Ersatzknochen aus der Laserschmelze

Mediendienst der Fraunhofer-Gesellschaft vom Juni 2010

Ein Loch im Kopf wird im medizinischen Ernstfall häufig mit einem Implantat versorgt. Während Ersatz aus Titan lediglich Lücken schließt, fördert ein neuartiges resorbierbares Implantat die Regeneration des Körpers: Es ist maßgeschneidert und schwindet im selben Maße wie der Knochen nachwächst.

Kleinere Knochenverletzungen kann der Körper selbst ausheilen, bei größeren braucht er Hilfe. Häufig kommen dann Implantate zum Einsatz. Im Gegensatz zu Dauerlösungen aus Titan sollen resorbierbare Implantate fehlende Knochenteile nur so lange ersetzen, bis die Lücke geschlossen ist. Je nach Größe des Defekts, Alters und Gesundheitszustands des Betroffenen kann das Monate oder Jahre dauern. Ein neues Implantat verbessert die Voraussetzungen für den Heilungsprozess. Es entstand im Projekt des Bundesministeriums für Bildung und Forschung »Resobone« und wird für jeden Patienten maßgefertigt. Anders als der bisher übliche Knochenersatz ist es nicht massiv aufgebaut, sondern porös: In Abständen von wenigen hundert Mikrometern durchziehen feine Kanäle das Implantat. »Seine Passgenauigkeit und die perfekte Porenstruktur in Verbindung mit dem neuen Biomaterial versprechen einen bislang nicht erreichten vollständigen knöchernen Umbau«, fasst Priv.-Doz. Dr. Dr. Ralf Smeets vom Uniklinikum Aachen die Ergebnisse der ersten Verträglichkeitsuntersuchungen zusammen.

Die Porenkanäle schaffen eine Gitterstruktur, in die der angrenzende Knochen hineinwachsen kann. Ihr Grundgerüst besteht aus dem Kunststoff Polylactid, kurz PLA. Darin eingelagerte Körnchen aus Tricalciumphosphat (TCP) sorgen für Festigkeit und regen den natürlichen Knochenheilungsprozess an. In Form von Pasten, Granulaten und Halbzeugen haben sich TCP und PLA bereits als resorbierbare Implantate bewährt. Der Körper kann beide Stoffe etwa so schnell abbauen, wie der natürliche Knochen nachwächst. Das Material lässt sich aber nur dort einsetzen, wo es nicht zu stark belastet wird: So sollen die »Resobone«-Implantate vor allem fehlende Gesichts-, Kiefer- und Schädelknochen ersetzen. Sie können derzeit bis zu 25 Quadratzentimeter große Lücken schließen. Ihre besondere Struktur wird durch ein Fertigungsverfahren möglich, das am Fraunhofer-Institut für Lasertechnik ILT in Aachen ursprünglich für den Aufbau industrieller Prototypen entwickelt wurde – das Selective Laser Melting (SLM): Ein hauchdünner Laserstrahl schmilzt den pulverisierten Werkstoff schichtweise zu Strukturen, die 80 bis 100 Mikrometer fein sein können.

Als Vorlage für die passgenaue Fertigung der Implantate dienen Computer-Tomographien des Patienten. Die Arbeitsabläufe von den CT-Aufnahmen über die Konstruktion des Implantats bis zu seiner Fertigung sind so aufeinander abgestimmt, dass sich Ersatz für ein defektes Jochbein in wenigen Stunden und ein fünf Zentimeter großes Schädelstück über Nacht herstellen lässt. Dazu kommt ein erheblicher Zeitgewinn während der Operation: »Bisher gibt es noch keine maßgefertigten resorbierbaren Implantate. Der Chirurg muss während der Operation TCP-Quader oder vorab entnommenes, patienteneigenes Knochenmaterial zuschneiden und in den Defekt einpassen«, erklärt Simon Höges, Projektleiter am ILT. Zudem verringert sich die Zahl der Operationen: Die Entnahme von Knochenersatz aus dem Beckenknochen des Patienten entfällt ebenso wie Folgeoperationen bei Kindern zum Austausch eines Dauerimplantats, das nicht mitgewachsen ist. »Unser Projektziel – eine geschlossene Prozesskette zur Herstellung individueller Knochenimplantate aus resorbierbaren Werkstoffen – haben wir erreicht«, zeigt sich Höges zufrieden. Nun sei es an den Projektpartnern, zu denen auch Implantathersteller gehören, die Ergebnisse in Produkte umzusetzen.

