Elektronische Suchhilfe für Eltern

Mediendienst der Fraunhofer-Gesellschaft vom Oktober 2010

Ein kurzer Anruf und schon ist geklärt, wo sich das Kind gerade aufhält: Der »Kidfinder« gibt Auskunft via SMS. Integrierbar in eine Spielekonsole kombiniert das Ortungsgerät GPS-Peilung mit GSM-Tracking. Im günstigsten Fall ermittelt es den Standort der gesuchten Person auf wenige Meter genau.

Wo bleibt Tobias? Der Achtjährige sollte seit einer halben Stunde zu Hause sein. Seine Mutter greift zum Telefon, ruft den »Kidfinder« ihres Sohnes an, übermittelt ihr Passwort und bekommt sofort eine SMS mit Tobias‘ Positionsdaten. An den Koordinaten erkennt sie: Ihr Jüngster hat einen kleinen Umweg zum Bach gemacht und beim Spielen am Wasser die Zeit vergessen. Anders als reine Handy-Ortungssysteme nutzt der »Kidfinder« sowohl das GSM-Netz (Global System for Mobile Communications) für den Mobilfunk als auch das Global Positioning System GPS zur Positionsbestimmung. »Diese Kombination aus GSM und GPS ermöglicht eine zuverlässige Ortung, egal, ob sich die gesuchte Person im Freien oder innerhalb eines Gebäudes aufhält«, erklärt Carsten Hoherz vom Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM in Berlin. Ist das Kind draußen unterwegs, wird seine Position via GPS mit einer Genauigkeit von bis zu fünf Metern bestimmt. Die GPS-Peilung über mehrere Satelliten arbeitet hier wesentlich genauer als die Ortung via GSM. Diese verrät lediglich, in welcher Mobilfunk-Zelle sich ein Nutzer gerade aufhält. Andererseits ist ein Mobilfunk-Empfang meist auch im Inneren von Gebäuden möglich, während GPS-Signale generell nicht durch Wände und Dächer dringen. Bereits in Häuserschluchten verringert sich die Ortungsgenauigkeit von GPS durch Signalreflexionen erheblich.

Ursprünglich hatten die Wissenschaftler des IZM ihr »Hosentaschen-GSM/GPS-System« entwickelt, um Fracht oder Fahrzeuge zu orten. Für solche Anwendungen enthalten die Geräte zwar dieselbe Technik, sind jedoch etwas größer und schwerer. Entsprechend bieten sie mehr Raum für leistungsstärkere Antennen und Akkus. Beim »Kidfinder« waren die Entwickler dagegen Beschränkungen unterworfen. Schließlich sollte das Gerät den Kindern nicht zur Last fallen. Sie sollten es vielmehr gerne und freiwillig bei sich tragen. Aus diesen Überlegungen entstand die Idee, das Ortungsgerät mit einer tragbaren Spielkonsole zu verbinden. »So etwas nehmen Kinder von sich aus lieber mit als ein Extragerät, das für sie keinen Nutzen hat«, erklärt Hoherz. Der »Kidfinder« ist nicht viel größer als eine aufgeklappte Streichholzschachtel und wiegt weniger als 80 Gramm. Das Leichtgewicht passt genau in den Reserve-Slot einer gängigen Spielkonsole. Sein Akku mit einer Kapazität von 400 mAh reicht für eine Betriebsdauer von zwei Tagen. Er lässt sich über die Konsole aufladen. Das Ortungsmodul bietet die Option, den Funktionsumfang der Konsole zu erweitern, indem es Ortsinformationen für Geländespiele zur Verfügung stellt.

