Schneller und einfacher Zugriff auf Maschinendaten

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.04.2021

Daten sind die Währung der Zukunft. Aber wie können Unternehmen auf die immensen Datenmengen aus ihrem Maschinenpark zugreifen, um die Produktion zu modernisieren? Forscher am Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA haben mit StationConnector eine Software entwickelt, die die Daten ausliest und sie beliebigen Anwendungen zur Verfügung stellt. Die IPA-Informatiker haben ein eigenes Unternehmen gestartet und gehen mit der Software auf den Markt. Data Coffee – so der Name der Ausgründung.

Nicht nur das schiere Volumen, auch die Vielfalt der Daten steigt in Produktionsunternehmen exponentiell an. Richtig genutzt, können sie von großem Nutzen für die Planung und Optimierung von Geschäftsprozessen sein. Doch ein Maschinenpark ist in der Regel inhomogen, er umfasst Geräte verschiedener Generationen und Hersteller mit nicht aufeinander abgestimmten Formaten und Protokollen – gerade in mittelständischen Unternehmen ist dies häufig der Fall. Aufgrund der unterschiedlichen Steuerungen und Schnittstellen ist es problematisch und aufwendig, Maschinendaten abzugreifen und auszuwerten.

Bindeglied zwischen Steuerungstechnik und IT

Genau hier setzt die Software StationConnector an, indem sie eine einheitliche Schnittstelle über alle Anlagen hinweg bietet. So kann sie Daten einfach und anwendungsspezifisch zwischen Industrieprotokollen, Steuerungen und beliebigen IT-Systemen vermitteln. Station Connector stellt Parameter wie etwa Stromverbrauch, Drehgeschwindigkeit, Temperatur und Winkelposition beliebigen Anwendungen einheitlich zur Verfügung – unabhängig davon, welche Auslesegeschwindigkeit diese erfordern. »Maschinelles Lernen erfordert eine hohe Datenrate, Monitoring dagegen kommt mit einer geringen Rate aus. Mit StationConnector etablieren wir quasi eine unabhängige Softwareebene zwischen den Anlagen und den Systemen oder Datenbanken, die diese Daten später nutzen«, informiert Marcus Defranceski, Wissenschaftler am Fraunhofer IPA in Stuttgart. Gemeinsam mit seinen Kollegen Fabian Böttinger und Fabian Schulz hat der Informatiker den Daten-Dolmetscher entwickelt. Das große Plus: StationConnector bietet Unternehmen maximale Flexibilität, diese können ihre Maschinendaten nun eigenständig und unabhängig verwalten und nach Bedarfslage anpassen. Denn oftmals wissen Firmen noch nicht, wie sie ihre Produktion modernisieren wollen und in welcher Form sie die Daten benötigen. »Mit unserer Software müssen sich Produktionsunternehmen nicht zu früh und zu schnell festlegen«.

Liegen die Daten dann im richtigen Format vor, kann beispielsweise die Anlageneffizienz ausgewertet, die Produktionskapazität erhöht oder datenbasierte Geschäftsmodelle etabliert werden. Die Einsatzmöglichkeiten definiert der Kunde. »Durch die verfügbaren Daten wird eine neue Transparenz geschaffen, die eine bessere Produktionssteuerung erlaubt und Potenziale in der Prozessoptimierung aufdeckt«, sagt der Informatiker.

Informatikkenntnisse sind für die Bedienung der Software nicht erforderlich, die Konfiguration ist selbsterklärend. Die Maschinen können während der Installation weiterlaufen. Bei der Auswahl der benötigten Informationen und Variablen gibt es keine Beschränkung, der Kunde entscheidet, welche Daten er verarbeiten will. Ein automatisiertes Auslesen lässt sich einrichten, um Produktionseinbußen rechtzeitig zu erkennen und schnell auf Ausfälle reagieren zu können.

StationConnector interpretiert die unterschiedlichsten Protokolle, die modular erweiterbar sind. Die Software läuft sowohl auf dem lokalen Einzel-PC als auch auf Produktionsservern und in der Cloud. Die ausgelesenen Daten lassen sich auf den meisten mobilen Geräten und Desktoprechnern graphisch darstellen, um einen ersten visuellen Eindruck zu vermitteln.

