Kunststoffe aus nachwachsenden Rohstoffen: Körper baut Implantate automatisch ab

Pressemitteilung der TU Graz vom 05.09.2013

Forschern der TU Graz ist es in Kooperation mit Kollegen der MedUni Graz, der TU Wien sowie der BOKU Wien gelungen, resorbierbare Implantate zur Knochenheilung zu entwickeln, die im Körper abgebaut werden. Damit können in Zukunft vor allem bei Kindern schmerzhafte Mehrfach-Operationen vermieden werden. Das von der Österreichischen Forschungsförderungsgesellschaft FFG finanzierte Projekt „BRIC – BioResorbable Implants for Children“ wurde mit Ende August erfolgreich abgeschlossen.

Nach vier Jahren Forschung ist das Ziel erreicht: Wissenschaftler der TU Graz und ihre Kollegen in Graz und Wien haben die Entwicklung von „BRIC – Bio Resorbable Implants for Children“ abgeschlossen. Das sind abbaubare Implantate, die mit der Zeit im Körper resorbiert werden. Im Unterschied zu herkömmlichen Implantaten wie Platten, Schrauben oder Nägeln, die nach einer gewissen Zeit wieder operativ entfernt werden müssen, kann so auf eine zweite Operation verzichtet werden. Eingesetzt werden sollen die BRIC bei Kindern, die unter jedem einzelnen Eingriff besonders leiden.

Für diesen Entwicklungserfolg war jahrelange Kleinarbeit nötig. Koordiniert wurde das Projekt von Medizinerin Annelie Weinberg an der Universitätsklinik für Kinderchirurgie in Graz. Das Projektkonsortium umfasste auf der akademischen Seite neben der MedUni Graz zwei Arbeitsgruppen der TU Graz, die TU Wien sowie die BOKU Wien. Dass an den Ergebnissen auch die Industrie höchstes Interesse zeigt, beweist die Beteiligung der Firmenpartner AT&S sowie Heraeus.

Keine negativen Effekte für den Körper

Den beiden Teams an der TU Graz um Martin Koller, der den biotechnologischen Part übernommen hatte, und Franz Stelzer, der die Biopolymere zu Implantaten verarbeitete, ist es gelungen, mikrobielle Biopolyester, so genannte Polyhydroxyalkanoate, kurz PHAs, zu entwickeln, die zu Implantaten verarbeitet werden. „Die Herstellung ist von fossilen Rohstoffen völlig unabhängig. Dadurch entstehen keine negativen Effekte für den Körper. Das Implantat wird von Bakterien produziert und kann dann vom menschlichen Körper aufgenommen werden, nachdem es seine Aufgabe erfüllt hat“, so Koller. Alternative Biopolymere wie etwa Polymilchsäure führen im Unterschied zu PHAs zu einer Übersäuerung im Organismus und rufen chronische Entzündungen hervor. PHAs hingegen stellen hochwertige Materialien deren, deren biotechnologische Herstellung auf nachwachsenden Rohstoffen (NAWAROS) basiert.

Ein weiterer Vorteil der neuen Implantate ist, dass sie biokompatibler sind als die bisher eingesetzten Stahl- oder Titan-Werkstoffe und somit den Heilungsprozess der Knochen fördern. Zudem kann über die genaue Zusammensetzung die Abbaugeschwindigkeit des Implantates gesteuert werden. In jener Geschwindigkeit, in der der Knochen heilt, soll dann auch der Abbau des Implantates stattfinden.

Derzeit sind die Materialien im Entwicklungsstadium und werden unter anderem auf ihre Abbaugeschwindigkeit und Materialeigenschaften getestet.