Der »Kidfinder« entstand in einem gemeinsamen Projekt des IZM mit dem Potsdamer Ingenieurbüro Schmidt. Das Ortungsgerät reagiert nicht nur auf Anfragen der Eltern, es überwacht auch selbstständig eine antrainierte Zone – beispielsweise den Schulweg – und sendet eine Nachricht, wenn das Kind diese Zone verlässt. Bei Bedarf überträgt eine Visualisierungssoftware des Ingenieurbüros Schmidt die Positionsangaben des Ortungsgeräts auf Karten für PCs oder Handhelds. Während die Weiterentwicklung des »Kidfinder« zur Marktreife in Händen des Potsdamer Projektpartners liegt, arbeiten die Fraunhofer-Forscher bereits daran, das Gerät noch kleiner zu machen. Es soll in ein Armband oder einen Gürtel für Demenzkranke integriert werden, die leicht die Orientierung verlieren und dann auf Hilfe angewiesen sind.

Externer Link: www.fraunhofer.de

Auf der Spur des epigenetischen Codes

Presseinformation der Max-Planck-Gesellschaft vom 08.10.2010

Testsystem an Drosophila soll den Schlüssel liefern

Lange Zeit galt die Erbsubstanz DNA als alleiniger Informationsträger der Vererbung. Ihren Verpackungsproteinen, den Histonen, wurde nur eine strukturelle Bedeutung zugeschrieben. Durch chemische Änderungen an der DNA oder den Histonen kann jedoch zusätzliche Information gespeichert und an nachfolgende Generationen weitergegeben werden. Wissenschaftlern vom Max-Planck-Institut für biophysikalische Chemie in Göttingen ist es gelungen, ein experimentelles System zu etablieren, um die Funktion solcher chemischen Histon-Modifikationen und deren Einfluss auf den Organismus auszutesten. Chemische Änderungen an den Histonen stellen möglicherweise einen „epigenetischen Histon-Code“ dar, der den genetischen Code ergänzt und darüber entscheidet, ob die Information bestimmter DNA-Regionen genutzt oder unterdrückt wird. (EMBO reports, 1. November 2010, online vorab veröffentlicht)

Wie bekommt man einen zwei Meter langen DNA-Faden in den Zellkern? Indem man ihn zusammenknäuelt! Dabei wird die DNA um Proteine, die Histone, gewickelt und somit bis um das 50.000-fache verkürzt. Weitere Proteine lagern sich dann an, um das Chromatin und letztlich die Chromosomen zu bilden. Sie sind das Ergebnis eines genialen Verpackungstricks. Die insgesamt fünf unterschiedlichen Histontypen (H1, H2A, H2B, H3 und H4) haben aber noch weitere Aufgaben – und das macht sie so interessant: Histone können an verschiedenen Stellen mit kleinen chemischen Anhängseln wie Acetyl-, Methyl- oder Phosphatgruppen versehen werden. Diese bewirken zum Beispiel eine Öffnung des Chromatins und ermöglichen erst das Ablesen der genetischen Information. Umgekehrt können durch andere Veränderungen, wie die Bindung von Proteinen, bestimmte Bereiche des DNA-Moleküls stillgelegt werden, sodass sie nicht mehr abgelesen werden: „Gen-Silencing“ nennen die Wissenschaftler das. „Die Histon-Modifikationen greifen auf diese Weise in die Aktivitätskontrolle der Gene ein und ergänzen damit den genetischen Code“, erklärt Herbert Jäckle, Direktor am Max-Planck-Institut für biophysikalische Chemie in Göttingen.

Dieses Modifikationsmuster der Histone wird bei jeder Zellteilung an die Tochterzellen vererbt. Die Wissenschaftler gehen davon aus, dass diese epigenetische Vererbung durch einen zell- oder organspezifischen „Histon-Code“, bestimmt wird: „Er entscheidet darüber, ob die Zellmaschinerie zu den DNA-codierten Genen Zugang hat oder ob der Zugang gesperrt wird“, so Jäckle. Diesen Code würden die Wissenschaftler nur zu gerne knacken. Doch dabei gibt es ein nicht unerhebliches Hindernis: Für die Produktion der Histone sind im Genom höherer Organismen bis zu jeweils hunderte Genkopien abgelegt. Bislang schien es daher unmöglich, diese Genkopien auszuschalten und durch gentechnisch veränderte Histon-Varianten zu ersetzen. Erst das würde den Forschern ermöglichen, ein Testsystem zu etablieren: Denn wenn diesen Varianten bestimmte Andockstellen, z.B. für chemische Gruppen fehlen, ließen sich bestimmte Modifikationen an den Histonen verhindern und untersuchen, inwieweit das Fehlen dieser Modifikationen zu diagnostizierbaren Störungen im Organismus führt.