Ausgründung Data Coffee gestartet

Die Software hat sich im Praxiseinsatz bewährt, sie ist bereits in Produktionsbetrieben im Einsatz. Auf dem Teststand am Fraunhofer IPA läuft sie im Dauereinsatz.

Seit Februar dieses Jahres können interessierte Unternehmen die Software lizenzieren. Marcus Defranceski und seine beiden Kollegen vom Fraunhofer IPA haben mit Data Coffee ein eigenes Unternehmen gestartet. Die Ausgründung hat ihren Sitz in Horb. Zunächst wird StationConnector weiter für produzierende Betriebe optimiert, nächstes Jahr wird die Software dann auch Anlagenherstellern zur Verfügung stehen, um diesen den Weg zu neuen, eigenen digitalen Geschäftsmodellen zu erleichtern.

Externer Link: www.fraunhofer.de

Autonomer Wasserroboter rettet Ertrinkende

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.03.2021

In deutschen Schwimmbädern fehlen ausgebildete Bademeister. Vielerorts führt der Fachkräftemangel sogar zu Schließungen. Abhilfe könnte ein schwimmender Rettungsroboter schaffen, der das Personal künftig bei Notfällen unterstützen soll. Ein Forscherteam des Fraunhofer-Instituts für Optronik, Systemtechnik und Bildauswertung IOSB in Ilmenau hat das Unterwasserfahrzeug mithilfe des Wasserrettungsdienstes Halle e.V. entwickelt.

Fast 420 Menschen sind nach Angaben der Deutsche Lebens-Rettungs-Gesellschaft DLRG im Jahr 2019 ertrunken. Die meisten davon verloren ihr Leben in Binnengewässern. Aber auch in Schwimmbädern kam es zu Unfällen mit tödlichem Ausgang. Ein Grund dafür sind die fehlenden ausgebildeten Bademeister, die die Bäder sichern – und das in ganz Deutschland. Auch dem DLRG mangelt es an Nachwuchs bei Rettungsschwimmern. Abhilfe schaffen will ein Forscherteam des Institutsteils für Angewandte Systemtechnik AST des Fraunhofer IOSB. Ein weltweit einzigartiger Wasserroboter soll Bademeistern und Rettungsschwimmern zur Seite stehen und Schwimmende in Not retten. Bei der Entwicklung des autonomen Systems nutzen die Wissenschaftlerinnen und Wissenschaftler ihre jahrelange Expertise im Bereich der Unterwasserrobotik. Mit DEDAVE haben sie bereits ein mehrfach prämiertes autonomes Unterwasserfahrzeug entwickelt.

»Es gibt typische Körperpositionen, an denen man erkennt, dass sich jemand in Gefahr befindet«, erklärt Informatiker Helge Renkewitz, der das abgeschlossene Projekt in enger Zusammenarbeit mit dem Wasserrettungsdienst Halle e.V. geleitet hat. Das Vorhaben wurde vom Bundesministerium für Wirtschaft und Energie BMWi gefördert. An der Hallendecke angebrachte Überwachungskameras registrieren die Bewegungsmuster und Position des Ertrinkenden im Becken und senden die Koordinaten an den Roboter. Dieser befindet sich, vor fremden Augen geschützt, in einer Dockingstation am Boden des Schwimmbeckens, die sich im Notfall öffnet. Hat das Fahrzeug sein Ziel erreicht, ortet es mithilfe von Kameras die gefährdete Person und befördert diese an die Wasseroberfläche. Eine Fixier- und Fangvorrichtung verhindert, dass leblose Körper beim Auftauchen herunterrutschen. Diese Vorrichtung lässt sich auch auf andere Unterwasserfahrzeuge montieren.

Tests im Freigewässer erfolgreich abgeschlossen

An Badeseen übernehmen Flugdrohnen und Zeppelinsysteme die Aufgabe der Überwachungskameras. »Diese Drohnen und Werbeballons lassen sich problemlos mit Kameras ausstatten«, sagt Renkewitz. Für die Rettung im Badesee, wo das Wasser trübe ist, muss das Unterwasserfahrzeug anstelle von optischen mit akustischen Sensoren ausgestattet sein. Mithilfe des Echos der Schallwellen lassen sich Lage und Ausrichtung von Personen so exakt bestimmen, dass der Roboter die Zielperson autonom ansteuern und aufnehmen kann.

