Abwasser als Pflanzendünger

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.08.2012

Klärschlamm, Abwässer und Gülle sind wertvolle Quellen, aus denen sich Dünger für die Nahrungsmittelproduktion gewinnen lässt. Forscher haben jetzt ein chemikalienfreies und umweltschonendes Verfahren entwickelt, mit dem rückgewonnene Salze direkt zu Dünger umgesetzt werden.

Phosphor ist nicht nur für Pflanzen, sondern für alle Lebewesen wichtig. Doch das für die Nahrungsmittelproduktion unverzichtbare Element wird knapper. Ein Indiz dafür sind die stetig steigenden Preise für phosphathaltige Düngemittel. Höchste Zeit also, nach Alternativen zu suchen. Keine leichte Aufgabe – denn Phosphor lässt sich nicht durch einen anderen Stoff ersetzen. Eine Lösung haben Forscher vom FraunhoferInstitut für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart gefunden. Sie nutzen hierzulande vorhandene Ressourcen – und die finden sich ausgerechnet in Abwässern von Klärwerken oder Gärresten von Biogasanlagen. Die vermeintliche Dreckbrühe lässt sich hervorragend wiederverwerten. Dafür haben die Wissenschaftler um Jennifer Bilbao, die am IGB die Gruppe für Nährstoffmanagement leitet, ein neues Verfahren entwickelt. »Dabei werden Nährstoffe so gefällt, dass sie direkt als Dünger zur Verfügung stehen«, sagt Jennifer Bilbao.

Mobile Pilotanlage für Tests

Kern der patentierten Methode, die die Experten derzeit in einer mobilen Pilotanlage erproben, ist ein elektrochemischer Prozess, mit dem per Elektrolyse Stickstoff und Phosphor als Magnesium-Ammonium-Phosphat – auch als Struvit bekannt – ausgefällt werden. Das Salz Struvit wird aus dem Prozesswasser in Form kleiner Kristalle ausgeschieden, womit es sich direkt als Pflanzendünger einsetzen lässt. Der Clou der Methode: Im Gegensatz zu herkömmlichen Verfahren müssen die Forscher keine Salze oder Laugen zugeben. Bilbao: »Es handelt sich um einen komplett chemikalienfreien Prozess.«

In der mannshohen Elektrolysezelle der Versuchsanlage, durch die das Abwasser geleitet wird, befindet sich eine Opferanode aus Magnesium und eine metallische Kathode. Im Verlauf der Elektrolyse wird am negativ geladenen Pol, der Kathode, das Wasser aufgespalten. Dabei werden unter anderem Hydroxidionen gebildet. Am positiv geladenen Pol, der Anode, findet eine Oxidation statt: Magnesiumionen wandern durch das Wasser und reagieren dabei mit dem in der Lösung enthaltenen Phosphat und Ammonium zu Struvit.

Stromsparender, chemikalienfreier Prozess

Da die Magnesiumionen im Prozesswasser der Anlage besonders reaktionsfreudig sind, wird für dieses Verfahren sehr wenig Energie benötigt. Deshalb wird weniger Strom für die elektrochemische Aufspaltung gebraucht als bei üblichen Methoden. Bei allen bisher untersuchten Abwässern lag die erforderliche Leistung unter 70 Wattstunden pro Kubikmeter – ein äußerst niedriger Wert. Langzeitversuche zeigten zudem, dass die Phosphor-Konzentration im Reaktor der Pilotanlage um 99,7 Prozent auf unter 2 Milligramm pro Liter sinkt. Damit unterschritten die Forscher vom IGB den Grenzwert der Abwasserverordnung (AbwV) für Kläranlagen bis 100 000 Einwohner. »Kläranlagenbetreiber wären somit in der Lage, die Abwasserreinigung mit der lukrativen Düngemittelproduktion zu verbinden«, benennt Bilbao den entscheidenden Vorteil. Das Produkt Struvit ist für die Landwirtschaft attraktiv, da es als hochwertiges Düngemittel gilt, das Nährstoffe langsam freisetzt. Wachstumsexperimente der Fraunhofer-Forscher bestätigten die Wirksamkeit: Ertrag und Nährstoffaufnahme der Pflanzen waren mit Struvit bis zu viermal höher als mit kommerziellen Mineraldüngern.

