Nanosensoren unterstützen Therapie von Hautkrebs

Medienmitteilung der Universität Basel vom 05.02.2013

Das maligne Melanom gilt als die aggressivste Form von Hautkrebs. Bei der Hälfte der Erkrankungen spielt eine spezielle Genmutation eine wichtige Rolle. Da das Leben von Trägern dieser Mutation mit Medikamenten signifikant verlängert werden kann, ist es wichtig, sie zuverlässig zu identifizieren. Für den Nachweis haben Forschende der Universität Basel und des Ludwig Institute for Cancer Research in Lausanne nun eine neuartige Methode entwickelt, wie sie in der Fachzeitschrift «Nature Nanotechnology» berichten.

Jährlich erkranken in der Schweiz etwa 2100 Menschen an einem malignen Melanom, womit der schwarze Hautkrebs zu den häufigsten Tumorerkrankungen gehört. Während bei einer frühen Erkennung die Heilungsaussichten sehr gut sind, sinken die Überlebenschancen in späteren Stadien drastisch.

In den letzten Jahren wurden neuartige Medikamente entwickelt, die gezielt bei Genmutationen wirken, welche massgeblich an der schnellen Vermehrung von Gewebe beteiligt sind. Im Fall des schwarzen Hauptkrebses ist dies das sogenannte BRAF-Gen, das in seiner mutierten Form zu einem unkontrollierten Zellwachstum führt. Da aber nur etwa die Hälfte der Patienten mit malignem Melanom diese Mutation aufweist, ist es wichtig, die Patienten zu ermitteln, denen diese Therapie auch hilft. Angesichts der Nebenwirkungen wäre es nicht angebracht, allen Patienten das Medikament zu verabreichen.

Diagnose mithilfe molekularer Wechselwirkung

Die Teams um Prof. Christoph Gerber vom Swiss Nanoscience Institute der Universität Basel und Dr. Donata Rimoldi vom Lausanner Ludwig Institute for Cancer Research haben nun eine neuartige diagnostische Methode entwickelt, die mit nanomechanischen Sensoren in Form von mikroskopisch kleinen Federbalken die Ribonukleinsäure (RNA) von Krebszellen analysiert und somit gesunde Zellen von Krebszellen unterscheiden kann. Im Gegensatz zu anderen Verfahren ist die Methode so empfindlich, dass die Erbsubstanz weder vervielfältigt noch markiert werden muss.

Die Methode beruht auf einer Bindung von Molekülen an der Oberseite von Federbalken und der dabei verursachten Veränderung der Oberflächenspannung. Dazu werden die Federbalken (Cantilever) zuerst mit einer Lage von DNA-Molekülen beschichtet, welche die Mutation in der RNA aus Zellen binden kann. Diese Bindung verbiegt den Cantilever, was sich mithilfe eines Lasers messen lässt. Die molekulare Wechselwirkung muss dabei sehr nahe an der Oberfläche stattfinden, um das Signal zu erzeugen.

Nachweis auch von anderen Krebsarten

In Experimenten konnten die Forscher zeigen, dass sie verschiedene Zellen mit dieser Genmutation von solchen ohne Mutation unterscheiden können. Dabei wurde die RNA von Zellkulturen getestet, die mit denen von Gewebeproben vergleichbar ist. Da die Forscher die Mutation in der RNA aus unterschiedlichen Zelllinien nachweisen konnten, funktioniert die Methode unabhängig vom Ursprung der Proben.

Dr. François Huber, Erstautor der Publikation, erklärt: «Die Technik lässt sich auch auf andere Krebsarten anwenden, die von Mutationen in einzelnen Genen abhängig sind, wie zum Beispiel gastrointestinaler Stromatumor und Lungenkrebs. Dies zeigt das breite Anwendungspotential in der Krebsdiagnostik und der personalisierten Gesundheitsfürsorge.» Mitautorin Dr. Donata Rimoldi fügt hinzu: «Erst die Interdisziplinarität von Medizin, Biologie und Physik bewirkt, dass neue Methoden aus der Nanotechnologie in der Medizin zum Wohl des Patienten angewendet werden können.»