Dass dies in der Praxis einwandfrei funktioniert, konnten die Forscher in Freiwasser-Tests im Hufeisensee bei Halle (Saale) eindrucksvoll demonstrieren: Ein in drei Metern Tiefe abgelassener, 80 Kilo schwerer Dummy wurde von dem Rettungsroboter aufgenommen, fixiert, innerhalb einer Sekunde an die Wasseroberfläche befördert und auf dem kürzesten Weg eine Strecke von 40 Metern zurück zum Ufer gebracht, wo bereits die Rettungskräfte warteten. Ein Signal alarmiert diese sofort, wenn der Roboter über einen Notfall informiert wird. »Die komplette Rettungsaktion dauerte gut zwei Minuten. Verunglückte müssen innerhalb von fünf Minuten reanimiert werden, um dauerhafte Schäden auszuschließen. Diese kritische Zeitspanne konnten wir problemlos einhalten«, sagt Renkewitz.

Futuristische Optik

Das aktuelle System, das mit Batterien, Antrieb, Kameras, optischen und Navigationssensoren ausgestattet ist, misst 90 Zentimeter in der Länge, 50 Zentimeter in der Höhe und 50 Zentimeter in der Breite. Ziel von Renkewitz‘ Team ist es, das Rettungssystem weiter zu miniaturisieren und in verschiedenen Versionen für den Einsatz in Schwimmbädern und im Binnengewässer zu bauen. Es soll kleiner, leichter und kostengünstiger ausfallen als der bisherige Prototyp, der auf einem bereits existierenden Unterwasserfahrzeug basiert. Der künftige Roboter soll stattdessen das stromlinienförmige Design eines Rochen haben.

Der Wasserroboter ist bereits zum Patent angemeldet. In modifizierten Versionen kann er weitere Aufgaben übernehmen – etwa bei Offshore- und Staumauerinspektionen oder in Fischfarmen, um die Gesundheit der Fische zu überwachen. »Der Anwendungsbereich ist breit gestreut, unsere Unterwasserfahrzeuge eignen sich beispielsweise auch für das Aufspüren und die Prüfung von archäologischen Funden am Boden von Gewässern«, so der Forscher.

Externer Link: www.fraunhofer.de

Antikörperentwicklung in Höchstgeschwindigkeit

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.02.2021

Der Weg zu neuen Biopharmaka ist lang und kostspielig. Von der Entdeckung eines Protein-Wirkstoffs bis zur Marktreife des Medikaments vergehen oft mehr als zehn Jahre. Eine große Hürde stellt der Weg vom Labor in die klinische Prüfung dar. Üblicherweise dauert es anderthalb bis zwei Jahre, um solche Prüfmedikamente für klinische Studien herzustellen. Die Pharmazeutische Biotechnologie des Fraunhofer-Instituts für Toxikologie und Experimentelle Medizin ITEM konnte diesen Schritt durch eine neue Produktionsstrategie auf sechs Monate verkürzen.