Doch nun haben die Göttinger Max-Planck-Forscher eine neue Methode entwickelt, um die Funktion aller Histon-Modifikationen zu untersuchen. Die Zellbiologen entfernten alle Histon-Gene aus dem Genom der Fruchtfliege Drosophila melanogaster, was bewirkt, dass sich Zellen nicht mehr weiterteilen. Ihr Genom wird zwar noch wie bei einer normalen Zellteilung durch DNA-Synthese verdoppelt, danach allerdings bleibt die Zelle ungeteilt im Teilungszyklus stehen und der Organismus stirbt. Mit steigender Zahl an Kopien von den jeweils vier Histon-Genen normalisiert sich die Situation zunehmend: „Fliegen mit zwölf Kopien des Histon-Gen-Clusters überleben schließlich und sind fortpflanzungsfähig“, erzählt Jäckles Mitarbeiter Alf Herzig, der das Projekt leitet.

Dass mehrere Kopien der Histon-Gene, notwendig sind, damit der Organismus überlebt, war bei mehrzelligen Organismen schon allgemein festgestellt, worden. Die Ergebnisse liefern darüber hinaus Hinweise dafür, dass die Zelle während der Teilung erkennt, dass Histone fehlen und daraufhin die Teilung der Zelle unterbleibt, obwohl die DNA – wie vor jeder Zellteilung – bereits verdoppelt wurde. „Offenbar gibt es also Kommunikationswege zwischen der Histon-Produktion und der Zellteilungsmaschinerie“, sagt Günesdogan, Doktorand in der Abteilung. Das Entscheidende aber ist: Die Forscher haben nun ein Analyse-System zur Verfügung, in das Histon-Varianten eingeschleust werden können, um schrittweise die Funktion der Histonmodifikationen, und damit letztlich den Histon-Code im Organismus experimentell zu überprüfen. Mal sehen, wann der Code geknackt wird. [CB]

Originalveröffentlichung:
Ufuk Günesdogan, Herbert Jäckle & Alf Herzig
A genetic system to assess in vivo the functions of histones and histone modifications in higher eukaryotes
EMBO reports (2010) 11, 772 – 776; online veröffentlicht am 1. Oktober 2010

Externer Link: www.mpg.de

Gene sind nicht alles

Presseinformation der Max-Planck-Gesellschaft vom 17.09.2010

Wie modifizierte Histon-Proteine Gene regulieren

Bis in die 90er-Jahre nahmen Wissenschaftler an, dass Histone, die häufigsten Proteine im Zellkern, nur für die Organisation und Stabilisierung der DNA verantwortlich sind. Doch mittlerweile ist klar, dass sie auf vielfältige Weise in die Regulation von Genen eingreifen können. Je nach Veränderung ihrer Grundstruktur aktivieren oder hemmen sie das Ablesen von Genen. Gemeinsam mit Kollegen aus Dresden und den Niederlanden haben Forscher vom Max-Planck-Institut für Biochemie (MPIB) in Martinsried bei München jetzt weitere Interaktionspartner in diesem Prozess identifiziert. Erst neueste Methoden der Massenspektrometrie machten dies möglich. (Cell, 17. September 2010)