Externer Link: www.fraunhofer.de

Leuchtender Plagiatschutz

Mediendienst der Fraunhofer-Gesellschaft vom Juni 2010

Produktfälschungen verursachen jährlich Verluste in Milliardenhöhe. Zum wirtschaftlichen Schaden kommen oft noch Risiken durch die schlechte Material- und Verarbeitungsqualität der Plagiate hinzu. Mit Hilfe von fluoreszierenden Farbstoffen lassen sich Materialien individuell markieren und eindeutig identifizieren.

Von Produktpiraterie sind längst nicht nur Konsumgüter wie Uhren oder Markenkleidung betroffen. Auch die produzierende Industrie hat mit gefälschten oder qualitativ minderwertigen Materialien zu kämpfen. Spezielle Sicherheitsmerkmale wie Wasserzeichen, Barcodes, RFID-Tags und Hologrammen kennzeichnendie Produkte und schützen sie so vor Fälschung, Diebstahl und Manipulation. Dabei gilt: Je komplizierter eine Markierung zu imitieren ist, desto sicherer ist das System. Ein Forscherteam aus vier Fraunhofer-Instituten hat nun ein neuartiges Verfahren entwickelt, das besonders fälschungssicher ist: »Wir setzen dem gesamten Material verschiedene fluoreszierende Farbstoffe zu«, erklärt Dr. Andreas Holländer vom Fraunhofer-Institut für Angewandte Polymerforschung IAP. »Anhand der Fluoreszenz können wir spezifische Eigenschaften exakt bestimmen und dadurch erkennen, ob es sich um das Original handelt und die Qualitätsanforderungen erfüllt sind«.

Fluoreszenz kommt bei einigen organischen Farbstoffen vor: Werden diese in einem bestimmten Wellenlängenbereich bestrahlt, emittieren sie selbst Licht mit einer größeren Wellenlänge. Die Art der Leuchtkraft – also Wellenlänge und Lichtintensität – hängt dabei von den physikalischen und chemischen Eigenschaften des Materials ab, dem der Farbstoff zugesetzt wurde. Verschiedene Farbstoffe reagieren auf unterschiedliche Eigenschaften, etwa den pH-Wert oder die Viskosität. So leuchtet ein bestimmter Farbstoff beispielsweise in einem hoch vernetzten Harz stärker als in einem weniger vernetzten.

Um ein Produkt fälschungssicher zu machen, setzen die Forscher dem Material daher mehrere Farbstoffe zu. »Auf diese Weise entsteht eine individuelle Kennzeichnung, die extrem schwer zu imitieren ist«, sagt Holländer. Dank der geringen Dosierung ist es praktisch unmöglich, Art und Menge der Farbstoffzusätze zu entschlüsseln: Bereits Farbstoffkonzentrationen von wenigen ppb (parts per billion) genügen, um das Material zu markieren. Ein weiterer Vorteil: Der Plagiatschutz kann definitiv nicht entfernt werden. »Bei herkömmlichen Sicherheitsmerkmalen ließe sich die Stelle mit der Markierung theoretisch aus dem Material beseitigen. Das funktioniert bei unserer Technik nicht, da der Farbstoff im gesamten Material verteilt ist und dieses selbst ein Bestandteil der Kennzeichnung ist«, sagt Holländer. Neben dem Plagiatschutz eignet sich das Verfahren auch für eine effektive Qualitätssicherung, etwa bei Beschichtungen: Mit Hilfe verschiedener Farbstoffe lassen sich während des Produktionsprozesses sowohl die chemische Zusammensetzung, der Trocknungsgrad als auch die Dicke der Schicht kontrollieren.

Erste Praxistests hat die neue Technik bereits bestanden: Unter anderem haben die Forscher Barrierefolien für organische Leuchtdioden (OLEDs) und Photovoltaik, eine Entwicklung der Fraunhofer-Allianz Polymere Oberflächen POLO, mit Farbstoffen markiert. Das Verfahren ist also grundsätzlich einsatzbereit, muss jedoch für jedes Material angepasst werden. Eine Standardlösung wäre auch nicht im Sinne des Erfinders: »Ein Grund für die hohe Sicherheit unserer Technologie ist ja gerade, dass es nur materialspezifische Lösungen gibt«, betont Holländer.