Externer Link: www.tugraz.at

Atome und Supraleiter als Quantenschnittstelle auf einem Mikrochip

Pressemitteilung der Universität Tübingen vom 29.08.2013

Tübinger Forscher entwickeln einen neuen Baustein für die Quantenelektronik

Die Gesetzmäßigkeiten der Quantenphysik bilden die Basis für die Entwicklung von Hardware für künftige Informationstechnologien. Informationsträger sind Quanten, die in Quantenbits, kurz Qubits, verarbeitet werden. Sie machen die Kommunikation abhörsicher und erlauben außerordentlich schnelle Recherchen in Datenbanken. Qubits sind jedoch recht instabil. Die Professoren József Fortágh, Dieter Kölle, und Reinhold Kleiner vom Physikalischen Institut der Universität Tübingen haben einen neuen elektronischen Baustein entwickelt, der dieser Eigenschaft Rechnung tragen soll: Ihr langfristiges Ziel ist es, Quantensuperpositionszustände wie zum Beispiel die gleichzeitige Überlagerung der klassischen Bits Null und Eins zu verarbeiten, zu übertragen und zu speichern. Über die ersten Forschungsergebnisse auf diesem Weg berichten die Wissenschaftler in der Zeitschrift „Nature Communications“ am 29. August 2013.

Die Tübinger Forscher wollen zwei Systeme koppeln, um von beiden die Vorteile zu nutzen: Supraleitende Schaltungen, die mit Standardtechnologien auf Mikrochips strukturiert werden, können Quanteninformationen schnell verarbeiten, sie jedoch nicht über längere Zeit speichern. Atome, die die kleinsten elektronischen Schaltkreise der Natur darstellen, können hingegen – gruppiert in einem Ensemble – als natürlicher Quantenspeicher dienen. „In der Kombination sollen künftig Informationen aus den supraleitenden Schaltkreisen in ein Atomensemble zur Speicherung übertragen werden“, erklärt József Fortágh.

Die Atome werden durch Magnetfelder über der Chipoberfläche gefangen und in der Schwebe gehalten. Da Supraleiter den elektrischen Strom ohne Widerstand leiten, klingt der Strom in einem supraleitenden Ring nie ab. Auf dieser Grundlage haben die Doktoranden Helge Hattermann, Daniel Bothner und der Postdoktorand Simon Bernon aus den beteiligten Arbeitsgruppen eine komplexe supraleitende Ringstruktur und einen besonders stabilen und störungsfreien Speicher für Atome konstruiert. Die Forscher überprüfen selbst in ihrem System, wie lange Quantenzustände von Atomen in dieser Falle überleben: Sie verwenden die Atome als Uhr.

Den Takt zur Definition der Sekunde gibt uns heute das Cäsiumatom mit etwa neun Milliarden Schwingungen pro Sekunde zwischen zweien seiner Quantenzustände vor. Rubidium, das Atom, das in Tübingen für die Experimente verwendet wird, dient als sekundärer Zeitstandard. Die Präzision einer Atomuhr rührt von der stetigen Überlagerung der Quantenzustände her. Wie nach dem Anstoßen des Pendels einer Schwarzwalduhr klingt auch bei einer Atomuhr die Schwingung nach einiger Zeit ab – nämlich dann, wenn die Quantensuperpositionszustände zerfallen.

Die auf dem supraleitenden Chip integrierte Atomuhr im Tübinger Laboratorium zeigt an, dass Quantensuperpositionszustände von Atomen am Chip über mehrere Sekunden lang erhalten bleiben. Im Vergleich dazu sind Quantenspeicher auf Festkörperbasis mit Kohärenzzeiten im Mikrosekundenbereich flüchtig. „Dieses Ergebnis ebnet den Weg zur Realisierung neuer quantenelektronischen Komponenten für die Informationsverarbeitung“, sagt József Fortágh. Als Nächstes planen die Forscher des CQ Center for Collective Quantum Phenomena an der Universität Tübingen Experimente an Atomen in supraleitenden Mikrowellenresonatoren, die als Datenbus zwischen integrierten Schaltungen und Atomen dienen könnten.

Die Forschungen werden von der Deutschen Forschungsgemeinschaft (DFG Sonderforschungsbereich TRR21) und dem Europäischen Forschungsrat (ERC) gefördert.

Originalpublikation:
S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle & J. Fortágh: Manipulation and coherence of ultra-cold atoms on a superconducting atom chip. Nature Communications, Online-Veröffentlichung, DOI: 10.1038/ncomms3380

Externer Link: www.uni-tuebingen.de

Nano-Laser soll hundertmal mehr Informationen aus dem Glasfaserkabel lesen

Pressemitteilung der Universität Kassel vom 27.08.2013

Der weltweite Datenverkehr wächst rasant. Die Uni Kassel beteiligt sich an einem EU-Projektverbund, der die Kapazität vorhandener Glasfaserkabel verhundertfachen soll. Der Trick: Das Lichtsignal wird mit Zusatzinformationen aufgeladen.

