Designtool für Werkstoffe mit Erinnerung

Mediendienst der Fraunhofer-Gesellschaft vom Juli 2009

Memorymetalle können sich einen Zustand »merken«. Verformt man sie, genügt beispielsweise eine Temperaturänderung, um sie wieder in ihre Ursprungsform zurückzubringen. Eine Simulation berechnet die Eigenschaften dieser Werkstoffe.

Es mutet an wie ein Zaubertrick: Ein Mann nimmt eine Büroklammer und verbiegt sie so, dass sie nur noch einem krummen Draht ähnelt. Dann wirft er sie in eine Schale mit heißem Wasser. Im Bruchteil einer Sekunde nimmt der Metalldraht wieder die Form einer Büroklammer an. Dieses Phänomen nennt sich Formgedächtniseffekt. Man kann ihn in bestimmten metallischen Legierungen beobachten. Diese Formgedächtnislegierungen sind für viele Anwendungen ideal. Beispielsweise in der Weltraumtechnik: Sonnensegel können sich dank Formgedächtnismetallen im Weltall entfalten. Auch in der Medizin setzt man auf ihre Eigenschaften, etwa in der Kardiologie: Stents sind kleine röhrchenförmige Gittergerüste aus Metall. Sie werden zusammengefaltet in Blutgefäße eingeführt, dehnen sich hier aus und verhindern, dass die Gefäße verstopfen.

Der Weg zum ausgereiften Produkt ist jedoch lang. Die Eigenschaften dieser Formgedächtnis-Werkstoffe sind komplex und daher nur schwer vorherzusagen. Ingenieure müssen viele Prototypen herstellen, bevor sie ein Bauteil mit den gewünschten Eigenschaften zum Einsatz bringen. Forscher am Fraunhofer-Institut für Werkstoffmechanik IWM haben einen schnelleren Weg gefunden: »Wir haben eine numerische Simulation entwickelt, die viele Fragen bereits im Vorfeld beantwortet – lange bevor ein Prototyp existiert«, erklärt Dr. Dirk Helm, Projektleiter am IWM.

Mit dieser Simulation haben die Wissenschaftler unter anderem einen winzigen Greifer für die Endoskopie entwickelt. Normalerweise kann solch ein Mikrogreifer nur mit Hilfe von Gelenken realisiert werden. Wie kann man ein Bauteil herstellen, das solche kleinen Abmessungen hat, elastisch und gut sterilisierbar ist und ohne Gelenke auskommt? Die Antwort liefert der Computer: Über numerische Simulationsmodelle konnten die Forscher die wichtigsten Eigenschaften des Bauteils, wie dessen Festigkeit oder Schließkraft, vorausberechnen und das elastische Bauteil effizient entwickeln und herstellen. »Normalerweise hätte man dafür viele Versuche mit unterschiedlichen Prototypen durchführen müssen«, erklärt Dr. Helm. »Dank der Simulation können wir auf die meisten dieser Prototypen verzichten. Das spart Kosten, denn die Rohstoffe für Formgedächtnislegierungen sind sehr teuer und lassen sich teilweise nur schwer verarbeiten.« Mit der Simulation können die Forscher zudem abschätzen, wie langlebig diese modernen Werkstoffe sind.

Externer Link: www.fraunhofer.de

Virtuelle Konstruktion von Energieanlagen

Mediendienst der Fraunhofer-Gesellschaft vom Juli 2009

Photovoltaik- und Windenergieanlagen, Wasserkraftwerke und Biogasanlagen liefern Strom, ohne die Umwelt zu belasten. Konstruktion und Wartung sind jedoch aufwändig. Virtuelle Realität VR erleichtert Planung und Betrieb.

Dem Ingenieur brummt der Kopf: Seit Stunden wertet er am PC Daten aus – ein Ende ist nicht in Sicht. Für die Planung eines Wasserkraftwerks möchte er wissen, welche Drücke, Temperaturen oder Strömungsbewegungen von Flüssigkeiten in der Anlage herrschen werden. Dies kann er mit einer Simulationssoftware berechnen. Diese liefert ihm jedoch nur riesige Zahlenkolonnen oder eindimensionale Darstellungen, die er Stück für Stück analysieren muss – eine mühselige Angelegenheit.

