Mit Behinderung arbeiten: Universität Passau entwickelt neues Assistenzsystem

Pressemeldung der Universität Passau vom 21.07.2015

Wissenschaftlerinnen und Wissenschaftler der Universität Passau beteiligen sich an der Entwicklung eines Assistenzsystems, das die emotionale Verfassung von Menschen mit Behinderung erkennen und ihnen helfen kann, trotz ihrer Behinderung einer Arbeit nachzugehen. Das Projekt „Emotionssensitives Assistenzsystem zur Unterstützung von Menschen mit Einschränkungen: EmotAsS (Emotionsensitive Assistance System)“ wird vom Bundesministerium für Bildung und Forschung gefördert.

Um Menschen mit Behinderung eine berufliche Perspektive zu geben, gibt es speziell ausgestattete Werkstätten für behinderte Menschen, die dazu dienen, sie in das Arbeitsleben einzugliedern und ihnen somit ermöglichen, ein selbstbestimmtes Leben zu führen. In den meisten Fällen ist eine Eingliederung nicht möglich, so dass diese Personengruppe ihren Fähigkeiten entsprechend in den Werkstätten beschäftigt wird. Insbesondere bei Menschen mit Erkrankungen oder Behinderungen, die in speziell ausgestatteten Werkstätten arbeiten, haben die emotionalen Schwankungen eine große Auswirkung auf ihre Konzentrationsfähigkeit und weitere kognitive Prozesse. Emotionen und deren zuverlässige Erkennung in der gesprochenen Sprache sind für die erfolgreiche Mensch-Maschine-Interaktion von großer Bedeutung.

Innerhalb dieses Projektes soll ein Assistenzsystem entwickelt werden, welches sicher die Erkennung der Emotionen der Mitarbeiterinnen und Mitarbeitern mit Behinderungen einsetzt, um ihren Arbeitsprozess in individuell handhabbare, kleine Arbeitsschritte aufzuteilen und entsprechend des Kontextes und der emotional-kognitiven Verfassung adaptiert. Die Erkenntnisse sollen auf ein weiteres Anwendungsgebiet übertragen und in der Kommunikation mit Demenzerkrankten erprobt werden.

Beteiligt sind neben dem Lehrstuhl für Complex und Intelligent Systems der Universität Passau, die Universität Bremen, die vacances Mobiler Sozial- und Pflegedienst GmbH, der Martinshof (Werkstatt Bremen), die Meier & Schütte GmbH und Co. KG, die REHAVISTA GmbH sowie die EGS Vertriebs GmbH.

Die Projektpartner arbeiten kontinuierlich mit der Zielgruppe zusammen und beteiligen sie an der Entwicklung. Bestandteil des Projektes sind unter anderem fortlaufende Tests, sowohl bei der Gestaltung als auch bei der Nutzung des Systems im Arbeitsprozess. (Katrina Jordan)

Externer Link: www.uni-passau.de

In zwei Dimensionen leuchten Elektronen schneller

Pressemitteilung der Universität Regensburg vom 13.07.2015

Forscher weisen erstaunliches Verhalten einzelner Atomlagen nach

Physiker der Universitäten Regensburg und Münster konnten erstmals beobachten, wie sich Elektronen in einer ultradünnen Festkörperschicht zu atomähnlichen Teilchen binden und dabei Licht in Rekordgeschwindigkeit emittieren. Die Ergebnisse wurden jetzt in der renommierten Fachzeitschrift „Nature Materials“ veröffentlicht (DOI 10.1038/nmat4356).

Seit kurzem kann die Wissenschaft Materialien herstellen, die aus einer einzigen Atomlage bestehen. Neben Graphen – einer Monolage aus Graphit – funktioniert dies inzwischen auch mit sogenannten Übergangsmetall-Dichalkogeniden wie Wolframdiselenid. In Monolagen können sich Elektronen nur zweidimensional in der Ebene bewegen. Das verleiht den ultradünnen Materialien einzigartige Eigenschaften, die künftig die Elektronik und Optoelektronik revolutionieren könnten. Wird bspw. ein Photon in einer Monolage von Wolframdiselenid absorbiert, so kann es ein Exziton – ein gebundenes Elektron-Loch-Paar – erzeugen. Dabei umkreist ein negativ geladenes Elektron ein positiv geladenes Loch, ähnlich wie ein Elektron im Wasserstoffatom den Kern umkreist. Theoretisch wurde vorhergesagt, dass Exzitonen in einer Monolage wegen der starken Bindung zwischen Elektronen und Löchern auch bei Raumtemperatur existieren und daher alle optischen Eigenschaften dominieren sollten – denn nur sie emittieren Licht in einer Monolage. Für die Entwicklung von Bauelementen wie Solarzellen oder lichtemittierenden Dioden ist es daher wichtig, die Eigenschaften von Exzitonen besser zu verstehen.

