Schweißdrüsen heilen Wunden

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 03.02.2014

Aus eigenen Schweißdrüsen können Stammzellen gewonnen werden, die sich besonders gut zur Wundheilung eignen. Sie bilden Hautzellen und managen den Heilungsprozess. Der Körper stößt sie nicht ab und sie können ambulant entnommen werden.

Alles begann mit der Bauchspeicheldrüse. Prof. Charli Kruse, Leiter der Fraunhofer-Einrichtung für Marine Biotechnologie EMB in Lübeck, erinnert sich noch gut daran. Die Forscher hatten Zellen des Organs isoliert und in einer Petrischale für Forschungszwecke kultiviert – um die Funktion des Eiweißes Vigilin zu untersuchen, das in den Drüsenzellen gebildet wird. »Plötzlich stellten wir fest, dass sich diese auf ungewöhnliche Art und Weise vermehrten: Durch das Mikroskop erkannten wir in der Schale Drüsenzellen – aber auch Nerven- und Muskelzellen.« Aus dem Drüsengewebe hatten sich Stammzellen gebildet, die sich vermehrten und zudem unterschiedliche Zelltypen bilden konnten. Schnell zeigte sich, dass dies auch mit anderen Drüsenzellen funktionierte: »Wir arbeiteten uns langsam vom Körperinnern nach außen und landeten schließlich auf der Haut – bei den Schweißdrüsen. Auch hier dasselbe Ergebnis: Eine Petrischale voller Stammzellen.« Bisher waren Schweißdrüsen wenig beachtet worden: Labortiere wie Mäuse oder Ratten haben diese nur an den Pfoten. Der Mensch besitzt bis zu drei Millionen – vor allem an den Fußsohlen, den Handflächen, in den Achselhöhlen und auf der Stirn.

Die Stammzellen zur Heilung stammen aus der Achsel

Biologen und Mediziner nutzen Stammzellen, um aus ihnen neues Gewebe zu gewinnen – zum Beispiel, um kranke oder verletzte Zellen zu ersetzen. Insbesondere bei der Wundheilung spielen sie eine wichtige Rolle. Ideal sind körpereigene Stammzellen, da sie der Körper nicht abstößt. Diese lassen sich jedoch nur in aufwendigen Operationen aus dem Knochenmark oder dem Blut gewinnen. »An Schweißdrüsen kommt man wesentlich einfacher heran. Ein kleiner ambulanter Eingriff beim Hautarzt genügt. Uns reichen weniger als drei Millimeter Achsel-Haut aus, um Stammzellen zu gewinnen«, erklärt Kruse. Transplantiert man diese Stammzellen in Hautwunden, so können sie die Wundheilung positiv beeinflussen. Ob die Zellen dabei selbst neue Hautzellen und Blutgefäße bilden oder durch das Ausscheiden von Wachstumshormonen Immunzellen aktivieren und so die Heilungsvorgänge managen, ist Gegenstand aktueller Forschungsarbeiten.

Die Wissenschaftler haben den positiven Effekt auf die Wundheilung am Tiermodell und an menschlicher Haut in der Petrischale nachgewiesen. Die Forscher legten dafür millimetergroße lebende Schweißdrüsen aus einer Hautprobe unter einem Mikroskop frei. Die darin enthaltenen Zellen vermehrten sie außerhalb des Körpers und regten sie an, andere Zelltypen zu bilden: »Wir besiedelten mit ihnen ein Trägermaterial und setzten dieses auf eine Wunde, die wir zuvor einer Testhaut zugefügt hatten.« Das Ergebnis: Die Wunde heilte mit den Stammzellen deutlich schneller und besser als ohne. Der Träger gibt den Zellen eine feste Struktur. Er besteht zum Beispiel aus Kollagen, einem Strukturprotein des menschlichen Bindegewebes, das später durch körpereigene Faserproteine ersetzt wird. »Ohne diese Struktur würden die Zellen vom Blutstrom erfasst und abtransportiert werden. Sie müssen möglichst fest auf der Wunde bleiben. Nur dann können sie mit der Haut reagieren und sich am Heilungsprozess beteiligen«, so Kruse. Er arbeitet beim Thema Wundheilung eng mit der plastischen Chirurgie der Universität Lübeck zusammen.