In Zukunft soll das einfacher gehen: Forscher aus dem Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF in Magdeburg haben eine Methode entwickelt, welche die Abläufe im Inneren von Energiewandlungsanlagen – dazu gehören etwa Photovoltaik-, Wind-, Biogasanlagen und Wasserkraftwerke – bildhaft darstellt. Dazu haben sie die 3-D-Anlagenkonstruktion und die Ergebnisse von Simulationen mit einem am IFF entwickelten Virtual-Reality-Programm, kurz VR, gekoppelt. »Mit einem speziellen Software-Tool ist es uns erstmals gelungen, die Bewegungsabläufe sichtbar zu machen – mit nur einem Knopfdruck«, erklärt Dr. Matthias Gohla, Leiter des Geschäftsfelds Prozess- und Anlagentechnik.

Pfeile zeigen an, in welcher Richtung und Geschwindigkeit Flüssigkeiten und Gase durch die Anlage strömen. Farbige Markierungen weisen ihn auf potenzielle Schwachstellen hin, wie Bereiche, in denen es zu kritischen Temperaturen, Ablagerungen oder Erosionen kommen kann. Drohen Kollisionen, wenn sich die Anlagenteile bewegen? Die virtuellen Einblicke erleichtern die Konstruktion und sollen dafür sorgen, dass die Anlagen leistungsstärker und emissionsärmer werden.

»Auch Anlagenbetreibern hilft unser VR-Modell im täglichen Betrieb«, sagt Projektleiter Dr. Martin Endig. Beispielsweise lässt sich im System eine umfangreiche Dokumentation implementieren. Um Daten zu einem bestimmten Anlagenteil zu erhalten, muss der Techniker nur auf die entsprechende Darstellung klicken, anstatt in seitenlangen Bedienungsanleitungen nach der gewünschten Information zu suchen. Personal kann bereits im Umgang mit der Anlage geschult werden, bevor diese in Betrieb geht. Dabei lassen sich auch kritische Situationen durchspielen, ohne dass die Mitarbeiter gefährdet werden. Aktuell arbeiten die Entwickler an einem weiteren Tool, das dem Betreiber anzeigt, wann ein Bauteil gewartet werden muss.

Externer Link: www.fraunhofer.de

Batterien aus dem Drucker

Mediendienst der Fraunhofer-Gesellschaft vom Juli 2009

Lange galten Batterien als sperrig und schwer. Ganz anders eine neuartige Batterie: Sie ist dünner als einen Millimeter und leichter als ein Gramm. Und: Sie lässt sich kostengünstig herstellen – in einem Druckverfahren.

Musste man früher wegen jeder Überweisung und jedem Kontoauszug zur Bank sausen, lassen sich Bankgeschäfte heute bequem von zu Hause erledigen. Doch wo ist nur wieder der Zettel mit den Transaktionsnummern, kurz TANs? Künftig könnte einem die Suche nach der Nummer erspart bleiben: Ein Druck auf die EC-Karte, und ein kleines darin integriertes Display zeigt die zu verwendende TAN-Nummer an. Nur noch abtippen, und los geht’s. Basis für dieses Szenario: eine druckbare Batterie, die sich im großen Maßstab kostengünstig herstellen lässt. Entwickelt hat sie ein Forscherteam um Prof. Dr. Reinhard Baumann der Fraunhofer-Einrichtung für Elektronische Nanosysteme ENAS in Chemnitz gemeinsam mit Kollegen der TU Chemnitz und der Menippos GmbH. »Unser Ziel ist es, die Batterien bei entsprechender Massenproduktion zu einem Preis im einstelligen Centbereich herstellen zu können«, sagt Dr. Andreas Willert, Gruppenleiter am ENAS.