Die menschliche Erbsubstanz (DNA) liegt nicht ungeordnet in der Zelle vor. Wie um Spulen ist das zwei Meter lange Molekül um spezielle Proteine (Histone) gewickelt, damit es in den Zellkern mit einem Durchmesser von nur 0,006 Millimetern passt. Den so verpackten Komplex aus DNA und Proteinen nennen Forscher Chromatin. Histone bilden jedoch nicht nur das Gerüst des Chromatins, sondern spielen auch eine essentielle Rolle bei der Entscheidung, welche Gene abgelesen und in Proteine übersetzt werden und welche nicht. Obwohl in einem Organismus alle Zellen die gleichen Gene besitzen, werden diese unterschiedlich abgelesen und es entstehen verschiedene Zelltypen mit jeweils anderer Proteinzusammensetzung. Die Wissenschaft, die sich mit diesem Phänomen beschäftigt, heißt Epigenetik. Fehler können zu Störungen in der Entwicklung eines Embryos oder zu Krankheiten wie Krebs führen.

Obwohl Histone eine so bedeutende Rolle in der Genregulation spielen, ist der genaue Mechanismus noch nicht im Detail verstanden. Eine wichtige Rolle spielen Veränderungen in der Struktur der Histone: Durch das Anfügen von chemischen Gruppen werden die Histone so modifiziert, dass sie von unveränderten Histonen unterscheidbar sind. Auf diese Weise können sie eine gezielte Funktion an dieser speziellen Stelle im Genom ausführen.

Eine der häufigsten Modifikationen ist die Methylierung, die dazu führt, dass weiter Proteine an die modifizierten Histone binden. So können sie das Ablesen eines Gens erleichtern oder aber verhindern. Obwohl dies schon seit langem bekannt war, war die Identität der daran beteiligten Proteine größtenteils unbekannt. Wissenschaftler um Matthias Mann, Leiter der Forschungsabteilung Proteomics und Signaltransduktion am Max-Planck-Institut für Biochemie, konnten jetzt für die fünf wichtigsten Methylierungen Proteine identifizieren, die an die veränderten Histon-Proteine binden. „Bisher war es extrem schwierig, diese Proteine zu bestimmen“, erläutert Christian Eberl, Doktorand am MPIB. „Erst die neuesten Techniken der quantitativen Massenspektrometrie, die in der Abteilung von Matthias Mann entwickelt wurden, machten dies möglich.“

Die Ergebnisse der Wissenschaftler bilden die Grundlage für weitere Experimente, die ans Licht bringen sollen, welche Rolle die an die Histone bindenden Proteine genau spielen. „Mit unseren Arbeiten haben wir einen weiteren großen Schritt gemacht, um die vielfachen Mechanismen aufzuklären, durch die Histon-Modifikationen die Genregulation beeinflussen“, so Eberl. Da auch bei einigen Krebserkrankungen Veränderungen der Histone sowie Proteine, die an Histone binden, eine Rolle spielen, könnten die Ergebnisse auf lange Sicht auch zum besseren Verständnis dieser Erkrankungen und somit zu neuen Therapieansätzen führen, hoffen die Forscher. [AK / BA]

Originalveröffentlichung:
M. Vermeulen, H. C. Eberl, F. Matarese, H. Marks, S. Denissov, F. Butter, K. K. Lee, J. V. Olsen, A. A. Hyman, H. G. Stunnenberg and M. Mann
Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers
Cell, September 17, 2010

Externer Link: www.mpg.de

Titanschäume ersetzen verletzte Knochen

Mediendienst der Fraunhofer-Gesellschaft vom September 2010

Flexibel und fest wie der menschliche Knochen und sofort belastbar: Ein neuartiges Implantat aus Titanschaum ähnelt im Aufbau der Struktur im Knocheninneren. Dies macht ihn nicht nur weniger steif als herkömmliche massive Implantate. Es fördert auch das Einwachsen in den angrenzenden Knochen.