Die Arbeiten wurden ermöglicht durch das NanoTera Projekt «Probe Array Technology for Life Science Applications» des Schweizerischen Nationalfonds, durch das Swiss Nanoscience Institute, die Cleven Stiftung und die Mikrofabrikationsabteilung des IBM Forschungslabors in Rüschlikon.

Originalbeitrag:
François Huber, Hans Peter Lang, Natalija Backmann, Donata Rimoldi, Christoph Gerber
Direct detection of a BRAF mutation in total RNA from melanoma cells using cantilever arrays
Nature Nanotechnology (2013); Published online 3 February 2013 | doi: 10.1038/nnano.2012.263

Externer Link: www.unibas.ch

Mit Lichtgeschwindigkeit ins Quanten-Internet

Medieninformation der Universität Innsbruck vom 04.02.2013

Durch Glasfasern fliegen heute Informationen in Lichtgeschwindigkeit rund um die Welt. Auch Quanteninformation kann auf diese Weise übertragen werden. Innsbrucker Physiker um Rainer Blatt und Tracy Northup berichten nun in der Fachzeitschrift Nature Photonics, wie sie die Quanteninformation eines Atoms vollständig auf ein Lichtteilchen übertragen haben, das über eine Glasfaser zu einem entfernten Atom geschickt werden kann.

Dank der besonderen Gesetze der Quantenmechanik können Quantencomputer bestimmte Rechenaufgaben sehr viel schneller lösen als herkömmliche Computer. Eine der vielversprechendsten Technologien zum Bau eines Quantencomputers sind Systeme mit einzelnen Atomen, die in sogenannten Ionenfallen gefangen und mit Lasern manipuliert werden. Im Labor wurden auf diese Weise schon wesentliche Bausteine eines zukünftigen Quantencomputers experimentell getestet. „Wir können heute mit Atomen bereits erfolgreich Quantenrechnungen durchführen“, erklären die Doktoranden Andreas Stute und Bernardo Casabone vom Institut für Experimentalphysik der Universität Innsbruck. „Was aber noch fehlt, sind funktionstüchtige Schnittstellen mit denen die Quanteninformation über Lichtleiter von einem Computer zum nächsten übertragen werden kann.“

Weil man Quanteninformation aufgrund der Gesetze der Quantenmechanik aber nicht einfach kopieren kann, stellt der Bau solcher Schnittstellen eine große Herausforderung dar. Für ein zukünftiges Quanten-Internet – ein Netzwerk aus mehreren Quantencomputern, die über Lichtleiter miteinander verbunden sind – muss die Quanteninformation gezielt auf einzelne Lichtteilchen, sogenannte Photonen, übertragen werden. Diese werden dann über Glasfasern an die angeschlossenen Quantencomputer übertragen. Die Forscher um Tracy Northup und Rainer Blatt berichten nun in der Zeitschrift Nature Photonics, wie sie im Labor erstmals die Quanteninformation eines in einer Ionenfalle gespeicherten Atoms gezielt auf ein Photon übertragen haben.

Quantennetzwerker

Die Physiker der Universität Innsbruck fangen dazu ein einzelnes Kalziumatom in einer Ionenfalle und positionieren es zwischen zwei stark reflektierenden Spiegeln. „Mit einem Laser schreiben wir die gewünschte Quanteninformation in den elektrischen Zustand des Atoms ein“, erklärt Andreas Stute. „Das Atom wird dann mit einem zweiten Laser angeregt und sendet dabei ein Photon aus. In diesem Moment schreiben wir die Quanteninformation des Atoms in den Polarisationszustand des Photons ein und übertragen sie so auf das Lichtteilchen.“ Das Photon wird zwischen den Spiegeln gespeichert, bis es schließlich durch den weniger stark reflektierenden Spiegel davon fliegt. „Die beiden Spiegel lenken das Photon in eine ganz bestimmte Richtung. So kann es gezielt in die Glasfaser geleitet werden“, sagt Bernardo Casabone. Die im Photon eingeschriebene Quanteninformation kann so über die Glasfaser an einen entfernten Quantencomputer geleitet und dort mit dem gleichen Verfahren wieder in ein Atom eingeschrieben werden.