Die Eigenschaften der Batterie unterscheiden sich erheblich von denen herkömmlicher: Die druckbare Variante bringt weniger als ein Gramm auf die Waage, ist nicht mal einen Millimeter dick und lässt sich daher beispielsweise in Scheckkarten integrieren. Die Batterie enthält kein Quecksilber und ist damit umweltverträglich. Ihre elektrische Spannung liegt mit 1.5 Volt im normalen Bereich. Schaltet man mehrere Batterien hintereinander, lassen sich auch Spannungen von 3 Volt, 4.5 Volt und 6 Volt realisieren. Aufgebaut ist die neuartige Batterie aus verschiedenen Schichten: unter anderem einer Anode aus Zink und einer Kathode aus Mangan. Zink und Mangan reagieren miteinander und produzieren Strom. Die Anoden- und die Kathodenschicht verbrauchen sich durch diesen chemischen Prozess jedoch allmählich. Die Batterie ist daher für Einsätze gedacht, die eine begrenzte Lebensdauer oder begrenzten Strombedarf haben – etwa Grußkarten.

Gedruckt werden die Batterien im Siebdruck-Verfahren, ähnlich wie bei T-Shirts und Schildern. Dabei presst eine Art Gummilippe die Druckpaste durch ein Maschennetz auf das Substrat. Eine Schablone deckt die Stellen ab, die nicht bedruckt werden sollen. Mit diesesm Verfahren lassen sich verhältnismäßig große Mengen Druckpaste aufbringen – die einzelnen Schichten sind etwas dicker als ein Haar. Im Labormaßstab haben die Forscher die Batterie bereits hergestellt. Ende des Jahres könnten die ersten Produkte realisiert sein.

Externer Link: www.fraunhofer.de

Auf Nummer sicher

Presseinformation der Max-Planck-Gesellschaft vom 02.07.2009

Max-Planck-Forscher haben erstmals klar definierte adulte Zellen direkt und ohne Viren in pluripotente Stammzellen umgewandelt

Erstmals hat das Team um Kinarm Ko und Hans Schöler vom Max-Planck-Institut für molekulare Biomedizin in Münster einen klar definierten Zelltyp aus dem Hoden erwachsener Mäuse gezüchtet und diesen ohne eingeschleuste Gene, Viren oder Reprogrammierungsproteine in pluripotente Stammzellen umgewandelt. Diese besitzen die Fähigkeit, alle Gewebe des Körpers bilden zu können. Entscheidend für die Reprogrammierung waren allein die Kulturbedingungen. (Cell Stem Cell, 2. Juli 2009)

Der Hoden ist ein empfindliches Organ und ein erstaunliches dazu. Selbst im Alter von 70, 80 oder 85 Jahren verfügen Männer über Zellen, die stetig neue Spermien produzieren. Nahezu lebenslang kann „Mann“ deshalb Embryonen zeugen und Vater werden – vorausgesetzt, er findet eine ausreichend junge Frau. Schon lange haben Forscher daher vermutet, dass in Zellen aus dem Hoden ein ähnliches Potential steckt wie in Stammzellen aus Embryonen: jene Pluripotenz, die es ihnen ermöglicht, jeden der mehr als 200 Zelltypen des Körpers zu bilden.

In der Tat sind in jüngerer Zeit mehrere Forscher auf solche Multitalente in den männlichen Keimdrüsen von Menschen und Mäusen gestoßen. Den Anfang machte 2004 ein Team um Takashi Shinohara. Die Japaner hatten entdeckt, dass bestimmte Zellen im Hoden neugeborener Mäuse wie embryonale Stammzellen in der Lage sind, sich zu verschiedenartigen Geweben zu entwickeln. 2006 berichteten Göttinger Wissenschaftler um Gerd Hasenfuß und Wolfgang Engel, dass es solche wandlungsfähigen Zellen auch in erwachsenen Mäuse-Männchen gibt. Zuletzt sorgten Thomas Skutella und seine Kollegen von der Universität Tübingen für Schlagzeilen, nachdem sie vergleichbare Zellen aus Hodengewebe von Männern gezüchtet hatten.