Der Mensch wächst mit seinen Aufgaben. Dasselbe gilt für seine Knochen: Werden sie stärker belastet, entwickelt sich dichteres Gewebe. Weniger stark beanspruchte Teile des Skeletts weisen eine geringere Knochendichte auf. Der Reiz der Belastung stimuliert das Wachstum der Matrix. Diesen Effekt wollen Mediziner künftig verstärkt nutzen, um Implantate dauerhafter und stabiler mit den Knochen des Patienten zu verbinden. Dafür muss der Knochenersatz jedoch so gestaltet sein, dass er ein Einwachsen begünstigt – mit Poren und Kanälen, durch die Blutgefäße und Knochenzellen ungehindert hindurch wachsen können. Material der Wahl bei Implantaten ist Titan der Legierung Ti6Al4V. Es ist langlebig, stabil und belastbar und wird vom Körper gut vertragen. Eher problematisch ist dagegen seine Verarbeitung: So reagiert Titan unter hohen Temperaturen mit Sauerstoff, Stickstoff und Kohlenstoff. Es wird dadurch spröde und brüchig. Entsprechend begrenzt ist die Palette der Produktionsverfahren.

Komplexe Innenstrukturen lassen sich mit den etablierten Verfahren noch nicht herstellen. Deshalb werden bei Defekten lasttragender Knochen hauptsächlich massive Titan-Implantate eingesetzt. Viele verfügen zwar über strukturierte Oberfl ächen, um Knochenzellen Halt zu bieten. Doch die entstandene Verbindung bleibt fragil. Hinzu kommt, dass massive Implantate andere mechanische Eigenschaften aufweisen als das menschliche Skelett: Sie sind wesentlich steifer. »Der angrenzende Knochen wird kaum noch belastet und bildet sich im schlimmsten Fall sogar zurück. Das Implantat lockert sich und muss ausgetauscht werden«, erklärt Dr. Peter Quadbeck vom Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM in Dresden. Quadbeck koordiniert das Projekt »TiFoam«, in dem ein Titan-Werkstoff für eine neue Generation Implantate entstand. In seiner schaumartigen Struktur ähnelt der Werkstoff der Spongiosa im Knocheninneren. Der Titanschaum entsteht durch ein pulvermetallurgisches Abformverfahren, welches sich bereits zur industriellen Herstellung keramischer Filter für den Aluminium-Guss bewährt hat: Offenzellige Schäume aus Polyurethan (PU) werden mit einer Lösung aus Bindemittel und feinem Titanpulver imprägniert. Das Pulver lagert sich an den Zellstrukturen der Schäume an. PU und Binder werden verdampft. Zurück bleibt ein Abbild der Schaumstrukturen, das schließlich gesintert wird. »Die mechanischen Eigenschaften der so hergestellten Titanschäume kommen denen des menschlichen Knochens sehr nahe«, berichtet Quadbeck. »Das betrifft vor allem die Balance zwischen hoher Festigkeit und geringer Steifi gkeit.« Ersteres ist eine wichtige Voraus- setzung für die Verwendung in Knochen, die Gewicht und Bewegung standhalten müssen. Eine knochenähnliche Steifi gkeit leitet Belastungsreize weiter und fördert mit der Neubildung von Knochenzellen das Einheilen des Implantats. Dieses kann und soll deshalb sofort nach dem Einsetzen belastet werden.

Im Projekt »TiFoam« haben sich die Partner darauf konzentriert, die Tauglichkeit des Titanschaums beim Ersatz defekter Wirbelkörper nachzuweisen. Er eignet sich ebenso zur »Reparatur« anderer stark belasteter Knochen. Neben den Werkstoffwissenschaftlern der Fraunhofer-Institute IFAM und IKTS, dem Institut für Keramische Technologien und Systeme in Dresden, waren Mediziner der Uniklinik der TU Dresden sowie mehrere Unternehmen an der Entwicklung des Titanschaums beteiligt. Projektpartner InnoTERE hat bereits angekündigt, künftig aus dem »TiFoam«-Werkstoff Knochenimplantate zu entwickeln und herzustellen.