In den nächsten Monaten wollen die Experten die mobile Pilotanlage in verschiedenen Kläranlagen testen, bevor sie sie gemeinsam mit Industriepartnern Anfang nächsten Jahres auf den Markt bringen. »Unser Verfahren eignet sich übrigens auch für die Lebensmittelindustrie und die landwirtschaftliche Biogasproduktion«, so Bilbao. Einzige Bedingung: Deren Prozesswässer müssen reich an Ammonium und Phosphat sein.

Externer Link: www.fraunhofer.de

Segeln mit Nerven aus Glas

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 02.07.2012

Im Rennsport können winzige Details über Sieg oder Niederlage entscheiden. Die Hersteller von Rennyachten suchen daher ständig nach neuen Technologien, um Boote und Besegelung zu optimieren. Eine ausgetüftelte Sensorik hilft jetzt, Grenzen zu überschreiten.

Die Sehnsucht nach immer neuen Rekorden hat den Bootsbau zu einem Hightech-Geschäft gemacht. Die Rennyachten, die heute bei den internationalen Regatten an den Start gehen, sind auf Höchstgeschwindigkeit getrimmte Sportgeräte. Seit Jahrzehnten werden die Boote optimiert, doch unlängst schien die Grenze erreicht: Bei der fünften Etappe des »Volvo Ocean Race« im Frühjahr 2012 von Neuseeland nach Brasilien erreichte nur eines von sechs Teams ohne technische Probleme das Ziel – alle anderen mussten unterbrechen oder aufgeben. Die Regatta eskalierte zur Materialschlacht. Dabei sind die Yachten die besten der Welt: »Diese Boote sind sehr gut gebaut«, beteuert Ian Walker, Skipper des Teams Abu Dhabi Ocean Racing. »Ich glaube nur, wir nehmen sie zu hart her und sie sind so steif und so leicht, dass ich glaube, sie müssen zwangsläufig brechen.« Wie also baut man Yachten, die schneller sind als der Wind und doch so stabil, dass sie den harten Bedingungen auf hoher See trotzen können?

Mit Sensorik auf Kurs gebracht

Ein neues Sensorsystem vom Fraunhofer-Institut für Nachrichtentechnik HHI kann helfen, Schwachstellen rechtzeitig aufzuspüren und Segler warnen, wenn die Belastungsgrenze erreicht ist. Prof. Dr. Wolfgang Schade und sein Team in der Projektgruppe Faseroptische Sensorsysteme in Goslar haben Nerven aus Glas entwickelt, mit denen sich die Kräfte messen lassen, die auf Rümpfe, Masten und Segel wirken. Eigentlich wurde die Technik für das Monitoring von Windkraftanlagen erarbeitet. Dort sind Rotorblätter und Kabel hohen Belastungen ausgesetzt. »Mit faseroptischen Sensoren können wir Delaminationen oder auch Risse in einem frühen Stadium detektieren – lange bevor Brüche oder Ausfälle auftreten«, erklärt der Physiker. »Man benötigt nur ein Glasfaserkabel. In dieses lassen sich Dutzende von Sensoren integrieren.« Das Herzstück der neuen Technik sind »Faser-Bragg-Gitter«, mikroskopische Strukturen, die in definierten Abständen in die Glasfaser integriert sind, und die den Brechungsindex verändern. Licht, das durch die Glasfaser rast, wird von diesen Gitterpunkten reflektiert. Die Wellenlänge des reflektierten Lichts ist abhängig vom Abstand der mikroskopischen Strukturen: Jede Dehnung oder Stauchung der Glasfaser verändert die Wellenlänge. Um das Reflexionsspektrum schnell und kostengünstig messen zu können, haben die Forscher ein Mini-Spektrometer entwickelt. Es besteht aus einem Chip, der Licht in verschiedene Frequenzen aufspaltet. Durch Analyse des Frequenzspektrums können die Experten Rückschlüsse ziehen auf die Kräfte, denen die Glasfaser gerade ausgesetzt ist.