Unterstützt werden die Innsbrucker Physiker bei Ihren Forschungen unter anderem vom österreichischen Wissenschaftsfonds FWF und der EU.

Publikation:
Quantum-state transfer from an ion to a photon. A. Stute, B. Casabone, B. Brandstätter, K. Friebe, T. E. Northup, R. Blatt. Advance Online Publication, Nature Photonics 2013. DOI: 10.1038/NPHOTON.2012.358

Externer Link: www.uibk.ac.at

Exoskelett bringt neue Bewegungsfreiheit

Presseaussendung der TU Wien vom 29.01.2013

An der TU Wien werden mechanische Hilfsmittel entwickelt, die Personen mit Nervenerkrankungen Kraft und Bewegungsfreiheit zurückgeben.

Exoskelette kennt man aus Superheldenfilmen, in denen sie als panzerartige Spezialanzüge übermenschliche Kräfte verleihen. In Wirklichkeit hat Forschung an Exoskeletten einen ganz anderen Zweck: An der TU Wien werden Exoskelette entwickelt, die Menschen mit degenerativen Nervenerkrankungen oder Querschnittlähmungen einen Teil ihrer Bewegungsfähigkeit zurückgeben. Dazu benötigt man weder Batterie noch Motor: Nur durch Seilzüge und Federn wird der Bewegungsapparat unterstützt.

Mechanische Konstruktion hilft bei Armbewegungen

„Bei gewissen degenerativen Nervenerkrankungen können die Muskeln zwar noch bewusst angesteuert werden, kontrollierte, gezielte Bewegungen sind aber kaum mehr möglich“, erklärt Prof. Margit Gföhler vom Institut für Konstruktionswissenschaften und Technische Logistik der TU Wien. Gemeinsam mit Werner Reichenfelser und Jakob Karner entwickelt sie daher eine mechanische Vorrichtung, die auf die Arme geschnallt werden kann und dann die Bewegung unterstützt.

„Für die Patienten ist es oft einfach nicht möglich, das Gewicht des eigenen Arms zu halten – schon gar nicht, wenn eine zusätzliche Last im Spiel ist, etwa ein Getränkebecher, der zum Mund geführt werden soll“, sagt Margit Gföhler. Das Exoskelett unterstützt die Bewegungen durch ein ausgeklügeltes System von Seilzügen und Federn.

Hilfe im Alltag

„Einerseits kann das mechanische System zusätzliche Kraft aufbringen, wenn eine Bewegung erleichtert werden soll, andererseits kann es durch eine Bremse das Gewicht der Arme kompensieren, damit sie nicht unkontrolliert absacken“, sagt Werner Reichenfelser. Das Exoskelett wurde in zwei Versionen konstruiert: Eine Variante wird an einem Rollstuhl fixiert, eine zweite, leichtere Variante wird ohne Rollstuhl am Körper getragen.

Wichtig war für das Forschungsteam, dass die Konstruktion alltagstauglich ist. Es gibt bereits größere, schwerere Modelle, die in der klinischen Rehabilitation für das Training benutzt werden. Das Gerät, das an der TU Wien entwickelt wird, soll allerdings möglichst ohne fremde Hilfe zu Hause eingesetzt werden. „Das bedeutet auch, dass wir auf komplizierte Kalibrierung und unnötig aufwändige Elektronik verzichten“, sagt Margit Gföhler.