Seit Ende letzten Jahres kooperiert die EMB mit der Bioenergy CellTec GmbH, die ihren Firmensitz von Köln nach Lübeck verlegt hat. Für die Entwicklung von neuen Produkten in der Wundheilung nutzt das Biotech-Unternehmen ein neuartiges Trägermaterial. Ein Biopolymer, welches sich besonders gut für die Kombination mit Zellen eignet. Es ist hydrophil – wasserliebend – und so behandelt, dass es für Zellen besonders attraktiv ist, dort zu siedeln. Nun wollen beide Partner ihre Entwicklungen zusammenführen und gemeinsam Produkte herstellen, die Wunden schneller und besser heilen lassen. »Insbesondere für chronische Wunden, die oft über einen langen Zeitraum nicht verheilen, gibt es bisher noch keine effektive Therapie«, sagt Dr. Kathrin Adlkofer, Geschäftsführerin von Bioenergy. Die dauerhaft offenen Stellen entstehen durch kranke Venen oder Arterien, Diabetes, Tumore, Infektionen oder Hauterkrankungen.

Die Lübecker Wissenschaftler haben bereits weitere Anwendungen im Kopf: »Die Stammzellen aus den Schweißdrüsen lassen sich nicht nur einfach kultivieren, sie sind auch sehr vielseitig.« Kruse und sein Team erproben bereits eine Therapie für die Makula-Degeneration – eine Krankheit der Netzhaut, mit der vor allem ältere Menschen zu kämpfen haben. Auch Implantate stößt der Körper weniger ab, wenn diese in körpereigene Stammzellen eingehüllt sind. Kruse: »Auf lange Sicht ist eine Zellbank denkbar, in die ein junger Mensch Stammzellen seiner eigenen Schweißdrüsen einlagern kann. Aus der kann er sich dann bedienen, wenn er neue Zellen benötigt – zum Bespiel nach einer Krankheit oder einem Unfall.«

Externer Link: www.fraunhofer.de

Wasserkopf – Sensor überwacht Hirndruck

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 02.01.2014

Ist der Druck im Gehirn eines Patienten zu hoch, implantieren Ärzte ein System in den Kopf, das den Druck reguliert. Ein Sensor erlaubt es nun, den Hirndruck zu messen und individuell anzupassen. Das Sensorsystem ist als Langzeitimplantat zugelassen.

Harninkontinenz, ein schlurfender Gang und nachlassende Denkfähigkeit sind Anzeichen für eine Parkinson- oder Alzheimererkrankung. Ebenfalls möglich ist ein Hydrocephalus, auch als Wasserkopf bekannt. Bei dieser Diagnose produziert das Gehirn entweder zu viel Hirnflüssigkeit oder diese kann nicht ausreichend »ablaufen«. Die Folge: Der Druck im Gehirn steigt zu stark, es nimmt Schaden. Abhilfe schafft ein Shunt-System – eine Art Silikonschlauch –, das Ärzte in das Gehirn des Patienten implantieren. Dort leitet es überschüssige Flüssigkeit ab, beispielsweise in den Bauchraum. Herzstück dieses Shunt-Systems ist ein Ventil: Steigt der Druck über einen Schwellenwert, öffnet das Ventil, sinkt er wieder darunter, schließt es.

In seltenen Fällen kann es zu einer Überdrainage kommen. Dabei sinkt der Hirndruck zu stark, die Hirnkammern werden quasi ausgepresst. Bislang können Ärzte eine solche Überdrainage nur über aufwändige und teure Computer- oder Magnetresonanztomographien nachweisen.

Hirndruck jederzeit messbar

Anders mit einem neuartigen Sensor: Wird er mit dem Shunt-System ins Gehirn des Patienten implantiert, können die Ärzte den Hirndruck mit einem Handlesegerät auslesen – in wenigen Sekunden, jederzeit und ohne aufwändige Untersuchung. Entwickelt haben den Sensor Forscher des Fraunhofer-Instituts für Mikroelektronische Schaltungen und Systeme IMS in Duisburg gemeinsam mit der Christoph Miethke GmbH und der Aesculap AG.

Klagt der Patient über Beschwerden, braucht der Arzt lediglich das Handlesegerät von außen an den Kopf des Patienten zu halten. Das Gerät sendet magnetische Funkwellen und versorgt den Sensor im Shunt darüber mit Energie – das Implantat wird »aufgeweckt«, misst Temperatur und Druck in der Hirnflüssigkeit und sendet diese Daten zurück zum Handlesegerät. Ist der Druck außerhalb des gewünschten Bereichs, kann der Arzt das Ventil des Shunt-Systems von außen entsprechend einstellen und es individuell an den Patienten anpassen. »Der Sensor ist ein aktives Implantat, das im Gegensatz zu einem Stent oder einem Zahnimplantat auch Messfunktionen übernimmt«, sagt Michael Görtz, Leiter der Drucksensorik am IMS.