Ein Team um Prof. Dr. Rupert Huber, PD Dr. Tobias Korn und Prof. Dr. Christian Schüller vom Institut für Experimentelle und Angewandte Physik der Universität Regensburg konnte nun in Kooperation mit Prof. Dr. Rudolf Bratschitsch von der Universität Münster Licht ins Dunkel bringen. Im Rahmen eines Experiments regten die Forscher eine Monolage von Wolframdiselenid zunächst mit einem sichtbaren Lichtblitz an, so dass Exzitonen entstanden. Um diese direkt nachzuweisen, beleuchteten die Physiker die Exzitonen mit ultrakurzen infraroten Lichtimpulsen, die interne Anregungen in den Exzitonen auslösten. Durch Aneinanderfügen mehrerer Momentaufnahmen entstand schließlich ein Zeitlupenfilm mit der unvorstellbar hohen Zeitauflösung von wenigen Femtosekunden. Eine Femtosekunde ist der millionste Teil einer Milliardstel Sekunde. Dies ist gerade schnell genug, um die Entstehung, Struktur, Dichte und Wechselwirkung der Exzitonen untereinander scharf aufzulösen.

Die Messdaten der Forscher förderten weitere Überraschungen zutage: Sie zeigten, dass bestimmte Exzitonen überraschend effizient zerstrahlen. Dabei stürzt das Elektron in das Loch, das es umkreist, und gibt seine Energie als Lichtquant (Photon) ab. In atomar dünnem Wolframdiselenid läuft dieser Prozess tausend Mal schneller ab als in gewöhnlichen dreidimensionalen Festkörpern. Die Untersuchungen der Forscher aus Regensburg und Münster bieten deshalb spannende Perspektiven für die Entwicklung neuer Lichtquellen auf Basis der denkbar dünnsten Materialien. (Alexander Schlaak)

Titel der Originalpublikation:
C. Pöllmann, P. Steinleitner, U. Leierseder, P. Nagler, G. Plechinger, M. Porer, R. Bratschitsch, C. Schüller, T. Korn and R. Huber, „Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2“, in Nature Materials (published online) (2015)

Externer Link: www.uni-regensburg.de

Lichtschranke für die Zellteilung

Presseinformation der LMU München vom 10.07.2015

LMU-Forschern ist es gelungen, einen Wirkstoff, der die Zellteilung hemmen kann, mit Lichtreizen steuerbar zu machen. Dies ist ein vielversprechender Ansatz für zielgerichtete und nebenwirkungsfreie Tumortherapien.

Zellen höherer Organismen sind von einem ausgeklügelten System röhrenförmiger Strukturen – sogenannter Mikrotubuli – durchzogen, die als Teil des Zellskeletts an vielen lebenswichtigen Prozessen beteiligt sind. Unter anderem sind die Mikrotubuli im zellulären Spindelapparat enthalten, der bei der Zellteilung die Chromosomen auf die Tochterzellen verteilt. Wirkstoffe, die an den Mikrotubuli ansetzen, spielen daher sowohl für die Erforschung von Zellteilung und Embryonalentwicklung als auch als zellwachstum-hemmende Krebsmedikamente eine wichtige Rolle – verursachen aber oft starke Nebenwirkungen. Wissenschaftler um Professor Dirk Trauner und Dr. Oliver Thorn-Seshold vom Department Chemie der LMU haben nun einen entscheidenden Durchbruch geschafft, der zukünftig einen präziseren und schonenderen Einsatz derartiger Präparate ermöglichen soll: „Wir haben in einen bekannten Mikrotubuli-Hemmer einen lichtsensitiven molekularen Schalter eingefügt, sodass der Wirkstoff nur nach Bestrahlung mit blauem Licht aktiv ist. Dadurch kann er erstmals gezielt nur am gewünschten Ort aktiviert – und auch wieder abgeschaltet werden, da die Reaktion reversibel ist“, sagt Thorn-Seshold. Trauner ergänzt: „Damit haben wir die Photopharmakologie auf eine weiteres hochdynamisches System angewandt, das allen Vielzellern gemeinsam ist: das Zytoskelett.“