Verwirrende Vielfalt von Zellen

„Auf den ersten Blick scheint es daher so, als ob es längst bewiesen sei, dass es im Hoden erwachsener Menschen und Mäuse pluripotente Zellen gibt“, sagt Schöler. „Häufig ist aber unklar, um welche Zellen es sich in den jeweiligen Publikationen genau handelt und was diese Zellen tatsächlich können.“ (siehe unten: Hintergrundinformation)

Das liegt nicht nur daran, dass es im Hoden eine Vielzahl unterschiedlicher Zellen gibt. Wer das Gewebe im Labor auflöst, muss die Zellen erst sorgfältig trennen und analysieren, um zu wissen, welchen Typus er unter der Lupe hat. Auch die Frage der Potenz sorgt unter Stammzellforschern immer wieder für Diskussionen. Denn: Verbindliche Maßstäbe gibt es bislang nicht. Was für die einen schon „pluripotent“ ist, geht für die anderen gerade mal als „multipotent“, also nur eingeschränkt wandelbar, durch. Mehr Gewissheit geben zwar einschlägige Tests. Dazu zählt unter anderem eine Untersuchung, ob die Zellen nach einer Injektion in frühe Embryonen in der Lage sind, sowohl zum Aufbau des neuen Organismus als auch zur Bildung von Keimzellen beizutragen und ihre Gene über weitere Generationen zu vererben. Doch nicht jedes Team nimmt alle Prüfungen vor. Selbst bei Veröffentlichungen in renommierten Journalen bleiben mitunter wichtige Fragen offen.

Stabile Ausgangszelllinie

Ko und seine Kollegen wollten in ihrer Arbeit von Anfang an Klarheit schaffen. Dazu züchteten sie zunächst aus dem Hoden erwachsener Mäuse einen genau definierten Typus von Zellen, so genannte Keimbahn-Stammzellen (engl. germline stem cells, kurz GSCs). In ihrem natürlichen Umfeld können diese Zellen nur eines: immer wieder neue Spermien bilden. Zudem sind sie extrem rar gesät. Unter 10 000 Zellen im Hodengewebe einer Maus finden sich davon gerade einmal zwei oder drei. Dennoch lassen sie sich einzeln isolieren und als Zelllinie mit stabilen Eigenschaften vermehren. Unter üblichen Zellzuchtbedingungen behalten sie wochen- und jahrelang ihre Unipotenz. Sie sind also ausschließlich in der Lage, sich selbst zu vermehren oder Spermien zu bilden.

Was bislang niemand ahnte: Ein einfacher Trick genügt, um die Zellen zur Reprogrammierung anzuregen. Teilt man die Zellen auf neue Kulturschalen auf, versetzen sich einige von ihnen selbst in einen embryonalen Zustand zurück – vorausgesetzt, man lässt ihnen genügend Platz und genügend Zeit. „Jedes Mal, wenn wir ungefähr 8000 Zellen in die einzelnen Gefäße der Zellkultur-Platten gefüllt hatten, haben sich einige der Zellen nach zwei Wochen selbst reprogrammiert „, berichtet Ko. Und ist der Schalter in diesen „germline-derived pluripotent stem cells“ (gPS) erst einmal umgelegt, fangen sie an, sich rasant zu vermehren.

Dass der „Neustart“ der Zellen tatsächlich geklappt hatte, belegten die Forscher anhand zahlreicher Tests. Aus den umgewandelten Zellen ließen sich nicht nur ebenso gut Herz-, Nerven- oder Endothelzellen züchten, wie aus embryonalen Stammzellen. Die Wissenschaftler konnten mit den neuen gPS auch Mäuse mit gemischtem Erbgut, so genannte Chimären, erzeugen und zeigen, dass die aus dem Hoden gewonnenen Zellen ihr Erbgut in die nächste Generation weiter tragen können.