Die Idee, die Messtechnik auch auf Segelbooten einzusetzen, kam Schade während eines Törns im Herbst 2010: »Beim Segeln geht es darum, den Wind optimal zu nutzen und möglichst schnell zu sein, gleichzeitig muss man aber verhindern, dass die Belastungsgrenze überschritten wird. Faseroptische Sensoren können dabei helfen, die Kräfte, denen Rumpf, Mast und Segel ausgesetzt sind, während der Fahrt in Echtzeit zu bestimmen.« Dass sich die Sensoren eignen, um den Segelsport voranzutreiben, konnte Schade wenige Monate später beweisen. Auf der Düsseldorfer Bootsmesse lernte er Jens Nickel kennen, den Chef der Segelwerkstatt Stade. In Nickels Werkstatt wurden in Zusammenarbeit mit dem Tuchhersteller Dimension Polyant ein Großsegel und eine Genua mit einem Spinnennetz aus Glasfasern, das 45 Messpunkte enthielt, versehen und beim anschließenden Probetörn vermessen. »Es stellte sich heraus, dass die Zugspannung im Segelkopf, ganz oben im Segel, höher war als bisher angenommen«, so Nickel. »Die Belastung im Schothorn, dem unteren, hinteren Teil des Segels und im gesamten Achterlieksbereich, der das hintere Ende eines Segels bildet, waren hingegen geringer als gedacht.« Die Segelwerkstatt Stade nutzte die Daten sofort, um die Verarbeitung ihrer Segel zu optimieren. Die stark belasteten Bereiche wurden verstärkt, in den weniger beanspruchten Zonen setzt der Segelmacher jetzt leichteres Material ein.

Als nächstes wollen Schade und sein Team die Messtechnik fit machen für den Einsatz im Wettkampf. »Wir haben jetzt Segellatten mit faseroptischen Sensoren ausgerüstet, die Sportlern künftig dabei helfen können, den optimalen Trimm zu finden. Das ist die Segelstellung, mit der das Boot bei bestimmten Wind- und Wellenverhältnissen am schnellsten ist«, so Schade. Die faseroptischen Sensoren und die angeschlossene, zigarettenschachtelgroße Messtechnik, die LED-Lichtquelle, Spektrometer und Elektronik enthält, liefern erstmals reproduzierbare Werte, die anzeigen, in welchen Bereichen zu viel oder zu wenig Druck herrscht oder wie sich die Belastungszonen verschieben, wenn beispielsweise die Schoten dichter geholt werden. Die Ergebnisse der Sensortechnik sollen an Bord jederzeit und überall abrufbar sein – eine App, die das Abrufen der Echtzeitdaten via Smartphone erlaubt, hat Schades Team bereits entwickelt. Das neue Messsystem kommt unter dem Markenamen NextSailSystem demnächst auf den Markt.

Externer Link: www.fraunhofer.de

Züge im Leichtbauformat

Mediendienst der Fraunhofer-Gesellschaft vom 01.03.2012

Je weniger Züge wiegen, desto sparsamer fahren sie. Ein neues Material hält nun auch extremen Belastungen stand. Es eignet sich etwa für die Dieselmotoreinhausungen von Zügen – dieses Bauteil wird dadurch 30 Prozent günstiger und über 35 Prozent leichter als das Gegenstück aus Stahl und Aluminium.

Autos und Züge sollen energiesparender werden – die Hersteller versuchen daher, die gängigen Materialien durch leichtere zu ersetzen. Eine Hürde dabei: Die leichten Materialien sind nicht genauso belastbar wie Stahl und Aluminium, die Werkstoffe können nicht eins zu eins ersetzt werden. Vielmehr müssen die Hersteller abwägen, welche Bauteile abspecken dürfen und wie sich diese in das Gesamtsystem integrieren lassen.

Forscher des Fraunhofer-Instituts für Chemische Technologie ICT in Pfinztal haben nun ein Polyurethan-basierendes Sandwichmaterial entwickelt, das extrem belastbar ist – gemeinsam mit Bombardier GmbH, Krauss-Maffei Kunststofftechnik GmbH, Bayer MaterialScience AG, der DECS GmbH, dem DLR-Institut für Fahrzeugkonzepte, der Universität Stuttgart und dem Karlsruher Institut für Technologie. »Als Demonstrator haben wir daraus zunächst ein Bauteil hergestellt, das stark beansprucht wird und viele Anforderungen erfüllen muss: die Dieselmotoreinhausung von Zügen«, sagt Jan Kuppinger, Wissenschaftler am ICT. Diese Einhausung befindet sich unter der Fahrgastzelle, also zwischen Abteil und Schienen. Hier schützt sie den Motor vor Steinschlägen und die Umgebung vor eventuell ausgelaufenem Öl. Im Brandfall verhindert sie, dass sich die Flammen ausbreiten und erfüllt somit die geforderten Flamm- und Brandschutznormen für Schienenfahrzeuge. »Mit dem neuen Material können wir das Gewicht der Bauteile um mehr als 35 Prozent reduzieren, und die Kosten um 30 Prozent«, sagt Kuppinger.