In der Medizin gehören Wirkstoffe, die an den Mikrotubuli ansetzen, zu den wirkungsvollsten Chemotherapeutika. Allerdings entfalten diese Wirkstoffe ihre zellschädigende Wirkung im ganzen Körper, weshalb sie zu schweren Nebenwirkungen führen. „Unser Ziel war, einen Mikrotubuli-Hemmer so zu optimieren, dass er nur am gewünschten Einsatzort wirkt“, sagt Thorn-Seshold. „Das haben wir erreicht, indem wir einen molekularen optischen Schalter für verschiedene chemische Abkömmlinge von Colchicin entwickelt haben“. Colchicin ist eine toxische chemische Verbindung, die aus der Herbstzeitlose stammt. Die mit optischem Schalter ausgestatteten Colchicin-Derivate bezeichnen die Wissenschaftler als Photostatine. Sie sind nur aktiv, wenn sie mit blauem Licht bestrahlt wurden, und können daher sehr präzise gesteuert werden – die Voraussetzung, um Tumorzellen gezielt und nebenwirkungsfrei zu bekämpfen.

Tumorzellen mit Licht stoppen

Im Zellversuch hat der Photoschalter seine Funktion bereits bewiesen: In mit blauem Licht bestrahlten Zellen hemmten Photostatine die Zellteilung 250-mal stärker als in Zellen, die im Dunkeln gehalten wurden. „Diese drastische licht-induzierte Aktivierung übersteigt alles, was bisher in der Photopharmakologie beobachtet wurde“, sagt Trauner. „Möglich wurde sie, weil wir den optischen Schalter mit einer neuen Methode eingebaut haben, die eine besonders große Aktivitätssteigerung erlaubt“. Die Arbeit, an der neben Kollegen der Universität Lyon an der LMU auch die Arbeitsgruppen von Professor Angelika Vollmar und Professor Stefan Zahler sowie die Gruppe von PD Markus Rehberg beteiligt waren, ist in dem führenden Wissenschaftsjournal „Cell“ veröffentlicht worden.

Als mögliches zukünftiges Einsatzgebiet für Photostatine sehen die Wissenschaftler insbesondere örtlich begrenzte Tumore, die leicht mit einer Lichtquelle erreicht werden können, etwa Retinoblastome – die häufigsten Augentumore bei Kindern – oder Hautkrebs. „Lichtquellen werden heute schon in der Medizin häufig eingesetzt, etwa für Untersuchungen im Magen-Darm-Bereich. Da die LED-Technik derzeit eine rasante Entwicklung durchmacht, können wir uns auch vorstellen, dass es in Zukunft noch kleinere und hellere LEDs geben wird, die im Körper implantiert werden, etwa wie ein Herzschrittmacher“, sagt Thorn-Seshold. „Wir hoffen, dass sie sich dabei als vielversprechender Ansatz für die Entwicklung neuer Therapien bestätigen. Allerdings ist dies ein langwieriger Prozess, die Entwicklung und Durchführung der notwendigen Studien wird noch Jahre benötigen“.

Zellentwicklung im Sekundentakt schaltbar

Bereits jetzt sind die Photostatine aber auch ein vielversprechendes Werkzeug für die Zellbiologie: Mikrotubuli spielen als Bestandteil des Zellskeletts unter anderem bei der Zellteilung, dem intrazellulären Stofftransport und der Embryonalentwicklung eine essenzielle Rolle. Mit den Photostatinen können die Mikrotubuli erstmals räumlich und zeitlich sehr präzise gesteuert und wiederholt ein- und ausgeschaltet werden – und zwar innerhalb weniger als einer Sekunde. Das schafft ganz neue Möglichkeiten, um die Funktion und räumliche Anordnung der Mikrotubuli zu erforschen. Gerade die Reversibilität der Hemmung ist in der Zellforschung ein besonderer Vorteil. „Wir konnten zum Beispiel die Entwicklung einer Zelle zu einem bestimmten Zeitpunkt anhalten und dann die Hemmung wieder ausschalten, um die Weiterentwicklung der Zelle zu beobachten. Dies könnte helfen, die Rolle bestimmter Vorläuferzellen während der Entwicklung aufzuklären“, erklärt Trauner.