Noch ist offen, ob sich das Verfahren auf den Menschen übertragen lässt. Vieles spricht jedoch dafür, dass gPS-Zellen hinsichtlich der Einfachheit ihrer Herstellung und ihrer Sicherheit alle bisher künstlich reprogrammierten Zellen übertreffen. [JMK / BA]

Originalveröffentlichung:
Kinarm Ko, Natalia Tapia, Guangming Wu, Jeong Beom Kim, Marcos J Araúzo-Bravo, Philipp Sasse, Tamara Glaser, David Ruau, Dong Wook Han, Boris Greber, Kirsten Hausdörfer, Vittorio Sebastiano, Martin Stehling, Bernd K. Fleischmann, Oliver Brüstle, Martin Zenke, und Hans R. Schöler
Induction of pluripotency in adult unipotent germline stem cells
Cell Stem Cell, 02. Juli 2009, doi: 10.1016/j.stem.2009.05.025

Hintergrundinformation:
Mito Kanatsu-Shinohara und Takashi Shinohara
The germ of pluripotency
Nature Biotechnology 24(6), Juni 2006, doi: 10.1038/nbt0606-663

Externer Link: www.mpg.de

Dentaler Schnappschuss

Mediendienst der Fraunhofer-Gesellschaft vom Juni 2009

Zahntechniker können Ersatzzähne bislang nur mit einem Gebissabdruck herstellen. Die Silikonvorlage für dieses Gipsmodell fertigt der Zahnarzt an – für den Patienten ein unangenehmes Prozedere. Künftig liefert ein 3D-Digitalisierer die Konturen der Zähne – ohne Gipsmodell.

Wenn der Zahn schmerzt, ist der Gang zum Zahnarzt unvermeidlich. Für den Patienten beginnt oft ein zeitaufwendiger Behandlungsmarathon. Ist der Zahn nicht mehr zu retten und Zahnersatz nötig, muss der Arzt zunächst einen Silikonabdruck für das Dentallabor anfertigen. Während der Patient mit einer provisorischen Reparatur nach Hause geschickt wird, modellieren Labortechniker einen Gipsabdruck und scannen das Modell anschließend mit Hilfe von Digitalkameras. Aus den geometrischen Messdaten stellt eine Fertigungsanlage den passenden Zahnersatz her.

Der umständliche Weg über den Zahnabdruck, die Gipsform und das Modellscanning im Labor könnte bald der Vergangenheit angehören: »Die dreidimensionalen Koordinaten der Zahnoberfläche lassen sich messtechnisch auch direkt im Mund des Patienten ermitteln«, sagt der Leiter der Gruppe 3-D-Messtechnik am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena, Dr. Peter Kühmstedt.

Im Auftrag des Griesheimer Dentalunternehmens Hint-Els entwickelte ein Expertenteam des Fraunhofer-Instituts ein optisches Digitalisierungssystem, das den Mundraum scannt und über eine Kameraoptik dreidimensionale Daten der Zähne aufnimmt. Aus mehreren Daten-sätzen entsteht ein Gesamtbild des einzelnen Zahns. Nach einer Rund-umvermessung lässt sich sogar der komplette Kieferbogen als virtuelles Computerbild darstellen. Die Messbedingungen im engen Mundraum sind ungünstig. Um exakte Ergebnisse zu erhalten, nutzen die Wissenschaftler Streifenprojektionen, bei denen ein Projektor Lichtstreifen auf den zu vermessenden Zahnbereich wirft. Aus den phasenverschobenen Bildern ermittelt die Auswertesoftware schließlich die geometrischen Konturdaten des Zahnes. Dabei liefern zwei Kameraoptiken dem Sensorchip Bildinformationen aus unterschiedlichen Mess-perspektiven. Nach dem pixelgenauen Vergleich verschiedener Kamerabilder erkennt das Auswertungsprogramm Bildfehler und rechnet diese aus dem Gesamtbild heraus.

Schwierig wird es, wenn sich der Patient während der Aufnahme im Mundraum bewegt. Die Wissenschaftler setzen deshalb auf Schnelligkeit: »Die Aufnahme einer Bildsequenz pro Messposition erfolgt in weniger als 200 Millisekunden«, sagt Kühmstedt.

Externer Link: www.fraunhofer.de