Externer Link: www.fraunhofer.de

Quantenturbo für verlustfreien Strom

Presseinformation der Max-Planck-Gesellschaft vom 07.06.2010

Quanteneffekte verstärken die Supraleitung von Zinn-Nanopartikeln drastisch

Wann ein Metallteilchen den elektrischen Widerstand verliert, ist auch eine Frage seiner Größe. Die Temperatur, unterhalb derer ein Material zu einem Supraleiter wird, kann nämlich drastisch steigen – wenn der Stoff als Nanokügelchen mit bestimmtem Durchmesser vorliegt. Das haben Forscher des Stuttgarter Max-Planck-Instituts für Festkörperforschung mit Kollegen aus Regensburg und Lissabon nachgewiesen, indem sie Zinn-Nanopartikel mit einem Rastertunnelmikroskop untersuchten. Demnach verstärken Quanteneffekte in den winzigen Teilchen die Supraleitung um bis zu 60 Prozent, aber nur bei „magischen“ Größen, die eine Theorie auf den Nanometer genau vorhersagt. Diese Ergebnisse liefern neue Ansatzpunkte, um der verlustfreien Stromleitung auch bei Raumtemperatur näherzukommen. (Nature Materials, Juni 2010)

Mit Materialien, die Strom auch bei sommerlichen Temperaturen noch ohne Widerstand transportieren, ließe sich eine Menge Energie sparen. Supraleiter können das – im Prinzip. Doch die derzeit besten Supraleiter geben ihren Widerstand erst unterhalb von rund minus 170 Grad Celsius auf. Obwohl die Supraleitung bei Raumtemperatur noch immer in weiter Ferne liegt, sind ihr die Forscher des Max-Planck-Instituts für Festkörperforschung ein kleines Stück näher gekommen: Sie haben die kritische Temperatur, unterhalb derer ein Material zum Supraleiter wird, im Labor dramatisch angehoben, indem sie Nanopartikel bestimmter Größe erzeugten.

Die kritische Temperatur steigt – die Physiker sprechen von einer Verstärkung der Supraleitung -, weil die Energiezustände in Nanoteilchen quantisiert sind. In einem größeren Stück des Materials bilden sie dagegen ein breites Band, das sich über das gesamte Material ausdehnt. Für viele Atome ergeben sich nämlich sehr viele dicht beieinander liegende Zustände. Die wenigen Atome in einem Nanoteilchen können dagegen nur eine kleine Zahl von Zuständen besetzen. Die Beschränkung der Quantenzustände ändert die Eigenschaften nanoskopischer Systeme abrupt und oft unvorhergesehen. „In niederdimensionalen Supraleitern ist eine der überraschendsten Konsequenzen, dass Schaleneffekte auftreten, die die Supraleitung verstärken“, sagt Klaus Kern, Direktor am Stuttgarter Max-Planck-Institut.

Theoretisch haben Physiker diese Schaleneffekte bereits seit längerem vorhergesagt. Demnach bilden metallische Nanopartikel elektronische Schalen – ähnlich den Schalen, auf denen sich die Elektronen in einzelnen Atomen anordnen. Auch die Elektronen in den Nanopartikeln besetzen nun diese Schalen. Bei bestimmten Anzahlen schließen sich die Elektronen in den Schalen leichter zu Cooper-Paaren zusammen, die sich ohne Widerstand durch das Material bewegen können. Wann sich in den Schalen die „magischen“ Anzahl von Elektronen versammeln, hängt auch von der Größe und Form der Partikel ab.

„Die Experimente, um die vorhergesagten Quanteneffekte zu bestätigen, sind extrem anspruchsvoll und erreichen die Grenze des technisch Möglichen“, sagt Sangita Bose, die zusammen mit Ivan Brihuega zum ersten Mal untersucht hat, wie die Größe den supraleitenden Zustand individueller Nanopartikel beeinflusst.

Die Forscher haben in einem extrem guten Vakuum zunächst exakte Halbkugeln aus Zinn und Blei gezüchtet, deren Höhen sie gezielt zwischen einem und 50 Nanometern einstellten. Mit einem speziellen Rastertunnelmikroskop, das Forscher des Max-Planck-Instituts entwickelt haben, untersuchten die Physiker anschließend die elektronischen Eigenschaften der Nanoteilchen bei Temperaturen nahe dem absoluten Nullpunkt von rund minus 273 Grad Celsius. Mit sehr hoher Auflösung bestimmten sie für jedes individuelle Teilchen die supraleitende Energielücke. Aus den Energielücken ergeben sich dann die kritischen Temperaturen, bei denen sie Supraleitung auftritt.