Weltweit wird seit Monaten mit Hochdruck an Therapeutika und Impfstoffen gegen das Corona-Virus geforscht. Die Pandemie hat dabei einmal mehr vor Augen geführt, wie unerlässlich es ist, Medikamente schnell zum Patienten zu bringen. Doch die Realität ist eine andere: Allein die Bioprozessentwicklung und Pilotherstellung eines auf Proteinen basierenden Arzneimittelkandidaten dauern anderthalb bis zwei Jahre. Im Anschluss daran beginnt eine aufwändige, aus drei Phasen bestehende klinische Entwicklung. Doch viele der Kandidaten scheitern bereits in der ersten oder zweiten Phase der klinischen Studie durch mangelnde Verträglichkeit oder Wirksamkeit. Darum besteht viel Interesse und Notwendigkeit am schnellen Zugang zu klinischen Ergebnissen. Forscherinnen und Forschern der Pharmazeutischen Biotechnologie des Fraunhofer ITEM in Braunschweig ist es nun gelungen, den Zeitbedarf von der Entdeckung eines neuen Wirkmechanismus‘ bis zur Bereitstellung von klinischer Prüfware deutlich zu reduzieren. »Mit unserer neuen Fast-Track-Herangehensweise bei der Verfahrensentwicklung sparen wir mehrere Monate ein – die Entwicklung inklusive der Pilotherstellung dauert jetzt anstatt anderthalb bis zwei Jahre nur noch ein halbes Jahr«, sagt Prof. Dr. Holger Ziehr, Bereichsleiter Pharmazeutische Biotechnologie am Fraunhofer ITEM. Davon profitieren die Pharmaindustrie und der Patient gleichermaßen. Der neue Weg der Fast-Track-Bioprozessentwicklung wurde aus der Not der COVID-19-Pandemie geboren. »Er ermöglichte uns in enger Zusammenarbeit mit einem Industriepartner, den Zeitbedarf für die Herstellung eines klinischen Antikörperpräparats auf ein Drittel der herkömmlichen Zeit zu verkürzen. Antikörper sind von Immunzellen gebildete Proteine, die u. a. infektiöse Erreger binden und Mechanismen auslösen, um diese zu zerstören. Als Medikament verabreicht, unterstützen sie das Immunsystem«, erläutert der Wissenschaftler.

Entwicklungsstrategie mit Paul-Ehrlich-Institut abgestimmt

Im Labor hergestellte Antikörper können chronische Entzündungen lindern. Sie helfen bei neurodegenerativen Erkrankungen und in der Tumortherapie. Vielversprechend sind darum biotechnologisch hergestellte Antikörper auch zur Therapie von COVID-19. »Will man einen humanen Antikörper gegen SARS-CoV-2 entwickeln, befindet man sich in einem extremen Wettlauf gegen die Zeit. Anderthalb bis zwei Jahre sind schlichtweg zu lang. Das war für uns der Auslöser, eine neue Produktionsstrategie zu wählen, damit ein geeigneter Wirkstoffkandidat viel schneller in die klinischen Studien starten kann«, so Ziehr. Um Planungssicherheit für die neue Entwicklungsstrategie zu haben, wurde diese als erstes der nationalen Zulassungsbehörde, dem Paul-Ehrlich-Institut, vorgestellt.

Der Produktionsprozess am Fraunhofer ITEM basiert, wie fast alle anderen Antikörper-herstellungsprozesse auch, auf CHO-Zellen, kurz für Chinese Hamster Ovary. So wird eine immortalisierte Zelllinie aus Ovarien des Chinesischen Zwerghamsters bezeichnet. Rund 80 Prozent aller biotechnologisch hergestellten Pharmaproteine werden mit dieser Zelllinie hergestellt. Einer der Hauptgründe: Die Zuckerketten, die in der CHO-Zelle an ein neu synthetisiertes Protein angehängt werden, ähneln denen des Menschen.

Zellfabrik für die Antikörper-Produktion

Doch wie ist es den Forschern nun gelungen, den Wirkstoffkandidaten in so kurzer Zeit zu produzieren? Um Antikörper herzustellen, müssen deren Gene in CHO-Zellen eingebracht werden. Sprich, die genetische Information, also die DNA, die das entsprechende Antikörpergen enthält, wird in die CHO-Zelle eingebracht. »Hierfür nutzen wir ringförmige DNA-Moleküle, sogenannte Plasmide, die wir über einen als Transfektion bezeichneten Prozess in die CHO-Zellen einschleusen«, führt der Biologe aus. Die Transfektion erfolgt in einem Gefäß mit wenigen Millilitern Nährflüssigkeit und Millionen von Zellen. In diese Kultur werden die Plasmide gegeben, die in die Zellen eindringen und sich danach nach dem Zufallsprinzip in das Chromosom integrieren. Durch die Zusammensetzung der Kulturflüssigkeit wird erreicht, dass sich im Folgenden nur die Zellen teilen, die auch das Antikörpergen aufgenommen haben. Bei der klassischen Herangehensweise müssen anschließend in einem langwierigen nächsten Schritt die Zellen so lange vereinzelt und untersucht werden, bis am Ende ein CHO-Zellklon übrig bleibt, der das Antikörpergen optimal in das Genom integriert hat.