Die Stabilität des Bauteils erreichen die Forscher durch einen Sandwich-Aufbau: Außen befindet sich jeweils eine glasfaserverstärkte Polyurethanschicht, innen ein Kern aus Pappwaben. Polyurethan ist ein Massenkunststoff aus zwei Komponenten, den man an verschiedene Anforderungen anpassen kann, er wird daher auch als „Werkstoff nach Maß“ bezeichnet. Aufgeschäumt ist er weich und dient beispielsweise als Material für Matratzen, in seiner kompakten Form dagegen ist er fest und hart. Die Forscher haben das Polyurethan durch verschiedene Zusätze zunächst so verändert, dass es die Brandschutznormen erfüllt. In einem zweiten Schritt haben die Partner das hierfür gängige Fertigungsverfahren, das Fasersprühen, optimiert: Sie haben einen Mischkopf entwickelt, mit dem sie auch komplexe Strukturen in der benötigten Größe herstellen können. Die hergestellte Dieselmotoreinhausung ist etwa 4,5 Meter lang und über zwei Meter breit. »Erstmals ist es gelungen, über dieses Verfahren ein so großes und komplexes Bauteil herzustellen, das den strukturellen Anforderungen genügt«, erläutert Kuppinger. Ein Problem beim Fasersprühen lag bisher darin, dass die Dicke der entstandenen Polyurethan-Sandwichdeckschichten nicht genau bestimmt werden konnte. Dies ist den Forschern nun gelungen: Sie haben die hergestellten Schichten mit einem Computer-Tomographen untersucht und über eine angepasste Auswerteroutine die genaue Schichtdicke ermittelt. Diese Informationen helfen dabei, die Festigkeit des Bauteils zu simulieren – und somit zu wissen, welche Belastung es aushält.

Einen Demonstrator der Dieselmotoreinhausung haben die Wissenschaftler in dem vom Bundesministerium für Bildung und Forschung BMBF geförderten Projekt PURtrain bereits hergestellt. Er hat den ersten Festigkeitstest mit Bravour bestanden: Dabei haben die Wissenschaftler in einem Versuchsstand Kräfte auf verschiedene Stellen des Demonstrators ausgeübt und gemessen, wie stark er sich verformt. In einem weiteren Schritt wollen die Forscher das Bauteil in einem realen Feldversuch testen. Verläuft er erfolgreich, dann können aus dem Material auch Dachsegmente, Seitenklappen und Windabweiser für die Automobil- und Nutzfahrzeugindustrie gefertigt und der Herstellungsprozess auf mittlere Stückzahlen zwischen 250 und 30 000 übertragen werden.

Externer Link: www.fraunhofer.de

Schwärmen und transportieren

Mediendienst der Fraunhofer-Gesellschaft vom 01.03.2012

Eine einzelne Ameise ist nicht besonders schlau. Doch in der Gemeinschaft können die Insekten komplizierte Aufgaben lösen. Diese Schwarmintelligenz wollen Forscher jetzt auch für die Logistik nutzen. Viele autonome Transport-Shuttles sollen eine Alternative zu traditioneller Fördertechnik bilden.

Mit einem leisen Surren setzt sich das orangefarbene Gefährt in Bewegung. Gleich darauf starten die nächsten Shuttles, und schon bald sind Dutzende Mini-Transporter in der Halle unterwegs. Wie von Geisterhand gelenkt steuern sie auf das Hochregallager zu oder drehen sich um die eigene Achse. Die Multishuttle Moves®, so der Name der fahrerlosen Transportfahrzeuge, führen jedoch kein Roboter-Ballett auf. Sie sind im Dienst der Wissenschaft unterwegs. Am Fraunhofer-Institut für Materialfluss und Logistik IML in Dortmund arbeiten Forscher daran, mit Schwarmintelligenz die logistischen Material- und Warenflüsse im Lager zu verbessern. In einer 1000 Quadratmeter großen Forschungshalle haben die Wissenschaftler ein kleines Distributionslager nachgebildet, mit einem Regallager für 600 Kleinteileladungsträger und acht Kommissionier-Stationen. Herzstück der Versuchsanlage ist ein Schwarm von 50 autonomen Fahrzeugen. »Die Transportsysteme sollen künftig alle Aufgaben von der Auslagerung im Regal bis zur Anlieferung an einer Kommissionier-Station selbstgesteuert übernehmen und damit eine Alternative zu herkömmlichen Fördertechniklösungen bieten«, erläutert Prof. Dr. Michael ten Hompel, Geschäftsführender Institutsleiter des IML.