Die Experimente zeigten, dass die supraleitende Energielücke der Zinn-Nanopartikel sehr empfindlich auf die Partikelgröße reagiert. Sie nimmt allerdings weder kontinuierlich ab noch steigt sie stetig an, sondern springt vielmehr stark hin und her. „Das sieht zunächst aus wie Rauschen, entspricht aber den Vorhersagen der Theorie“, sagt Klaus Kern. Die Größe braucht sich nur um Bruchteile eines Nanometers zu ändern, und schon springt die kritische Temperatur in die Höhe, bevor sie im nächst kleineren Partikel schon wieder drastisch abfällt. Für Blei-Nanopartikel fällt der Effekt weit schwächer aus. In beiden Materialien tritt allerdings überhaupt keine Supraleitung mehr auf, wenn die Partikel kleiner als vier Nanometer sind. „Das wurde zwar bereits vor 50 Jahren theoretisch vorhergesagt, wir haben das aber jetzt zum ersten Mal an einzelnen Partikeln nachgewiesen“, sagt Ivan Brihuega.

Um die experimentellen Ergebnisse theoretisch zu unterfüttern, haben Antonio M. García-García, Wissenschaftler am Instituto Superior Technico in Lissabon, und Juan D. Urbina von Universität Regensburg, Korrekturen für die endliche Ausdehnung und Form der Partikel in die Standard-BCS-Theorie für Supraleiter eingeführt. Ihre Berechnungen geben die experimentellen Ergebnisse sehr gut wieder. Sie spiegeln auch wider, dass die Supraleitung mit der Größe der Zinn-Nanopartikel stark variiert. Im Blei tritt der Effekt allerdings kaum auf. „Das unterschiedliche Verhalten der beiden Metalle lässt sich mit der unterschiedlichen Kohärenzlänge erklären, die die räumliche Ausdehnung der Elektronenpaare für die Supraleitung beschreibt“, sagt Sangita Bose. Die Kohärenzlänge im Zinn ist viel größer als im Blei, was Zinn weitaus empfindlicher gegenüber Quanteneffekten macht.

Da die quantenmechanischen Schaleneffekte in allen Materialien auftreten, lassen sie sich nutzen, um die Supraleitung in vielen Materialien zu verstärken. „Damit eröffnet das ‚Quanten-Engineering‘ durch die gezielte Nanostrukturierung eine völlig neue Perspektive für die Supraleitung und bietet auch vielversprechende technologische Aussichten“, so Klaus Kern. [Fkf]

Originalveröffentlichung:
Sangita Bose, Antonio M. García- García, Miguel M. Ugeda, Juan D. Urbina, Christian H. Michaelis, Ivan Brihuega and Klaus Kern
Observation of shell effects in superconducting nanoparticles of Sn
Nature Materials, Juni 2010; DOI: 10.1038/NMAt2768

Externer Link: www.mpg.de

Körperscanner für Kunstwerke

Mediendienst der Fraunhofer-Gesellschaft vom Mai 2010

Übermalte Wandgemälde galten lange Zeit als unwiederbringlich verloren. Denn herkömmliche Verfahren eignen sich selten, um die verborgenen Werke schonend sichtbar zu machen. Mit Terahertz-Strahlen wollen Forscher die Malereien jetzt zerstörungsfrei »enthüllen«.

Viele Kirchengemälde bleiben der Nachwelt verborgen, weil sie im Lauf der Jahrhunderte übermalt wurden. Vor allem im 16. Jahrhundert verdeckten reformatorische Bilderstürmer die religiösen Wandmalereien. Doch auch in späterer Zeit wurden diese oftmals übermalt, und so überlagern heute mehrere Schichten die künstlerischen Fassungen unterschiedlicher Epochen. Mechanische Freilegungsmethoden bergen die Gefahr, das Originalwerk zu beschädigen. Auch die jüngeren, ebenfalls erhaltenswerten Schichten und Bilder über dem Original müssten zerstört werden. Forscher des Fraunhofer-Instituts für Werkstoff und Strahltechnik IWS in Dresden haben es sich jetzt zum Ziel gesetzt, die Werke mit einer zerstörungsfreien Untersuchungsmethode sichtbar zu machen. Dabei setzen die Experten auf die Terahertz-Strahlung (THz). In dem Projekt »TERAART« – gefördert vom Bundesministerium für Bildung und Forschung BMBF – arbeiten sie mit der TU Dresden, dem FIDA Potsdam und der Hochschule für Bildende Künste Dresden zusammen.