Das Implantat muss bioverträglich sein, der Körper darf es nicht abstoßen. Die Forscher mussten sicherstellen, dass auch der Körper das Implantat nicht angreift. »Die Abwehrreaktionen verhalten sich wie ein aggressives Medium, das sogar das Silizium der Elektronik im Laufe der Zeit auflösen würde«, erläutert Görtz. Miethke verkapselt das Implantat daher vollständig in eine dünne Metallhülle. »Wir können es trotzdem von außen durch die Metallverkapselung mit Energie versorgen, den Hirndruck durch das Gehäuse messen und die aufgenommenen Daten durch das Metall zum Lesegerät nach außen funken«, sagt Görtz. Dazu musste das richtige Metall gefunden werden. Die Schicht darf nicht dicker als die Wand einer Getränkedose sein – also weit dünner als ein Millimeter. Auch das Handlesegerät haben die Forscher entwickelt, samt der Elektronik, über die es mit dem Sensor kommunizieren kann.

Dieser ist serienreif und wurde durch Miethke bereits zugelassen. Mit der Markteinführung des Systems hat das Unternehmen bereits begonnen. »Der Sensor legt die Basis für die Weiterentwicklung hin zu Theranostischen Implantaten – eine Wortschöpfung aus Therapie und Diagnostik. In einigen Jahren könnte der Sensor dann nicht nur den Hirndruck erfassen und damit eine Diagnose erstellen, sondern den Druck auch gleich selbstständig richtig einstellen und somit die Therapie übernehmen«, sagt Görtz.

Externer Link: www.fraunhofer.de

Thermoelektrik auf dem Weg zur Industriereife

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 02.12.2013

Halb-Heusler-Verbindungen eignen sich besonders gut, um thermoelektrische Module herzustellen. Aus Abwärme kann mit ihnen Strom gewonnen werden. Forscher haben die Metalllegierungen erstmals im Kilomaßstab hergestellt.

Heute gehen mehr als zwei Drittel der weltweit eingesetzten Primärenergien wie Öl oder Gas als Abwärme verloren. Mit thermoelektrischen Modulen ließe sich ein Teil davon bei Kraftwerken, Industrie- oder Heizungsanlagen sowie Autos nutzen. Die Thermoelektrik gewinnt aus Temperaturunterschieden Strom. Integriert in die Abgasanlage eines Pkw beispielsweise könnten die Module Strom erzeugen und damit die Lichtmaschine des Fahrzeugs entlasten. »Angesichts immer schärferer Umweltregeln der EU ist das auch für die Autohersteller kein uninteressanter Aspekt«, so Dr. Kilian Bartholomé vom Fraunhofer-Institut für Physikalische Messtechnik IPM in Freiburg.

Doch obwohl die wesentlichen Prinzipien bereits seit fast 200 Jahren bekannt sind, steckt die Technologie noch immer größtenteils in den Kinderschuhen. Es fehlt an effizienten Herstellungsverfahren und geeigneten Materialien. Dem IPM ist dabei jetzt ein großer Entwicklungsschritt gelungen. Die Forscher haben gezeigt, dass Halb-Heusler-Verbindungen – ein für thermoelektrische Prozesse sehr gut geeignetes Material – wesentlich effizienter und kostengünstiger hergestellt werden können, als das bisher möglich war. Im vom Bundesministerium für Wirtschaft und Technologie (BMWi)  geförderten Projekt »thermoHEUSLER« arbeiteten sie mit der Robert Bosch GmbH, dem Institut für Anorganische Chemie und Analytische Chemie der Johannes-Gutenberg-Universität Mainz, der Vacuumschmelze in Hanau und der Isabellenhütte in Dillenburg zusammen.