Die Zahlen sind schwindelerregend: 2017, so sagte der Netzwerkausrüster Cisco im vergangenen Mai voraus, werden die Computernetze der Welt einen Datenverkehr von 1,4 Zettabyte transportieren – das sind 1.400.000.000.000.000.000.000 Byte. Ein Grund: Die Datenautobahnen werden verstärkt Internet-Fernsehen und Internet-Telefonie übertragen. „Um die Kommunikation der Zukunft zu bewältigen, müssen wir die Kapazität der Datenübertragung vervielfachen“, erklärt Prof. Dr. Johann Peter Reithmaier, Leiter des Fachgebiets Technische Physik an der Universität Kassel und einer der beiden Direktoren des Instituts für Nanostrukturtechnologie und Analytik (INA). Gemeinsam mit Prof. Dr. Bernd Witzigmann, Leiter des Fachgebiets Theorie der Elektrotechnik und Photonik, beteiligt er sich an einem EU-weiten, millionenschweren Projektverbund, in dem ein Verfahren entwickelt wird, um die Leistung vorhandener Glasfaserkabel um den Faktor 100 zu steigern. Reithmaier: „Wir müssen in einen Bereich vorstoßen, in dem wir pro Sekunde ein Petabit an Informationen übertragen können. Das gilt insbesondere für die Kabel unter den Ozeanen, denn hier wäre es extrem teuer, zusätzliche Leitungen zu verlegen.“ Ein Petabit, das sind 1 Billiarde Bit oder 125 Billionen Byte.

Rund 60 Gruppen – Wissenschaftlerinnen, Wissenschaftler und Unternehmen – beteiligen sich europaweit an diesem Unterfangen. Die EU koordiniert den Projektverbund „SASER“, der sich in einzelne Cluster, Projekte und Teilprojekte gliedert, die jeweils von den nationalen Ministerien finanziell gefördert werden. Das Bundesministerium für Bildung und Forschung unterstützt deutsche Teilprojekte mit insgesamt rund 36,5 Millionen Euro. Das Kasseler Teilprojekt mit dem Titel „Monolop“ erhält rund 1,2 Millionen Euro. Es läuft von Herbst 2012 bis Herbst 2015. Reithmaier und Witzigmann arbeiten dabei zusammen mit der Berliner Firma u2t und dem Fraunhofer Heinrich-Hertz-Institut in Berlin.

Die Zielrichtung von SASER lautet: Dem übertragenen Lichtsignal mehr Informationen mitzugeben als bislang. Bis dato wird das Lichtsignal in der Glasfaser nur durch eine Intensitätsmodulation genutzt. Vereinfacht dargestellt: Ist es stark (oder „an“), dann wird eine 1 übermittelt, ist es schwach („aus“), eine 0. Pro Wellenlänge lassen sich so bis zu 100 Gigabit pro Sekunde übermitteln, zudem ist es inzwischen möglich, bis zu 1000 Wellenlängen parallel zu übertragen, also bis zu 10 Terabit – unvorstellbar viel, aber nicht genug, wenn man sich klarmacht, dass mancher einzelne Rechner inzwischen bis zu 10 Gigabit pro Sekunde abschicken oder empfangen kann. Das Licht kann aber mehr als an- und ausgehen, und das machen sich die Wissenschaftlerinnen und Wissenschaftler für die sogenannte „Kohärente Kommunikation“ zunutze.

So lässt sich innerhalb einer Wellenlänge die Phase verschieben, also ein bestimmter Abstand zwischen den Spitzen einer Welle einschieben. Wenn der Empfänger in der Lage ist, den Abstand auszulesen, lässt sich die Länge der Phasenverschiebung als weitere Information nutzen. Die Physiker sprechen hier von einem zusätzlichen „Freiheitsgrad“ des Lichts, der verschiedene „Zustände“ haben kann. Es gibt noch mehr Möglichkeiten: Die Amplitude, die Höhe des Wellenausschlages, lässt sich ebenfalls aufmodulieren. In modernen Mobilfunknetzen (UMTS, LTE) werden Phase und Amplitude bereits moduliert, für die Optik ist dieser Kunstgriff neu. Auch die Polarisation des Lichts, also die Schwingungsrichtung der Lichtwelle, lässt sich als zusätzliche Eigenschaft mit verschiedenen Zuständen mitgeben.