Photopharmakologie ist noch ein relativ junges Forschungsgebiet, das zunehmend an Bedeutung gewinnen wird. In der Zukunft planen die Wissenschaftler, auch andere Moleküle, die an der Zellteilung und -dynamik beteiligt sind, mit Lichtschaltern auszustatten – die Mikrotubuli sind erst der Anfang. (göd)

Publikation:
Cell 2015

Externer Link: www.uni-muenchen.de

Mobile Brennstoffzelle lädt Smartphones und Tablets über USB-Anschluss auf

Pressemitteilung der Universität des Saarlandes vom 08.07.2015

„Kraftwerk“ heißt die mobile Brennstoffzelle, mit der kleine Geräte über USB wieder aufgeladen werden können. Der Wasserstoff stammt aus normalem Feuerzeuggas (Butan), das in den Tank des Geräts gefüllt wird. Wie bei einem Feuerzeug dauert das nur wenige Sekunden, die Brennstoffzelle liefert dann Strom für mehrere Tage. Die Technologie hat der promovierte Werkstoffwissenschaftler Sascha Kühn an der Universität des Saarlandes entwickelt. Bereits 2003 meldete die Universität dafür ein Patent an, die Patentverwertungsagentur unterstützte den Erfinder bei der Vermarktung. Jetzt will Sascha Kühn diese Technologie über seine Firma eZelleron in Dresden in großem Stil auf den Markt bringen.

Wie langwierig der Weg von der patentgeschützten Erfindung bis hin zum fertigen Produkt sein kann, zeigt das Beispiel der mobilen Brennstoffzelle von Sascha Kühn. Der Materialforscher hatte sich im Rahmen seiner Doktorarbeit bei Rolf Clasen, Professor für Pulvertechnologie der Saar-Uni, mit Brennstoffzellen beschäftigt. Im Januar 2003 meldete die Universität ein Patent an und bereits ein Jahr später konnte die Patentverwertungsagentur der saarländischen Hochschulen (PVA) einen Lizenzvertrag mit einer österreichischen Firma vermitteln. Bei dieser stieg Sascha Kühn als Entwicklungsleiter ein und tüftelte weiter an der mobilen Brennstoffzelle. Die Firma ging jedoch 2007 in die Insolvenz, so dass die Rechte am Patent wieder an die Universität des Saarlandes zurückfielen.

Sascha Kühn gründete 2008 die eZelleron GmbH mit Sitz in Dresden. Über die Crowdfunding-Plattform Kickstarter suchte Kühn im Januar diesen Jahres Unterstützer für sein Projekt und wurde vom eigenen Erfolg fast überrollt: Innerhalb weniger Monate waren über 1,5 Millionen US-Dollar Startkapital zusammen. Der ursprüngliche Plan war es 500.000 US-Dollar einzuwerben. Jetzt kann das Start-Unternehmen bis Ende des Jahres sein „Kraftwerk“ für die 2016 geplante Markteinführung in Position bringen.

Das Gerät soll Smartphones und mobile Endgeräte mit 5-Volt-Anschluss unterwegs ohne Strom mit Power versorgen. Das System ist mittlerweile durch 27 Patente geschützt. Bei einer erfolgreichen Vermarktung kann auch die Universität des Saarlandes durch Lizenzeinnahmen profitieren.

Externer Link: www.uni-saarland.de

Nano-Poren für bessere Radarsensoren

Presseaussendung der TU Wien vom 06.07.2015

Nanostrukturen, in die Oberfläche geätzt: Eine neue Bearbeitungstechnik der TU Wien verbessert die elektrischen Eigenschaften von Glaskeramik-Leiterplatten.

Man nimmt entspannt den Fuß vom Gaspedal, ein Radar-Sensor erkennt den Abstand zu den anderen Autos und passt die Geschwindigkeit intelligent an. Solche Technologien sorgen heute bereits für mehr Sicherheit im Straßenverkehr, ihre Verbreitung wird noch weiter zunehmen. Aus elektrotechnischer Sicht ist die Herstellung solcher Sensoren allerdings recht schwierig: Die Sensoren sollen mit sehr hohen Frequenzen arbeiten und trotzdem präzise und effizient funktionieren. An der TU Wien wurde nun eine neue Bearbeitungstechnik entwickelt, mit der man glaskeramische Leiterplatten ganz gezielt nanostrukturieren kann. Damit lassen sich Materialeigenschaften anpassen und das elektromagnetische Verhalten des Sensors wird deutlich verbessert.