»Halb-Heusler-Verbindungen eignen sich besonders gut für die thermoelektrische Anwendung. Sie erfüllen – fast – alle dafür notwendigen Kriterien«, erläutert Projektleiter Dr. Benjamin Balke von der Universität Mainz, Experte für die Materialentwicklung. »Die Metalllegierungen bestehen aus weit verbreiteten Rohstoffen, zum Beispiel Nickel, sind wesentlich umweltverträglicher als bisher eingesetzte Materialien, verfügen über gute thermoelektrische Eigenschaften und halten hohe Temperaturen aus.«

Effizientes Material im Kilomaßstab hergestellt

Die thermoelektrische Güte messen Ingenieure mit dem »ZT-Wert«. Von der Industrie gefordert werden Werte größer eins. Im Projekt »thermoHEUSLER« haben die Partner jetzt einen Wert von 1,2 erreicht. »Das entspricht den besten bisher veröffentlichten Werten für Halb-Heusler-Verbindungen«, sagt Bartholomé. Entscheidend für die industrielle Anwendung ist es, die im Labor erreichten Effizienzwerte auch in der Massenproduktion zu erreichen. Während »thermoHEUSLER« ist es der Vacuumschmelze und der Isabellenhütte erstmals gelungen, dieses sehr effiziente Halb-Heusler-Material im Kilogrammmaßstab herzustellen. Die dabei synthetisierten Legierungen haben eine lange Tradition: Der deutsche Bergbauingenieur, Chemiker und Namensgeber Friedrich Heusler war einst Leiter der Isabellenhütte.

Thermoelektrische Module sind aus wenigen Millimeter großen Klötzchen zusammengesetzt. Diese bestehen aus zwei unterschiedlichen Typen thermoelektrischen Materials – dem n-Typ und dem p-Typ. Ein Knackpunkt für die Effizienz der Module ist das Design ihrer elektrischen Kontakte. Sie müssen große Temperaturunterschiede vertragen, langzeitstabil sein und gleichzeitig den elektrischen Widerstand möglichst gering halten. Genau das haben die Wissenschaftler im Projekt »thermoHEUSLER« mit einem speziell entwickelten Lötsystem geschafft.

Dass thermoelektrische Module zur Energieeffizienz im Automobil beitragen können, haben verschiedene internationale Konsortien gezeigt. Bis zu 600 Watt elektrische Leistung konnten Prototypen bereits aus der Abwärme am Abgasstrang eines Pkw erzeugen. »In Deutschland waren zu Jahresbeginn fast 60 Millionen Fahrzeuge registriert. Wären diese alle mit den kleinen thermoelektrischen Kraftwerken an der Abgasanlage ausgerüstet, ließe sich theoretisch schon heute Energie in einer Größenordnung einsparen, wie sie ein Kernkraftwerk jährlich produziert. Das entspricht in etwa einer Ersparnis von mehreren Millionen Tonnen CO2«, so Bartholomé.

Externer Link: www.fraunhofer.de

Stahlfaserbeton schnell kontrollieren

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 04.11.2013

Stahlfaserbeton ist praktisch und rasch einsatzbereit. Doch die Qualität des Werkstoffs lässt sich nur schwer überprüfen – daher lehnen viele Bauunternehmer ihn ab. Mit einem neuen mathematischen Verfahren lässt sich das jetzt schnell kontrollieren.

Man überspannt Täler und Flüsse mit ihm, man baut Wände daraus und kleidet damit Tunnels aus: Beton ist das am häufigsten verwendete Baumaterial. Meist kommt Stahlbeton zum Einsatz. Das Prinzip kennt jeder, der schon einmal eine Baustelle näher betrachtet hat: Aus langen Stahlstangen biegen die Arbeiter ein dichtes Stahlgerüst, die Bewehrung, die dann mit Beton aufgefüllt wird. Doch Stahlbetonbau ist zeitraubend. Es können Tage und Wochen vergehen, bis die Bewehrung großer Gebäude geknüpft ist und endlich mit Beton vergossen werden kann.

Schneller geht es mit Stahlfaserbeton. Man mischt dem flüssigen Beton einfach kiefernnadellange Stahlfasern bei. Im ausgehärteten Beton übernimmt dieses Fasergewebe dann die Aufgabe der klassischen Bewehrung. Es schluckt die Kräfte und gleicht Risse aus. Trotzdem hat sich der Stahlfaserbeton bislang nicht durchgesetzt. Der Grund: Seine Qualität lässt sich nur schwer ermitteln. Bisher gibt es keine Methode, mit der man einfach und zuverlässig untersuchen kann, wie gut sich die Fasern im Beton verteilt haben. Davon aber hängt die Tragfähigkeit des Werkstoffs entscheidend ab. Sind die Fasern verklumpt oder einzelne Bereiche einer Betonplatte völlig frei von Fasern, kann das Material Belastungen weniger gut widerstehen. Vielen Bauunternehmen ist der Einsatz von Stahlfaserbeton deshalb zu unsicher.