Einsatz im Rehabilitationszentrum

Derzeit ist das Exoskelett im italienischen Rehabilitationszentrum Villa Beretta in Costamasnaga, Italien im Einsatz. Im Rahmen einer klinischen Studie verwenden es dort Patienten mit neurodegenerativen Nervenerkrankungen oder hoher Querschnittlähmung als Unterstützung, um den möglichen Bewegungsraum des Armes zu vergrößern.

Künstliche Aktivierung der Muskulatur durch Neuromuskuläre Elektrostimulation macht das Exoskelett auch für Menschen interessant, die ihre Arme gar nicht mehr bewegen können. Entweder werden Signale von anderen Muskeln verstärkt, oder man sucht über Augenbewegungen aus einem Computermenü die Bewegungsmuster aus, die man ausführen möchte. „Die mechanischen Freiheitsgrade unseres Exoskelettes sind genau jene, die auch elektrisch stimuliert werden können“, sagt Margit Gföhler, „das Exoskelett wurde von vornherein speziell auf Elektrostimulation vorbereitet.“ Auch die Elektrostimulation wird derzeit im Reha-Zentrum Villa Beretta getestet. So können auch Personen, die nur noch über minimale motorischen Restfunktionen verfügen, wichtige Bewegungen des Alltags wieder selbstständig durchführen – etwa alleine einen Becher zum Mund führen und daraus trinken. (Florian Aigner)

Externer Link: www.tuwien.ac.at

Molekularer Informationsspeicher mit Spin

Presseinformation der Universität Göttingen vom 24.01.2013

Neue Möglichkeit der Datenspeicherung entwickelt – „Durchbruch in der organischen Spinelektronik“

(pug) Ein internationales Forscherteam mit Beteiligung der Universität Göttingen hat eine Möglichkeit gefunden, Datenmengen von bis zu einem Petabyte pro Quadratzoll zu speichern. Ein Petabyte entspricht 1.000 Terabyte beziehungsweise einer Million Gigabyte. Den Wissenschaftlern gelang es, Informationen, die im Spin eines Elektrons gespeichert sind, bei Raumtemperatur in einem organischen Molekül zu speichern und auszulesen. Die Ergebnisse sind heute in der renommierten Fachzeitschrift Nature erschienen.

Elementarteilchen, viele Atomkerne sowie Atome mit bestimmten Elektronenkonfigurationen besitzen einen sogenannten Spin, der die Rotation um die eigene Achse bezeichnet. Dies ermöglicht eine alternative Form der elektronischen Datenverarbeitung, die „Spinelektronik“. Die Wissenschaftler entwickelten ein spezielles Molekül, das in ihrem elektronischen Bauelement als Speicher diente: Sie fügten unmagnetische Kohlenstoffatome, die in drei Benzolringen miteinander verbunden waren, zu einer Einheit zusammen. Mithilfe einer chemischen Spin-Injektion fügten sie ein ungepaartes Elektron hinzu, das einen Spin trägt. Dieses kann genutzt werden, um Informationen „0“ und „1“ zu speichern, indem der Spin des Elektrons nach oben oder nach unten zeigt. Darüber hinaus gelang es den Forschern mithilfe einer magnetischen Referenzelektrode, die gespeicherten Informationen bei Raumtemperatur wieder auszulesen.

„Die Spinspeicherung auf einem organischen Material und das erfolgreiche Auslesen bei Raumtemperatur sind ein Durchbruch in der organischen Spinelektronik“, so der Göttinger Physiker Prof. Dr. Markus Münzenberg. „Auf flexiblen Plastikbauteilen installierte Spinelektronik kennt man bereits von organischen LEDs, die heutzutage in Displays, Fernsehbildschirmen und Smartphones eingesetzt werden. Unsere nun entwickelten Moleküleinheiten haben ein ähnliches Potenzial.“ Neben Physikern und Chemikern der Universität Göttingen waren Wissenschaftler des Indian Institute of Science Education and Research in Kalkutta, des Massachusetts Institute of Technology (MIT) in den USA und des Forschungszentrums Jülich an der Studie beteiligt.