Aber woher wissen die Gefährte, was sie wohin transportieren sollen und welches der 50 Shuttles den jeweiligen Auftrag übernimmt? »Die fahrerlosen Transportfahrzeuge werden dezentral gesteuert. Die „Intelligenz“ ist in den Transportern selbst«, verrät Dipl.-Ing. Thomas Albrecht, Leiter der Abteilung Autonome Transportsysteme, den Lösungsansatz der Forscher. »Wir setzen auf agentenbasierte Software und nutzen Ameisenalgorithmen nach Marco Dorigo. Das sind Verfahren der kombinatorischen Optimierung, die auf dem modellhaften Verhalten von realen Ameisen bei der Futtersuche basieren.« Kommt ein Auftrag herein, erfahren die Shuttles dies über einen Softwareagenten. Dann tauschen sie sich über WLAN aus, wer die Fuhre übernehmen kann. Das am nächsten befindliche freie Transportsystem erhält den Zuschlag.

Auf der Fläche bewegen sich die Shuttles völlig frei – ohne Leitlinien. Möglich macht das die integrierte Lokalisations- und Navigationstechnik. Die Fahrzeuge verfügen über ein neu entwickeltes, hybrides Sensorik-Konzept mit Funkortung, Abstands- und Beschleunigungssensoren sowie Laserscannern. So können die Fahrzeuge die jeweils kürzeste Route zum Ziel berechnen. Die Sensoren helfen auch, Kollisionen zu meiden.

Die Fahrzeuge basieren auf den Komponenten des regalgebundenen Multishuttle, das schon seit einigen Jahren erfolgreich im Einsatz ist. Gemeinsam mit ihren Kollegen von Dematic haben Forscher des IML das System weiterentwickelt. Die Besonderheit des Multishuttle Move®: Die Transporter können sich sowohl im Regallager als auch in der Halle bewegen. Die Shuttles besitzen dafür ein zusätzliches Flur-Fahrwerk. Doch welche Vorteile bieten die autonomen Transporter gegenüber der herkömmlichen Stetigfördertechnik mit Rollenbahnen? »Das System ist deutlich flexibler und skalierbar«, hebt Albrecht hervor. Es kann je nach Bedarf um einige Fahrzeuge erweitert oder reduziert werden. So lässt sich die Systemleistung an saisonale und Tagesschwankungen anpassen. Weiterer Vorteil: Die Transportwege verkürzen sich deutlich. In herkömmlichen Lagern ist der Raum zwischen dem Hochregallager und den Kommissionier-Stationen mit Fördertechnik verbaut. Die Pakete legen etwa eine zwei- bis dreifach längere Strecke zurück als auf dem direkten Weg. »Darüber hinaus erübrigen sich Regalbediengeräte und Stetigfördertechnik«, führt Albrecht weiter aus. Die Forscher untersuchen nun, wie die autonomen Transporter die Intralogistik verbessern können. »Wir wollen den Nachweis erbringen, dass die Zellulare Fördertechnik eine sowohl technisch als auch ökonomisch sinnvolle Alternative zur klassischen Fördertechnik und Regalbediengeräten sein kann«, sagt Institutsleiter ten Hompel. Gelingt dies, könnten die autonomen Fahrzeuge schon bald in Lagerhallen ihren Dienst tun.

Externer Link: www.fraunhofer.de

Kraftstoff aus Marktabfällen

Mediendienst der Fraunhofer-Gesellschaft vom 01.02.2012

Matschige Tomaten, braune Bananen und überreife Kirschen – die Abfälle von Großmärkten sind bisher bestenfalls auf dem Kompost gelandet. Künftig sollen sie besser genutzt werden: In einer neu entwickelten Anlage lassen sie sich vergären. Dabei entsteht Methan, das als Kraftstoff Autos antreiben kann.