Software bewertet das Fasersystem

Für Durchblick im Faserbeton sorgt jetzt ein neues Analyseverfahren, das Mathematiker vom Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM in Kaiserslautern entwickelt haben: Mithilfe der Wahrscheinlichkeitsrechnung ermittelt es in wenigen Sekunden, wie die vielen Fasern in einer Betonprobe verteilt sind. Die Experten um Projektleiter Dr. Ronald Rösch nutzen dafür Röntgendaten aus einem Computertomographen (CT). »Das ist wie bei einer medizinischen Untersuchung«, sagt er, »nur, dass wir keinen Menschen, sondern eine Probe aus dem fertigen Bauteil untersuchen.«

Die Forscher ziehen dazu einen etwa zehn Zentimeter langen Bohrkern aus dem Beton. Dieser wird mit Röntgenstrahlung abgetastet. Die Auflösung dieses industriellen CT ist etwa tausendmal feiner als bei einem medizinischen Gerät. Das System macht mikro-meterfeine Strukturen sichtbar. Es spuckt einen hochaufgelösten dreidimensionalen Datensatz der Betonprobe mit etwa acht Milliarden Bildpunkten aus; eine gewaltige Datei. Diese Bilddaten analysieren Rösch und seine Mitarbeiter mit ihrer Software. Zunächst prüft diese anhand der Kontrastunterschiede, zu welcher Struktur jeder einzelne Bildpunkt gehört, zum Beton, zu einem Steinchen, einer eingeschlossenen Luftblase oder zu einer Stahlfaser. So werden im Bild nach und nach sämtliche Fasern sichtbar.

»Dieses Bild allein hilft aber wenig«, erklärt Rösch, »weil das Gewirr so dicht ist, dass man mit dem bloßen Auge kaum einzelne Fasern erkennen kann.« Die Kaiserslauterer Forscher haben daher eine Software entwickelt, die Ordnung ins Chaos bringt: Sie bewertet nicht jede einzelne Faser, sondern gleich das ganze System. Das Programm entscheidet einfach, ob ein Pixel Bestandteil einer Faser ist und welche Richtung sie hat.

Für jeden Bildpunkt berechnet das Programm, wie die benachbarten Stellen definiert sind. Handelt es sich um eine Faser oder nicht? Interessant sind vor allem die Punkte, an denen sich viele Fasern berühren oder kreuzen. Denn zunächst ist nicht klar, zu welcher Faser jedes einzelne benachbarte Pixel eigentlich gehört; zur Faser, die von links oben auf die Kreuzung trifft oder zur der, die direkt von oben kommt. Deshalb nutzen die Wissenschaftler hier die Wahrscheinlichkeitsrechnung. Sie gewichtet die Lage jedes Punkts und ordnet diesen logisch sinnvoll einer Faser zu. Die Software verrät nicht nur, wie hoch der Faseranteil in der Probe ist, sondern auch, wie die Fasern ausgerichtet sind. »Das ist vor allem wichtig, wenn die Betonbauteile Kräfte aus einer bestimmten Richtung aufnehmen müssen«, sagt Rösch, beispielsweise bei Brücken, über die Autos und Züge rauschen.

Natürlich weiß Rösch, dass sich ein Computertomograph, der derzeit noch die Größe eines Wandschranks hat, nicht direkt auf einer Baustelle einsetzen lässt. »Doch die Hürde ist überwindbar«, sagt Rösch. »Unsere Kollegen am Fraunhofer-Entwicklungszentrum Röntgentechnik EZRT in Erlangen haben schon ein Gerät von der Größe einer Bierkiste entwickelt.« Ein Prototyp für die Praxis könnte in fünf Jahren verfügbar sein, schätzt der Mathematiker.

Externer Link: www.fraunhofer.de

Durchblick in jeder Größenordnung

Presseinformation der Fraunhofer-Gesellschaft (Forschung Kompakt) vom 01.10.2013

Sie durchleuchten ganze Schiffscontainer genauso wie winzige biologische Proben: Im Entwicklungszentrum Röntgentechnik arbeiten Forscher sowohl mit dem größten als auch mit dem kleinsten Computertomographen der Welt.