Aufgabe der Kasseler Professoren und ihrer Arbeitsgruppen ist es nun, diese Zusatzinformationen auslesbar zu machen. Während Prof. Witzigmann die zugrunde liegenden Phänomene theoretisch erklärbar macht, entwickelt das Team um Reithmaier einen winzigen integrierten Halbleiter-Laserchip, der als Referenzoszillator dient. Sein Licht wird mit dem übertragenen Signal abgeglichen; stimmen die Eigenschaften überein, registriert der Empfänger einen bestimmten Wert. Aus diesen Werten setzt sich die übertragene Information zusammen. Die Herausforderung ist, einen stecknadelkopfgroßen Laserchip so exakt herzustellen, dass er ein stabiles Lichtsignal abgibt. Die Arbeitsgruppe um Reithmaier trägt dafür winzige, nur wenige Nanometer große Kristalle („Quantenpunkte“) aus Indiumarsenid auf ein Indiumphosphid-Trägermaterial. Jeder Quantenpunkt kann ein einzelnes Elektron auffangen und ein einzelnes Lichtteilchen aussenden. „Je gleichmäßiger die Quantenpunkte aufgetragen sind, desto höher ist die Qualität des Lichts“, betont Reithmaier. „Hierin sind wir weltweit führend.“ Zudem ist der Laser abstimmbar, d.h. sein Licht kann in Sachen Phasenverschiebung und Polarisation verschiedene Zustände annehmen und so mit dem Übertragungssignal abgeglichen werden.

Die Gruppe um Prof. Reithmaier hat in den Reinräumen des INA bereits die ersten Probe-Chips produziert, die nun getestet werden. Reithmaier: „Die ersten Ergebnisse sind ermutigend.“

Externer Link: www.uni-kassel.de

Das Smartphone als Quadcopter-Pilot

Presseaussendung der TU Wien vom 19.08.2013

An der TU Wien gelang es, einen vollständig autonomen Quadkopter zu konstruieren. Die nötige Rechenpower wird von einem handelsüblichen Smartphone bereitgestellt.

Ein Quadcopter, der sich völlig autonom im Raum zurechtfinden kann wurde an der TU Wien entwickelt. Er kommt während des Fluges ohne menschliche Steuerungs-Eingriffe aus und muss im Gegensatz zu anderen Modellen auch nicht auf die Rechenpower eines am Boden stehenden Computers zurückgreifen. Die gesamte notwendige Rechenleistung ist mit an Bord – in Form eines handelsüblichen Smartphones.

Autonome Maschinen

Quadcopter sind in den letzten Jahren weltweit zu einem beliebten Spielzeug für die Forschung geworden. Die kleinen viermotorigen Fluggeräte eignen sich nicht nur hervorragend, um wissenschaftliche Ideen aus der Regelungstechnik auszuprobieren, damit sie sicher und stabil fliegen. Mit ihnen wird auch untersucht, wie Maschinen am besten ihre Umwelt wahrnehmen und autonom agieren können.

Das Virtual-Reality-Team der TU Wien beschäftigt sich seit Jahren mit dem digitalen Erfassen visueller Daten. „Es war für uns also eigentlich ein logischer Schritt, uns in Richtung Robotik weiterzuentwickeln und mal eine Kamera auf einen Quadcopter zu packen“, sagt Hannes Kaufmann vom Institut für Softwaretechnik und Interaktive Systeme der TU Wien. Normalerweise werden Quadcopter von Menschen gesteuert oder sie funken ihre Daten an einen leistungsfähigen Rechner am Boden, der dann die nötigen Steuersignale zurückgibt. Der TU-Quadkopter ist hingegen völlig eigenständig.