Externer Link: www.fraunhofer.de

Quantenschlüssel mit technischen Tücken

Presseinformation der Max-Planck-Gesellschaft vom 03.09.2010

Kommerzielle Anbieter der Quantenkryptografie schließen eine Sicherheitslücke

Daten absolut sicher zu verschlüsseln ist möglich – im Prinzip. Die Quantenkryptografie lässt jeden heimlichen Mithörer auffliegen, der Datenleitungen anzapft. Doch Forscher des Max-Planck-Instituts für die Physik des Lichts sowie der Universitäten Trondheim und Erlangen-Nürnberg haben nachgewiesen, dass die bereits existierenden Systeme noch eine technische Schwachstelle besitzen. Sie erlaubt es einem Datenspion, den Signaldetektor des Empfängers mit handelsüblichen Geräten zu blenden, ohne dass dieser es bemerkt. So kann der unerwünschte Mithörer seine Anwesenheit verbergen. Im Rahmen einer Kooperation mit dem Hersteller ID Quantique haben die Forscher allerdings bereits Gegenmaßnahmen entwickelt. (Nature Photonics online Veröffentlichung, 29. August 2010)

Wenn Banken Kontodaten zwischen verschiedenen Speichern abgleichen, verschlüsseln sie die Datensendungen mit schwer zu knackenden Codes. Bleibt nur das Problem, den digitalen Schlüssel sicher vom Sender zum Empfänger zu bringen – oftmals transportiert ein Bote die Zahlenkolonnen persönlich. Die Quantenkryptografie erlaubt es dagegen, den Schlüssel über ein optisches Netzwerk zu verteilen. Sie arbeitet mit extrem schwachen Signalen, die den Gesetzen der Quantenphysik gehorchen. Diese verhindern, dass ein Spion die Daten unbemerkt abfangen kann. In der Quantenwelt treten Ereignisse nämlich zufällig auf. Dieser Zufall dient als Signatur. Ein Spion kann die Daten zwar abfangen, der Zufall bei der Messung sorgt aber dafür, dass er sie mit Fehlern an den Empfänger weiterleitet. Mit stichprobenartigen Vergleichen decken Sender und Empfänger jeden Abhörversuch auf.

„Die Sicherheit der Quantenkryptografie basiert an sich auf physikalischen Gesetzen, aber nicht ausschließlich“, erklärt Gerd Leuchs, Professor an der Universität Erlangen-Nürnberg und Direktor am Max-Planck-Institut für die Physik des Lichts: „Die technische Umsetzung spielt auch eine wichtige Rolle, was in der Vergangenheit oft übersehen wurde.“ Die Geräte arbeiten nämlich oft nicht exakt so, wie im theoretischen Modell angenommen. Solche technischen Unzulänglichkeiten können aber Sicherheitslücken öffnen. Anbieter einer Verschlüsselungstechnik müssen daher nach derartigen Schwachstellen suchen und sie beheben – auch wenn ihre Technik in der Theorie absolut abhörsicher ist.

Gemeinsam mit Kollegen der Universitäten Trondheim und Erlangen haben Physiker um Gerd Leuchs am Max-Planck-Institut für die Physik des Lichts jetzt eine Technik entwickelt, mit der Datenspione eine entscheidende Komponente der meisten derzeitigen Quantengeräte manipulieren könnten: den Photodetektor. Die Forscher nutzen bei ihrem Angriff aus, dass viele Quantendetektoren nicht zwischen schwachen Quantensignalen und hellen Lichtimpulsen, die der klassischen Physik unterliegen, unterscheiden.

Der Empfänger wird mit einem starken Laserstrahl geblendet

Quantenbotschaften werden im Prinzip in Form einzelner Photonen verschickt – für jedes Bit wandert ein Lichtteilchen durch die Leitung. Um aber einzelne Photonen wahrnehmen und in ein messbares elektrisches Signal umsetzen zu können, wird das winzige Signal, das ein Photon auslöst, drastisch verstärkt. Und zwar mit Detektoren, in denen sogar ein einzelnes Photon letztlich eine Lawine von Elektronen anstößt. Dabei baut sich ein Strom auf, der ab einem gewissen Schwellenwert den Detektor anschlagen lässt.