Nach dem Crashtest mit 50 km/h ist von dem PKW nur noch ein Haufen Blech übrig – doch der liefert wertvolle Informationen darüber, wie sich die Fahrzeugsicherheit verbessern lässt. Voraussetzung dafür: Die Ingenieure müssen ins Innere des Fahrzeugs hineinsehen können, um zu analysieren, wie einzelne Bauteile auf die Belastung reagiert haben. Klassische zweidimensionale Röntgenbilder, wie sie in der konventionellen Werkstoffprüfung eingesetzt werden, sind hierfür oft zu ungenau: Sie zeigen lediglich eine Art »Schattenwurf« aus einer einzigen Position. Wesentlich mehr Möglichkeiten bietet die industrielle Computertomographie (CT): Bauteile können damit vollständig dreidimensional erfasst, berührungslos und zerstörungsfrei vermessen und inspiziert werden. Doch wie bekommt man ein ganzes Auto in einen Computertomographen?

Überdimensionaler Computertomograph durchleuchtet Schiffscontainer

Die Antwort liefern Forscher des Fraunhofer-Instituts für Integrierte Schaltungen IIS: Sie haben am Standort Fürth einen überdimensionalen Computertomographen entwickelt, der künftig Autos, Flugzeugflügel und sogar ganze Schiffscontainer durchleuchten soll. Das Untersuchungsobjekt wird dazu auf einen riesigen Drehtisch gehievt. Während dieser langsam rotiert, fahren eine Röntgenquelle auf der einen und ein vier Meter langer Röntgendetektor auf der anderen Seite neben dem Objekt auf und ab. Aus den so entstandenen Aufnahmen lässt sich am Computer ein dreidimensionales Bild errechnen. »Das ist in dieser Größenordnung eine bislang einzigartige Möglichkeit zur zerstörungsfreien Materialprüfung«, sagt Prof. Randolf Hanke, der das Entwicklungszentrum Röntgentechnik EZRT leitet. Dank der heute schon extrem hohen Auflösung von 0,8 Millimetern an metergroßen Objekten sind auf den Aufnahmen selbst winzige Details gestochen scharf zu erkennen – kurzfristig streben die Forscher eine Auflösung von 0,4 Millimetern an. Die Technologie ermöglicht es beispielsweise, Prototypen neuer Autos mit den Konstruktionsdaten abzugleichen oder Materialfehler wie winzige Risse in Automobil- oder auch Flugzeugbauteilen zu erkennen. Sicherheitskräfte könnten mithilfe des XXL-Tomographen Sprengstoff oder andere unerlaubte Gegenstände in Frachtcontainern aufspüren, ohne sie öffnen zu müssen.

CT-Gerät für den Nanobereich

Das Gegenstück zu dieser Riesenröhre kann Einrichtungsleiter Hanke bequem mit sich herumtragen: Das Gerät ist nicht größer als eine Mikrowelle und durchleuchtet mit einer Auflösung von 0,02 Millimetern kleinste Kunststoffteile bis hin zu biologischen Proben. Es ist derzeit der kleinste Computertomograph der Welt – doch Hanke und sein Team arbeiten bereits an der nächsten Innovation: Einem Gerät, das bis in den Nanobereich, also unter 100 Nanometer, vordringen soll. Diese Vision treibt Hanke schon seit 15 Jahren um, nun ist ihm gemeinsam mit Studenten und Doktoranden seines Lehrstuhls für Röntgenmikroskopie an der Universität Würzburg ein entscheidender Durchbruch gelungen. »Wir haben jetzt ein Elektronenmikroskop zu einer speziellen Nanoröntgenquelle weiterentwickelt«, erläutert der Forscher. Der Clou: Die elektrischen Ladungsträger, die das Röntgenlicht erzeugen, werden seitlich auf eine dünne Nadel geleitet. Dadurch tritt aus der Nadelspitze Röntgenlicht aus und liefert mit 50 Nanometern Durchmesser einen exakten Brennfleck. Damit lassen sich Objekte in Nanogrößenordnung scharf beleuchten. Biologen könnten mithilfe dieser Technologie etwa den Wassertransport in Holzfasern analysieren.

Im Juli wurde in Fürth-Atzenhof das neue EZRT-Gebäude eingeweiht. »Hier bündeln wir zukünftig im Bereich der industriellen Computertomographie die Kompetenzen für Aufgabenstellungen aus unterschiedlichsten Bereichen und in jeder Größenordnung. Mit unserem Equipment sowie unserem verfahrenstechnischen Know-how können wir Kunstgegenstände aus dem Altertum genauso durchleuchten wie ganze Windräder«, freut sich Prof. Hanke.

Externer Link: www.fraunhofer.de