Ein Smartphone als Auge und Gehirn

Ganz bewusst entschied man sich, kein teures vorgefertigtes Quadcopter-System zu kaufen, sondern aus sorgfältig ausgewählten Einzelteilen ein möglichst simples, kostengünstiges Gerät herzustellen. Das Herzstück – und der teuerste Bestandteil des TU-Quadcopters – ist ein Smartphone. Es liefert über die Kamera die nötigen Bilder und dient gleichzeitig als Steuerzentrale. Die ganze Intelligenz des Quadcopters, die ihm die Orientierung im Raum ermöglicht, konnte in eine Smartphone-App gepackt werden. Zusätzlich sorgt ein Micro-Controller für die Feinabstimmung der Rotor-Bewegung, sodass der Quadcopter stabil fliegt.

Der Quadcopter sollte Indoor-tauglich sein und selbst in kleinen Räumen gut funktionieren. Für die Steuerung ist das eine große Herausforderung, weil gerade an Wänden oder in Ecken die Aerodynamik ganz anders sein kann als im freien Raum. Außerdem musste aufgrund dieser Anforderung auf die Verwendung von GPS verzichtet werden – der Quadcopter muss sich ausschließlich durch visuelle Daten orientieren.

Um die Orientierungsfähigkeit des Quadcopters zu testen, brachte das TU-Team visuelle Codes am Boden an, die ähnlich wie QR-Codes funktionieren. Im Darüberfliegen erkennt der Quadcopter die Codes, sammelt Information und erzeugt so nach und nach eine virtuelle Landkarte seiner Umgebung. Hat er sich erst mal orientiert, kann er ganz gezielt bestimmte Orte ansteuern oder sich zu Regionen der Landkarte bewegen, die er noch nicht so gut kennt.

„Das Ziel ist, dass sich der Quadcopter in Zukunft dann auch ohne diese Codes auskommt und sich anhand von natürlich vorkommenden Orientierungspunkten, die aus den Kameradaten und auch von Tiefensensoren wie der MS Kinect gewonnen werden sollen, in der Umgebung zurechtfindet“, sagt Annette Mossel, die Chefdesignerin des Quadcopters. Sie entwickelte das Gerät gemeinsam mit den Diplomanden Christoph Kaltenriner und Michael Leichtfried.

Der Quadcopter als Allzweck-Bilderlieferant

Anwendungsideen für einen autonomen Quadcopter gibt es viele: Feuerwehrleute könnten ihn in ein brennendes Gebäude vorausschicken und sich ein 3D-Bild der Umgebung senden lassen, bevor sie sich selbst hineinwagen. Mini-Quadcopter könnten in großen, unübersichtlichen Gebäuden Menschen an die richtige Stelle leiten. Durch seine geringen Kosten könnte ein solcher Smartphone-Quadcopter auch für weniger wohlhabende Regionen der Erde interessant sein: Er könnte etwa Auskunft über Waldrodungen geben, ohne dass teure Geräte oder Helikopter-Überflüge notwendig sind.

Die Bauteile des TU-Quadkopters haben einschließlich Smartphone weniger als tausend Euro gekostet, rechnet das Team vor. Die monatelange Arbeitszeit, die in die Entwicklung von Elektronik und Computerprogrammen investiert wurde, ist in dieser Rechnung freilich nicht einberechnet. (Florian Aigner)

Externer Link: www.tuwien.ac.at

Mit elektronischer Schaltung teleportiert

Medienmitteilung der ETH Zürich vom 14.08.2013

Noch können ETH-Forschende keine Gegenstände oder Personen aus Fleisch und Blut durch das All «beamen», wie das in Science-Fiction-Filmen gezeigt wird. Ihnen gelang es jedoch, Informationen von A nach B zu teleportieren – zum ersten Mal auf einem Chip, ähnlich einem Computerchip.

Physikern der ETH Zürich ist es erstmals gelungen, eine Information in einem sogenannten Festkörpersystem zu teleportieren. Dies gelang den Forschern auf einem Chip. Er unterscheidet sich von einem herkömmlichen Computerchip dadurch, dass die Informationen darauf nicht nach den Gesetzen der klassischen Physik, sondern nach jenen der Quantenphysik gespeichert und verarbeitet werden. In einer in der jüngsten Ausgabe der Fachzeitschrift «Nature» publizierten Studie gelang es den Forschenden, Information über sechs Millimeter zu teleportieren, von einer Ecke des Chips in die gegenüberliegende Ecke. Dies nota bene ohne dass bei der Informationsübertragung physikalische Teilchen den Weg von der Sender-Ecke in die Empfänger-Ecke zurückgelegt hätten.