Dieser Prozess ist enorm zeitaufwändig, da eine Zelle für eine einzige Teilung schnell einmal 48 Stunden benötigt. »Bis ich also einen brauchbaren Klon erhalte, kann durchaus ein Jahr vergehen. Das ist viel zu lang, insbesondere wenn es um ein COVID-19-Medikament geht. Daher haben wir auf den zeitraubenden Schritt der Vereinzelung verzichtet und gleich mit dem Zellpool aus der Transfektion weitergearbeitet. Wir haben also in Kauf genommen, dass einige Zellen die genetische Information für den Antikörper sehr gut eingebaut haben und andere weniger gut. Die dem Pool auferlegten Selektionsbedingungen haben aber dafür gesorgt, dass die am meisten Antikörper produzierenden Zellen auch am besten wachsen – die eine erzeugt dabei mehr, die andere etwas weniger Antikörper, aber alle produzieren den gleichen Antikörper.«

Neues Geschäftsmodell etabliert

Diese Risikobereitschaft hat sich gelohnt: Das Ergebnis ist ein stabiler Zellpool, der gut wächst und dabei in der Summe große Mengen an Antikörpern produziert. Die Forscher haben mit ihrer Produktionsstrategie nach nur sechs Monaten eine große Menge an Antikörper-Wirkstoff in Pharmaqualität erhalten und konnten bereits 3500 Dosen für eine klinische Prüfung abfüllen. Der Clou: Die High-Speed-Entwicklung lässt sich auf die Herstellung nahezu beliebiger Pharmaproteine übertragen und eröffnet damit für die Pharmazeutische Biotechnologe des Fraunhofer ITEM ein völlig neues Geschäftsmodell.

Externer Link: www.fraunhofer.de

Hartmagnetische Schichten für die hochpräzise Mikroskopie

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 04.01.2021

Im Kampf gegen das Coronavirus kommt der Mikroskopie ein besonderer Stellenwert zu: Spezial-Mikroskope sind ein unverzichtbares Hilfsmittel bei der Darstellung kleinster Zellstrukturen. Sie helfen, die Entwicklung von Impfstoffen und Therapien voranzutreiben. Dabei sind die Anforderungen an die optische Auflösung der Mikroskope und die Präzision der Mikroskoptische enorm. Hartmagnetische Schichten des Fraunhofer-Instituts für Schicht- und Oberflächentechnik IST tragen dazu bei, kleinste Zellstrukturen sehr schnell und genau zu erfassen.

Mikroskop- und Labortechnik sind ein unverzichtbares Hilfsmittel im Kampf gegen Viren und Bakterien. Sie unterstützen Wissenschaftlerinnen und Wissenschaftler bei der Suche nach Impfstoffen und Therapien, etwa gegen SARS-CoV-2. Am Fraunhofer IST in Braunschweig entwickeln Forscherinnen und Forscher hartmagnetische CoSm-Schichten (kurz für Kobalt-Samarium) für magnetische Maßstäbe. Diese Bänder werden in den Mikroskoptischen der Dr. ITK Kassen GmbH eingesetzt. Im Zusammenspiel mit Sensoren und einem Auswertealgorithmus erhöhen sie die Positioniergenauigkeit des Mikroskoptischs, auf dem die Probe zur Beobachtung abgelegt wird. »Biologisches Material wie Zellen können sich bewegen, daher muss ich Positionen bis auf den Mikrometer präzise anfahren können«, sagt Dr. Ralf Bandorf, Wissenschaftler am Fraunhofer IST. Die Mikroskoptische, die mit der magnetischen Positionierung arbeiten, lassen sich sehr kompakt bauen – sie werden in Mikroskopen von namhaften Herstellern wie Leica oder Zeiss eingesetzt. Die CoSm-Schichten wurden in enger Zusammenarbeit mit dem Industriepartner entwickelt.