Originalveröffentlichung:
K. Raman et al. Interface-engineered templates for molecular spin memory devices. Nature 2013. Doi: 10.1038/nature11719.

Externer Link: www.uni-goettingen.de

Neuer Katalysator für die Wasserspaltung

Presseinformation der LMU München vom 23.01.2013

Energie aus Sonnenlicht

Die Spaltung von Wasser mittels Sonnenlicht ist eine vielversprechende Option für die Gewinnung erneuerbarer Energie. Neue Katalysatoren auf der Basis von Kohlenstoffnitriden könnten die Entwicklung dieser Technologie vorantreiben.

Wasserstoff gilt als Energieträger der Zukunft, da er einerseits eine hohe Energiedichte aufweist und andererseits eine umweltverträgliche Energiequelle darstellt. Die photokatalytische Wasserspaltung – die Spaltung von Wasser in Wasserstoff und Sauerstoff mittels Sonnenlicht – stellt dabei eine technologisch wichtige Alternative zur energieaufwendigen elektrolytischen Wasserspaltung dar. Ein zentrales Anliegen der Materialchemie ist daher die Entwicklung umweltfreundlicher, preiswerter und stabiler Photokatalysatoren.

Kohlenstoffnitride waren lange nur für ihre strukturelle Vielfalt bekannt. „Aufgrund ihrer interessanten elektronischen Eigenschaften ist der Einsatz derartiger polymerer Halbleiter aber auch in der Photokatalyse vielversprechend“, sagt Professor Bettina Lotsch, LMU-Chemikerin und Leiterin einer Arbeitsgruppe am MPI für Festkörperforschung in Stuttgart. Kohlenstoffnitride sind chemisch und thermisch stabil, haben ein geringes Eigengewicht und können relativ einfach und kostengünstig synthetisiert werden – dies macht sie den meist teureren und vor allem weniger umweltfreundlichen schwermetallhaltigen Photokatalysatoren überlegen.

Chemische Modifizierung steigert photokatalytische Aktivität um ein Vielfaches

Lotsch entwickelte mit ihrem Team um die Doktoranden Katharina Schwinghammer und Brian Tuffy in Zusammenarbeit mit Münchner und Bayreuther Kollegen nun eine neue Klasse von Kohlenstoffnitrid-Photokatalysatoren, deren photokatalytische Aktivität im sichtbaren Bereich des solaren Spektrums signifikant besser ist als diejenige des bisher meist untersuchten Kohlenstoffnitrids Melon, einem eindimensionalen Polymer aus Heptazin-Einheiten.

Der neue Katalysator basiert auf Poly(triazinimid) (PTI), das eine zweidimensionale, aus Triazin-Einheiten aufgebaute Grundstruktur besitzt und selbst unmodifiziert dem bislang aktivsten Kohlenstoffnitrid-Photokatalysator Melon ebenbürtig ist. Eine entscheidende Verbesserung erreichten die Wissenschaftler durch die Beimengung einer niedermolekularen organischen Verbindung – dies steigerte die Aktivität von PTI noch einmal um das 5- 6-fache.

Damit die photokatalytische Wasserspaltung nutzbar gemacht werden kann, muss die Effizienz dieser Reaktion deutlich erhöht werden. Die bisherigen Katalysatoren sind für eine technische Nutzung noch nicht aktiv genug. Der nun von Lotschs Gruppe entwickelte polymere Katalysator könnte diesem spannenden Forschungsfeld neue Möglichkeiten eröffnen. „Ein großer Vorteil von  PTI ist seine zweidimensionale Struktur und gute Verfügbarkeit, die das Spektrum möglicher Kohlenstoffnitrid-Photokatalysatoren erweitert und auf eine breitere Grundlage stellt“, sagt Lotsch. (göd)

Publikation:
Angewandte Chemie International Edition, 2013

Externer Link: www.uni-muenchen.de