Ob am Anfang der Lawine ein einzelnes Photon stand oder eine Million, erkennt der Empfänger nicht mehr. Allerdings hebt ein starker Photonenstrom die Schwelle, ab der ein Detektor anspricht – ohne dass es der Empfänger bemerkt. Der starke Laserstrahl bewirkt zudem, dass der Detektor unsensibel für die Quanteneigenschaften der Signale wird und sich vielmehr wie ein gewöhnlicher Lichtsensor verhält, für den die Gesetze der klassischen Physik gelten. Das kann der Datenspion ausnutzen: Er blendet den Detektor des Empfängers mit einem starken Störsignal. Damit manipuliert er den Detektor so, dass dieser nicht länger auf schwache Quantenimpulse reagiert, sondern auf klassische Signale. Das hat letztlich zur Folge, dass der Empfänger die falschen Signale gar nicht mehr erhält. Die Sicherheit der Quantenkryptografie beruht aber gerade auf der Tatsache, dass der Spion sich durch Fehler bemerkbar macht.

Nicht einmal der Verlust der Signale wird den Empfänger stutzig machen: Auf dem Weg zu ihm geht selbst in den besten Datenleitungen ein beträchtlicher Teil der Signale verloren. Im Vergleich zu diesem Schwund fallen die fehlenden falschen Daten des Spions nicht auf. Bei sehr kurzen Kommunikationswegen muss ein Datenspion mit optischen Komponenten arbeiten und die Daten mit etwas kleinerem Verlust übertragen als die Geräte seiner Abhöropfer. So kann er den Verlust der falschen Daten kompensieren, der den Empfänger stutzig machen könnte. „Wir gehen immer davon aus, dass der Spion technisch überlegen ausgestattet ist“, sagt Christoffer Wittmann, einer der beteiligten Wissenschaftler des Max-Planck-Instituts in Erlangen.

Lauschangriff mit handelsüblichen Geräten

„Unsere Abhörmethode funktioniert bei Geräten der beiden großen Anbieter MagiQ Technologies aus New York und ID Quantique aus Genf“, erläutert Vadim Makarov, Wissenschaftler in der Quanten-Hacking-Gruppe in Trondheim, und fügt hinzu: „Im Gegensatz zu Arbeiten anderer Gruppen führen wir diese Attacke sogar mit serienmäßig produzierten Geräten aus.“

Mit ihren Lauschangriffen wollen die Physiker nicht den Datenspionen helfen, sondern die Quantenkryptografie sicherer machen. Daher arbeiten sie mit dem Unternehmen ID Quantique zusammen und schlüpfen nur zu Testzwecken in die Rolle eines böswilligen Spions. Deswegen haben die Wissenschaftler dem Unternehmen ihre Entdeckung schon vor deren Veröffentlichung mitgeteilt. ID Quantique hat daraufhin mit Hilfe der Norweger Forscher bereits eine Gegenmaßnahme entwickelt und getestet.

Wissenschaftler aller drei Labore werden auch weiterhin Sicherheitsaspekte verschiedener quantenkryptografischer Systeme von ID Quantique überprüfen. „Ab einem gewissen Entwicklungsgrad sind Tests ein notwendiger Schritt bei der Überprüfung neuer Sicherheitstechniken“, sagt Grégoire Ribordy, Geschäftsführer von ID Quantique. Als das Konzept der Quantenkryptografie vor rund 25 Jahren entwickelt wurde, galt diese so wie viele Entdeckungen erst einmal nur als akademische Idee. An Härtetests für die abhörsichere Praxis dachte da noch kaum einer. „Insofern belegen die derzeitigen Praxistests der Quantenkryptografie, wie weit die Technik inzwischen entwickelt ist“, sagt Ribordy. [MPL / PH]

Originalveröffentlichung:
Lars Lydersen, Carlos Wiechers, Christoffer Wittmann, Dominique Elser, Johannes Skaar und Vadim Makarov
Hacking commercial quantum cryptography systems by tailored bright illumination
Nature Photonics online Veröffentlichung, 29. August 2010; DOI:10.1038/NPHOTON.2010.214

Externer Link: www.mpg.de