Positionsauflösung im Nanometerbereich

Das Team rund um Dr. Bandorf bringt die CoSm-Schichten auf unmagnetische Metallbänder auf, sprich diese erhalten eine definierte magnetische Struktur bzw. Funktionsschicht, die sich mit einem Signalmuster codieren und per Sensor auslesen lässt, um eine Positionsbestimmung vornehmen zu können. »Im Zusammenspiel mit den integrierten Sensoren, die die Signale auslesen, ermöglichen unsere Schichten das Anfahren von Positionen bis auf fünf Nanometer genau«, so der Ingenieur. Die Tische ermöglichen durch das integrierte Messsystem eine Absolutbestimmung der Position, ohne Referenzierung. Wiederholgenauigkeiten von plus/minus 100 Nanometer sind erreichbar. Dies ist besonders bei der Untersuchung von lebenden Objekten wichtig, wo die Untersuchungszeit oftmals knapp und ein schnelles Positionieren daher essentiell ist.

Die Schichten ersetzen galvanische Kobaltschichten, für die umweltschädliche Chemikalien benötigt werden. Sie zeichnen sich durch ihre Robustheit und Langlebigkeit sowie durch besonders gute magnetische Eigenschaften aus: Sie ermöglichen ein stärkeres magnetisches Signal und berührungsloses Messen. Auch kann man in geschlossenen Bauteilen wie etwa Hydraulikzylindern messen, an die optische Systeme nicht gelangen.

Anders als reine Kobaltschichten sind die CoSm-Schichten nicht so leicht ummagnetisierbar und unempfindlich gegenüber Störfeldern. Außerdem lassen sich sehr feine Schichtdicken erzielen. Darüber hinaus erlauben sie auch das Messen in verschmutzten Bereichen. Aber auch Winkelpositionen und Radialbewegungen lassen sich messen. Dies ist in Robotikanwendungen relevant – etwa in der Automobilbranche. »Bringt man eine kompakte CoSm-Schicht direkt auf das Bauteil wie ein Kugellager auf, kann man zusätzliche Informationen erhalten«, erklärt Bandorf. Auch im Bereich der Elektromobilität steigt die Nachfrage nach hochgenauen magnetischen Messsystemen.

Umweltfreundliches Beschichtungsverfahren

Die CoSm-Schichten werden mit einer am IST entwickelten Technologie, dem Hohlkathoden-Gasfluss-Sputtern, einem Vakuumbeschichtungsverfahren hergestellt. Anders als bei galvanischen Verfahren kommen hier keine Schadstoffe zum Einsatz.

Externer Link: www.fraunhofer.de

Krebserkrankungen über die Atemluft erkennen

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.12.2020

Unsere Atemluft enthält Informationen, die sich für die Diagnostik von Krankheiten nutzen lassen. Forscherinnen und Forscher am Fraunhofer-Projektzentrum für Mikroelektronische und Optische Systeme für die Biomedizin MEOS entwickeln Lösungen, die künftig die Analyse der Atemluft ermöglichen. Bei ihren Forschungsarbeiten fokussieren sie sich auf das frühzeitige Erkennen von Krebserkrankungen. Aber auch die Unterscheidung zwischen COVID-19 und anderen Atemwegsinfektionen ist denkbar.

Manche Krankheiten kann man riechen. Ein leicht süßlich-fruchtiger Acetongeruch etwa deutet auf Diabetes hin. Bereits im antiken Griechenland berichteten Ärzte, Krankheiten im ausgeatmeten Atem zu erkennen. Die charakteristischen Gerüche entstehen durch spezifische flüchtige organische Verbindungen (VOC). Diese werden durch die erkrankten Gewebe oder die Krankheitserreger selbst freigesetzt, noch bevor Symptome auftreten.

Die Ausatemluft – Fingerabdruck des menschlichen Stoffwechsels

»Bei einer Vielzahl von Erkrankungen verändert sich die Zusammensetzung der flüchtigen organischen Spurengase in der Atemluft, die als Biomarker verwendet werden können. Oftmals sind es Kombinationen aus mehreren Spurengasen in einer deutlich erhöhten oder deutlich erniedrigten Konzentration, die charakteristisch für eine bestimme Krankheit sind. Man spricht hier auch von einem VOC-Fingerprint oder einem Muster an VOCs«, erläutert Dr. Jessy Schönfelder, Wissenschaftlerin am Fraunhofer MEOS. Am Projektzentrum in Erfurt arbeiten die Fraunhofer-Institute für Zelltherapie und Immunologie IZI, für Photonische Mikrosysteme IPMS und für Angewandte Optik und Feinmechanik IOF interdisziplinär zusammen.