«Bei der gewöhnlichen Telekommunikation wird die Information über elektro-magnetische Impulse übertragen. Beispielsweise transportiert man im Mobilfunk gepulste Radiowellen und in Glasfaserverbindungen gepulste Lichtwellen», erklärt Andreas Wallraff, Professor am Laboratorium für Festkörperphysik und Leiter der Studie. Bei der Quantenteleportation hingegen transportiere man nicht den Informationsträger selbst, sondern ausschliesslich die Information. Dies, indem man quantenmechanische Eigenschaften des Systems nutze, insbesondere die Verschränkung von Sende- und Empfängereinheit. Damit ist eine für Nicht-Physiker «magisch» anmutende Verbindung gemeint, die die Gesetze der Quantenphysik nutzt.

«Wie beim Beamen»

Zur Vorbereitung der Quantenteleportation bringt man Sende- und Empfängereinheit in einen verschränkten Zustand. Anschliessend können die beiden Einheiten physikalisch voneinander getrennt werden, denn der verschränkte Zustand bleibt erhalten. Beim Experiment programmieren die Physiker in der Sendeeinheit eine quantenmechanische Information. Weil die beiden Einheiten miteinander verschränkt sind, kann man diese Information auch in der Empfängereinheit ablesen. «Quantenteleportation ist vergleichbar mit dem Beamen in der Science-Fiction-Serie Star Trek», sagt Wallraff. «Die Information reist nicht von Punkt A zu Punkt B. Vielmehr erscheint sie an Punkt B und verschwindet an Punkt A, wenn man sie an Punkt B abliest.»

Hohe Übertragungsrate

Die Distanz von sechs Millimetern, über die die ETH-Forscher teleportierten, mag im Vergleich mit anderen Teleportationsexperimenten kurz erscheinen. Vor einem Jahr ist es beispielsweise österreichischen Wissenschaftlern gelungen, eine Information über mehr als hundert Kilometer zwischen den beiden Kanarischen Inseln La Palma und Teneriffa zu teleportieren. Dieser und ähnliche Versuche waren jedoch grundlegend anders, da es sich dabei um optische Systeme mit sichtbarem Licht handelte. Den ETH-Forschenden ist es hingegen zum ersten Mal gelungen, Informationen in einem System mit supraleitenden elektronischen Schaltungen zu teleportieren. «Das ist interessant, weil solche Schaltungen wichtige Elemente für den Bau von zukünftigen Quantencomputern sind», sagt Wallraff. Ein weiterer Vorteil des Systems der ETH-Wissenschaftler: Es ist extrem schnell und deutlich schneller als die meisten bisherigen Teleportationssysteme. Pro Sekunde lassen sich damit etwa 10’000 Quantenbits übertragen.

«Wichtige Zukunftstechnologie»

Als nächstes möchten die Forschenden mit ihrem System den Abstand zwischen Sender und Empfänger vergrössern. Zunächst möchten sie versuchen, Information von einem Chip auf einen anderen zu teleportieren. Und langfristig geht es darum zu erforschen, ob man mit elektronischen Schaltungen auch über grössere Distanzen Quantenkommunikation betreiben kann, so wie das jetzt mit optischen Systemen gemacht wird.

«Teleportation ist eine wichtige Zukunftstechnologie auf dem Gebiet der Quanteninformationsverarbeitung», sagt Wallraff. Damit lasse sich beispielsweise Information auf einem Quantenchip oder in einem zukünftigen Quantenprozessor von einem Punkt zu einem anderen transportieren. Gegenüber den heutigen Informations- und Kommunikationstechnologien, die auf der klassischen Physik beruhen, hat quantenphysikalische Information den Vorteil, dass die Informationsdichte viel höher ist: In Quantenbits lässt sich mehr Information speichern und effizienter verarbeiten als in der gleichen Anzahl klassischer Bits.

Originalpublikation:
Steffen L, Salathe Y, Oppliger M, Kurpiers P, Baur M, Lang C, Eichler C, Puebla-Hellmann G, Fe-dorov A, Wallraff A: Deterministic quantum teleportation with feed-forward in a solid state system. Nature, 2013, 500: 319-322, doi: 10.1038/nature12422.

Externer Link: www.ethz.ch