»Wir nutzen die THz-Strahlung, weil sie den Putz und die Tünche durchleuchten kann, selbst wenn diese Schicht relativ dick ist. Anders als beispielsweise UV-Strahlung ist die THz-Strahlung nicht schädlich für das Kunstwerk. Infrarotstrahlen kommen für unser Vorhaben nicht in Frage, ihre Eindringtiefe ist zu gering. Auch Mikrowellen sind keine Alternative, da sie unter anderem nicht die nötige Tiefenauflösung erreichen,« erläutert Dr. Michael Panzner, Wissenschaftler am IWS. Für die Untersuchungen wurde ein mobiles, überall einsetzbares System entwickelt. Es besteht aus einem Scanner mit zwei Messköpfen, der die Wand kontaktfrei abfährt. Ein Messkopf sendet die Strahlung aus, der andere empfängt die reflektierten Strahlen. Unterstützung bekamen die Forscher dabei vom Fraunhofer-Institut für Physikalische Messtechnik IPM, das die angepasste THz-Komponente aufbaute.

»Zum Erzeugen der THz-Strahlung verwenden wir einen Femtosekundenlaser mit dem Bauprinzip eines Faserlasers. Das von uns verwendete Verfahren der THz-Zeitdomänenspektroskopie nutzt die mit dem Femtosekundenlaser erzeugten, kurzen elektromagnetischen Pulse mit einer Dauer von ein bis zwei Picosekunden. Jede Schicht und jedes Pigment reflektiert diese Pulse anders, so dass sowohl ein Bildkontrast als auch eine Tiefeninformation gewonnen werden kann,« sagt Panzner. »Die Messergebnisse geben beispielsweise Auskunft über die Dicke der Schichten, um welche Pigmente es sich handelt und wie die Farben angeordnet sind. Eine eigens entwickelte Software setzt die Messergebnisse zu einem Bild zusammen, das die Struktur der verborgenen Malereien anzeigt.«

An einer Testwand, auf der Bilder verschiedener Farbtypen mit Tünche übermalt wurden, ist es den Wissenschaftlern bereits gelungen, die Strukturen der verdeckten Malereien zu enthüllen. Im nächsten Schritt steht der Praxistest in einer Kirche an. Die Experten sind zudem sicher, mit der THz-Strahlung auch krebserregende Biozide an und in Kunstobjekten aus Holz oder Textilien nachweisen zu können. »Denkmalschützer dürften ein großes Interesse an unserem ‚Körperscanner für Kunstwerke‘ haben,« ist Panzner überzeugt.

Externer Link: www.fraunhofer.de

Neue Nervenzellen im Alter

Presseinformation der Max-Planck-Gesellschaft vom 06.05.2010

Max-Planck-Forscher finden unterschiedliche Stammzell-Typen im Gehirn ausgewachsener Mäuse

Nie besitzt das Gehirn so viele Nervenzellen wie zum Zeitpunkt der Geburt – die meisten Nervenzellen werden vor der Geburt gebildet, danach werden viele überschüssige Neurone abgebaut. Allerdings gibt es auch im Alter noch teilungsfähige Zellen – zumindest im Gehirn von Mäusen. Wissenschaftlern des Max-Planck-Instituts für Immunbiologie in Freiburg zufolge existieren unterschiedliche Typen von neuronalen Stammzellen, die neue Nervenzellen hervorbringen können. Während sie sich bei jungen Tieren fortlaufend teilen und so neue Nervenzellen entstehen, verharrt ein großer Teil bei älteren Tieren in einem Ruhzustand. Die Produktion neuer Zellen kann jedoch wieder aktiviert werden, beispielsweise durch körperliche Aktivität oder epileptische Anfälle. Was bei Mäusen gilt, könnte auch auf den Menschen zutreffen, denn auch im menschlichen Gehirn kommen teilungsfähige Nervenzellen bis ins Erwachsenenalter vor. (Cell Stem Cell, 7. Mai 2010)

Was Hänschen nicht lernt, lernt Hans nimmermehr. Getreu diesem Sprichwort war man lange Zeit der Ansicht, dass das Gehirn mit zunehmendem Alter an Lern- und Gedächtnisfähigkeit verliert. Im Hippocampus – einer Region, die für Lernen und Gedächtnis eine zentrale Rolle spielt – gibt es jedoch neuronale Stammzellen, die zeitlebens neue Nervenzellen hervorbringen können. Aus Untersuchungen mit Mäusen weiß man, dass die neu gebildeten Zellen in die bestehenden Netzwerke integriert werden und für die Lernfähigkeit der Tiere wichtig sind. Allerdings nimmt die Bildung neuer Zellen im Alter ab. Die Gründe dafür waren bislang unbekannt.