Solche Marker-Kombinationen gibt es für sehr viel mehr Krankheiten als bisher bekannt. Sie müssen Stück für Stück entschlüsselt werden. Darin bestehe auch die Herausforderung für die Chemikerin und ihr Team. Sie entwickeln ein spezielles Ionenmobilitätspektrometer (IMS), um solche Muster an VOCs zu erkennen. Keine leichte Aufgabe, bedenkt man, dass jeder Mensch etwa 200 VOCs in der Atemluft hat. Im Mittelpunkt der Forschung stehen Krebsleiden, insbesondere Lungenkrebs.

Ziel des Forscherteams am Fraunhofer MEOS ist es, mit der neuen Technologie eine große Bandbreite an Biomarkern zu detektieren. Künftig wollen die Forscher das Messsystem auch zum Unterscheiden von COVID-19 und anderen Atemwegsinfektionen nutzen. Es kommt auch im Fraunhofer Clusterprojekt M3Infekt zum Einsatz, das die Entwicklung eines modularen, multimodalen und mobilen Monitoringsystems zum schnellen Eingreifen bei plötzlichen Zustandsverschlechterungen von COVID-19 Patienten zum Inhalt hat. Des weiteren soll die Atemanalytik künftig erste Hinweise auf neurodegenerative Erkrankungen wie Alzheimer liefern – und zwar früher und angenehmer als bisherige Methoden wie die Blutabnahme – schließlich muss der Patient nur in ein Röhrchen pusten.

»Das Potenzial der Atemluftsensorik ist groß. Die nicht invasive IMS-Technologie ist sensitiv und selektiv, schnell, kostengünstig und zudem klein und mobil, sodass sie problemlos in Arztpraxen und Krankenhäusern eingesetzt werden kann. Das fertige System wird die Größe eines Schuhkartons haben«, sagt Schönfelder.

FAIMS-Chip mit alternierender Spannung

Herzstück des neuartigen Ionenmobilitätsspektrometers ist ein miniaturisierter FAIMS-Chip (High Field Asymmetric Ion Mobility Spectrometry). Das MEMS-Bauelement umfasst einen Ionenfilter und einen Detektor. Eine UV-Lampe komplettiert das Gerät. Zunächst werden die VOCs in einem Trägergasstrom in das Spektrometer gepumpt, wo sie im nächsten Schritt mit Hilfe des UV-Lichts ionisiert werden. Das heißt, sie werden zu geladenen Molekülen. »Diese leiten wir an den FAIMS-Chip weiter, der am Fraunhofer IPMS entwickelt wurde. Anschließend legen wir an die Filterelektroden eine alternierende Spannung an. Durch das Einstellen der Spannung am Filter kann man auswählen, welche VOCs zum Detektor gelangen. Auf diese Weise erhalten wir unser VOC-Fingerprint, anhand dessen wir die Erkrankung erkennen können«, erklärt Schönfelder das Verfahren.

Derzeit arbeitet das Forscherteam an einer optimierten elektronischen Steuerung und einer verbesserten Probenentnahme und -Probenführung. Referenzmessungen an Zellkulturen wurden erfolgreich durchgeführt, weitere Untersuchungen mit humanen Proben aus der Klinik sind geplant. Am Fraunhofer IZI konnten in einem abgeschlossenen Projekt bereits sieben verschiedene Bakterienstämme mit einer ähnlichen Technologie unterschieden werden.

Darüber hinaus sollen eigens entwickelte KI-Algorithmen die Auswertung der VOC-Fingerprints erleichtern. »Pro Messung erhalten wir eine halbe Million Messwerte. Diese hohe Datenmenge wollen wir per Machine Learning auswerten«, so die Forscherin. Der Algorithmus wird mit Proben von gesunden Probanden und Krebspatienten trainiert. Das Messergebnis liegt innerhalb weniger Minuten vor. »Wir können uns auch vorstellen, dass unser Ionenmobilitätspektrometer in Zukunft zum Screening von Fluggästen eingesetzt wird, um zu prüfen, ob sie mit dem Coronavirus infiziert sind«, so die Chemikerin.

Externer Link: www.fraunhofer.de