Lässt der Autofahrer am Zapfhahn Erdgas in den Tank strömen statt Benzin oder Diesel, fährt er günstiger und umweltbewusster: Der Treibstoff schont das Portemonnaie, die Auspuffgase enthalten weniger Kohlenstoffdioxid und kaum Rußpartikel. Zunehmend rüsten Autofahrer daher ihre Otto-Motoren für den Erdgas-Betrieb um. Erdgas gehört jedoch ebenso wie Erdöl zu den fossilen Brennstoffen, die Reserven sind begrenzt. Forscher des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart haben nun eine Alternative entwickelt: Sie gewinnen den Kraftstoff nicht aus den kostbaren Rohstoffreserven der Erde, sondern aus Obst- und Gemüse-Abfällen von Großmärkten, Mensen und Kantinen. Werden diese Lebensmittelreste vergoren, entsteht Methan, auch Biogas genannt. In Hochdruckflaschen gepresst kann es als Treibstoff dienen.

Eine erste Pilotanlage neben dem Stuttgarter Großmarkt nehmen die Forscher Anfang dieses Jahres in Betrieb: In einem zweistufigen Vergärungsprozess produzieren verschiedene Mikroorganismen aus den Abfällen in wenigen Tagen das gewünschte Methan. »Die Abfälle enthalten viel Wasser und wenig verholzte Teile, sie sind daher ideal für das Vergären«, sagt Dr.-Ing. Ursula Schließmann, Abteilungsleiterin am IGB. Eine Herausforderung stellen die Abfälle trotzdem dar: Sie setzen sich jeden Tag anders zusammen, mal sind viele Zitrusfrüchte dabei, mal eher Kirschen, Pflaumen und Salatköpfe. Gerade die Zitrusfrüchte enthalten jedoch viel Säure – die Forscher müssen den pH-Wert daher anpassen. »Wir lagern den Ausschuss in verschiedenen Vorratsbehältern. Hier werden automatisch einige Parameter des Abfalls bestimmt, etwa der pH-Wert. Das dazu entwickelte Managementsystem errechnet, wie viel Liter des Abfalls aus welchen Behältern gemischt und zu den Mikroorganismen gegeben werden«, erläutert die Expertin. Denn das Gleichgewicht muss erhalten bleiben – die verschiedenen Mikroorganismen brauchen zu jeder Zeit gleiche Umgebungsbedingungen, also das gleiche Milieu.

Ein weiterer Vorteil der Anlage: Es wird alles verwertet, vom Biogas über das flüssige Filtrat bis zum nicht weiter vergärbaren schlammartigen Rest. Dabei hilft ein zweites Teilprojekt in Reutlingen, eine Algenkultur. Bekommen die Algen genügend Nährmedium, Kohlenstoffdioxid und Sonnenlicht, produzieren sie in ihren Zellen Öl, das Dieselmotoren antreiben kann. Als Nährmedium für die Algen dient das Filtratwasser aus der Biogasanlage, es enthält genügend Stickstoff und Phosphor. Das Kohlenstoffdioxid, das die Algen zum Wachsen brauchen, erhalten die Forscher ebenfalls aus dem Biogasreaktor in Stuttgart: Denn das entstehende Biogas setzt sich zu etwa zwei Dritteln aus dem gewünschten Methan, zu etwa 30 Prozent aus Kohlenstoffdioxid zusammen. Alles, was nun noch übrig ist von den Marktabfällen, ist der schlammartige Gärrest. Er wird von den Kollegen aus dem Schweizer Paul Scherrer-Institut und dem Karlsruher Institut für Technologie ebenfalls in Methan umgewandelt.

Das Biogas, das in der Anlage am Großmarkt entsteht, bereiten die Mitarbeiter der Energie Baden-Württemberg EnBW mit Membranen auf, die Daimler AG stellt einige Versuchsfahrzeuge mit Erdgasantrieb bereit. Insgesamt fünf Jahre läuft das Projekt mit dem Namen EtaMax, das mit sechs Millionen Euro vom Bundesministerium für Bildung und Forschung BMBF gefördert wird. Wenn alle Komponenten einwandfrei zusammenspielen, könnten ähnliche Anlagen künftig überall stehen, wo viele organische Abfälle anfallen. Weitere Projektpartner sind das Fraunhofer-Institut für Verfahrenstechnik und Verpackung IVV in Freising, FairEnergie GmbH, Netzsch Mohnopumpen GmbH, Stulz Wasser- und Prozesstechnik GmbH, Subitec GmbH und die Stadt Stuttgart.

Externer Link: www.fraunhofer.de