekül in Blutzellen, können sich Monozyten, die einmal gebunden haben, nicht mehr lösen. Dadurch kommt es zu einer lokalen Schädigung des Endothels und es bilden sich mehr Ablagerungen.

„Für die Entwicklung von Therapeutika ist es entscheidend, die verschiedenen Wechselwirkungen von JAM-A zu berücksichtigen“, sagt Christian Weber. Er forscht nun weiter an Bindungsstellen in der Domäne des Moleküls, die für die schädlichen Mechanismen verantwortlich sind. „Ein Therapeutikum, das nur dort angreift, könnte Gefäße effektiv schützen und Nebenwirkungen umgehen“, sagt Weber. (nh)

Publikation:
Circulation 2013

Externer Link: www.uni-muenchen.de