Das Material beeinflusst die Strahlung

Die Antennen eines Radarsensors haben wenig mit den langen Metallstäben gemeinsam, die aus einem Radiogerät herausragen. Sensor-Antennen werden heute sehr klein gebaut und direkt auf die Leiterplatten aufgebracht. Die Leiterplatten selbst können beispielsweise aus spezieller Glaskeramik bestehen („Low Temperature Cofired Ceramics“, LTCC), die aus verschiedenen Schichten aufgebaut ist, zwischen denen  Leiterbahnen angebracht sein können. Auf der obersten Schicht befindet sich die Patch-Antenne.

„Die Abstrahlcharakteristik einer Antenne wird stark vom darunterliegenden Material beeinflusst“, erklärt Prof. Ulrich Schmid vom Institut für Sensor- und Aktuatorsysteme der TU Wien. Abhängig von den elektromagnetischen Eigenschaften der Leiterplatte kann das Material die Abstrahlung stören, es kann die ausgesendeten Wellen absorbieren und sich dabei im Extremfall so sehr aufheizen, dass Halbleiterchips in Mitleidenschaft gezogen werden. Besonders problematisch ist das im Hochfrequenzbereich: Radar-Sensoren von Autos arbeiten bei etwa 77 GHz, das hat einerseits technische Gründe, andererseits auch juristische: Dieser Frequenzbereich wurde gesetzlich für Radarsensoren im Straßenverkehr reserviert.

Um störende Materialeffekte zu verhindern hat man bereits versucht, die Glaskeramik der Leiterplatten mit organischen Materialien zu verbinden, doch das bringt wieder neue Probleme mit sich. „Übergänge zwischen unterschiedlichen Materialien sollte man eher vermeiden“, sagt Ulrich Schmid. Ganz besonders dann, wenn man es mit unterschiedlichen Materialgruppen zu tun hat, die sich bei Erwärmung unterschiedlich stark ausdehnen, sinkt die Lebensdauer des Radarsensors.

Der Trick mit den Nano-Poren

An der TU Wien suchte man daher nach einer Methode, die elektromagnetischen Eigenschaften der Leiterplatten ganz gezielt zu verändern, ohne dafür ein zusätzliches Material verwenden zu müssen. Die Glaskeramik besteht aus winzigen Körnchen, die durch Hitze „aneinandergebacken“ werden. Dabei entsteht Feldspat, der sich mit Säure wegätzen lässt – das restliche Substratmaterial bleibt übrig. Das Forschungsteam stellte fest, dass man das Glaskeramik-Material auf diese Weise mit einer komplizierten Porenstruktur im Nano-Maßstab versehen kann, wodurch sich lokal die Eigenschaften des Materials verändern.

Die Durchlässigkeit eines Materials für elektrische Felder wird als „elektrische Permittivität“ bezeichnet. „Vor der Säurebehandlung messen wir eine Permittivität von sieben bis acht – durch die Nanoporen sinkt die Permittivität um bis zu 30% – und das mit geringstem technologischem Aufwand und in konventionellen Tapesystemen, die gar nicht für diesen Ätzprozess hergestellt wurden. Das ist beachtlich“, sagt Dr. Achim Bittner. Bittner untersuchte diesen Effekt bereits vor mehreren Jahren, nun entwickelte sein Kollege Frank Steinhäußer in Zusammenarbeit mit der österreichischen Galvanik-Firma Happy Plating die Technik weiter und erzielte dabei sehr vielversprechende Ergebnisse. Die weiteren Herstellungsschritte für die Antennenplatine wurden von deutschen Partnern durchgeführt. So wurden die Glaskeramiken von der Firma MSE aus Material von der Fa. Kerafol gesintert. Die Hochfrequenzsimulationen sowie das Design der Antenne wurden an der Universität Erlangen-Nürnberg sowie von der Fa. Astyx durchgeführt.

Die neue Ätz-Technik kann man punktgenau einsetzen, sodass die Glaskeramik an unterschiedlichen Stellen unterschiedliche Eigenschaften erhält. Das kann beispielsweise bei Arrays aus mehreren Antennen sehr nützlich sein, die zusammengeschaltet werden, um eine elektromagnetische Welle in eine ganz bestimmte Richtung zu senden. Außerdem wird man die Technik in Zukunft als Diagnosemethode einsetzen, um mehr über das Verhalten des Glaskeramikmaterials zu erfahren und sie weiterhin grundlegend verbessern zu können. (Florian Aigner)

Externer Link: www.tuwien.ac.at