Zusammen mit Kollegen aus Dresden und München haben die Freiburger Forscher jetzt erstmals eine Erklärung dafür gefunden, warum im erwachsenen Mäusegehirn weniger neue Nervenzellen gebildet werden. Sie konnten nämlich verschiedene Populationen von neuronalen Stammzellen identifizieren. Demnach besitzt der Hippocampus aktive und ruhende, inaktive neuronale Stammzellen. „Bei jungen Mäusen teilen sich die Stammzellen vier Mal häufiger als bei älteren Tieren, die Anzahl an Zellen ist im Alter jedoch nur geringfügig niedriger. Neuronale Stammzellen verschwinden also im Alter nicht, sondern sie werden weiter vorrätig gehalten“, erklärt Verdon Taylor vom Max-Planck-Institut für Immunbiologie.

Welche Einflüsse die ruhenden Stammzellen wieder aktivieren, wissen die Forscher noch nicht genau. Die Zellen können aber wieder zur Teilung angeregt werden. So beobachteten die Wissenschaftler in körperlich aktiven Mäusen mehr neue Hippocampus-Neurone. „Rennen fördert also die Neubildung von Nervenzellen“, sagt Verdon Taylor. Auch krankhafte Gehirnaktivität, wie sie während epileptischer Anfälle auftritt, regt die Stammzellen zur Teilung an.

Horizontale und radiale Stammzellen

Die Stammzell-Populationen lassen sich im Mikroskop gut unterscheiden. Die erste Gruppe besteht aus Zellen, die senkrecht zur Hippocampus-Oberfläche positioniert sind. Diese radialen Stammzellen befinden sich größtenteils im Ruhestadium. In der Gruppe der horizontalen Stammzellen – Zellen, die parallel zur Hippocampus-Oberfläche ausgerichtet sind – bilden dagegen über 80% laufend neue Zellen, die restlichen 20% ruhen. Gemeinsam ist allen, dass Gene wie Notch, RBP-J und Sox2 aktiv sind.

Radiale und horizontale Stammzellen sind jedoch nicht nur anders angeordnet, sie reagieren offenbar auch anders. Manche der radialen Stammzellen verlassen ihr Ruhestadium und beginnen sich zu teilen, wenn die Tiere körperlich aktiv sind. Auf die horizontalen Stammzellen hat dies dagegen einen geringen Einfluss. Deshalb teilen sich bei den aktiven Mäusen mehr radiale Stammzellen. Epileptische Anfälle dagegen beeinflussen auch die horizontalen Stammzellen.

Neuronale Stammzellen gibt es offenbar nicht nur im Mäusegehirn. Auch beim Menschen sind im Hippocampus Nervenzellen nachgewiesen worden, die dort im Laufe des Lebens gebildet werden. Wissenschaftler vermuten deshalb, dass auch im menschlichen Gehirn unterschiedliche Typen von aktiven und inaktiven Stammzellen vorkommen. Möglicherweise können inaktive Stammzellen auch beim Menschen in ähnlicher Weise wie bei den Mäusen aktiviert werden. „Es gibt Hinweise darauf, dass die übermäßige Bildung neuer Nervenzellen bei Epilepsie eine Rolle spielt. Vielleicht können neuronale Stammzellen des Gehirns eines Tages auch zur Behandlung von Gehirnverletzungen oder degenerativen Erkrankungen wie Alzheimer eingesetzt werden“, hofft Verdon Taylor. [RH]

Originalveröffentlichung:
Sebastian Lugert, Onur Basak, Philip Knuckles, Ute Haussler, Klaus Fabel, Magdalena Götz, Carola A. Haas, Gerd Kempermann, Verdon Taylor, Claudio Giachino
Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and ageing
Cell Stem Cell, 7. Mai 2010

Externer Link: www.mpg.de