Elektrosignale gegen den Schmerz

Presseaussendung der TU Wien vom 25.06.2012

In der Schmerz- und Wundtherapie werden elektrische Impulse eingesetzt, die am Ohr freie Nervenendigungen stimulieren. Elektrotechnische Entwicklungen der TU Wien treiben diese neuartige Therapie voran.

Elektronik, die in unser Nervensystem eingreift und Erstaunliches bewirkt – das klingt fast nach Science-Fiction. An der TU Wien wird allerdings an elektronischen Geräten gearbeitet, die bereits jetzt spürbare Verbesserungen bei Schmerzen oder Durchblutungsstörungen bringen, ganz ohne pharmakologischen Nebenwirkungen. Winzige Nadeln im Ohr leiten spezielle elektrische Impulse in den Körper – die Auswirkungen davon können mit sensibler Messelektronik nun erstmals sofort sichtbar gemacht werden.

Gegen Schmerz, für bessere Durchblutung

Professor Eugenijus Kaniusas leitet die Gruppe für Biosensorik (Institute of Electrodynamics, Microwave and Circuit Engineering) an der TU Wien. Dort werden elektronische Methoden entwickelt, Messdaten über den menschlichen Körper aufzuzeichnen und zu verarbeiten. Durch die nun entwickelten Geräte soll aber nicht nur gemessen, sondern auch direkt in die physiologischen Mechanismen des Körpers eingegriffen werden. Kaniusas arbeitet dabei mit Dr. Jozsef Constantin Széles von der Medizinischen Universität Wien zusammen. Széles erfand und entwickelte eine Methode, mit elektrischer Stimulation über mehrere Tage hindurch Schmerzen zu lindern und die Durchblutung zu fördern. Die Grundidee dieses Verfahrens wurde bereits erfolgreich in klinischen Studien getestet, soll zukünftig durch verbesserte Elektronik und objektive Messtechniken aber noch deutlich wirkungsvoller werden.

Elektronisches Gerät am Ohr

Das Gerät, das an der TU Wien im Rahmen der Kooperation mit Széles entwickelt wird, trägt man direkt am Körper, nahe am Ohr. Dort verlaufen nämlich auch Fasern des Nervus Vagus, der größte Nerv des Parasympathikus. Der Parasympathikus ist ein Teil des autonomen Nervensystems, das für die Steuerung der inneren Organe und des Blutkreislaufs verantwortlich ist. Er wird (als Gegenspieler des aktivierenden Sympathikus) mit Ruhe und Regeneration in Verbindung gebracht. Das Gerät gibt über kleine Titannadeln elektrische Impulse an die Verzweigungen des Nervus Vagus ab und kann ganz einfach von außen drahtlos gesteuert werden – etwa über ein Smartphone.

Wissenschaftliche Daten sammeln

Mit gewöhnlicher Akupunktur oder mit alternativen Heilmethoden hat die neue Methode nichts zu tun, denn stimuliert werden parasymphatische und symphatische freie Nervenendigungen am Ohr. Die Wirkung der Elektrostimulation der Nerven lässt sich direkt überprüfen: „Unsere elektrischen Impulse beeinflussen den Körper auf eine nachvollziehbare Weise, deren Auswirkungen man sofort messen kann“, betont Eugenijus Kaniusas. Zunächst muss die richtige Einstichregion am Ohr gefunden werden. An der TU Wien wurden in Kooperation mit der MedUni Wien Geräte entwickelt, die zur genauen Auffindung des Nervus Vagus dienen.

Maßgeschneiderte Elektrosignale

Den Nerv einfach nur elektrisch zu stimulieren genügt nicht – es kommt darauf an, wie man es macht: „In unseren Experimenten fanden wir heraus, dass die genaue Form der elektrischen Impulsabfolgen entscheidend für den optimalen Erfolg ist“, sagt Eugenijus Kaniusas. An einer Patientengruppe wurden unterschiedliche elektrische Signalformen getestet, um die wirksamsten Impulse zu ermitteln. Die erforderlichen Nerven-Signale hängen auch von der Art des Schmerzes ab: Chronische Schmerzen sprechen auf andere Elektro-Signale an als akuter Schmerz.

Weitere Forschung nötig

Bei der Überprüfung des Erfolgs kann man auf elektronische Messmethoden zurückgreifen: „Mit speziellen Geräten können wir die Herzratenvariabilität messen“, sagt Kaniusas. Daraus lassen sich dann viele Informationen berechnen – auch über das Schmerzempfinden. Damit steht eine objektive Messgröße zur Verfügung, die man laufend überwachen kann. Bei Bedarf kann die Form der elektrischen Stimulation angepasst werden.

Stimulation statt Amputation

Große Erfolge zeigen sich auch bei Patientengruppen mit schlechter peripherer Durchblutung („Peripheral Vascular Disease“). „Wer unter dieser Krankheit leidet, ist oft in der Beweglichkeit stark eingeschränkt, auch mit der Wundheilung gibt es bei schlechter Durchblutung oft schwere Probleme“, sagt Eugenijus Kaniusas. Im schlimmsten Fall müssen sogar Extremitäten amputiert werden. Elektrostimulation kann hier aber sehr hilfreich sein: „Wir können die Steigerung der Durchblutung im Fuß durch die elektrischen Impulse wiederholt ein- und ausschalten – der Effekt ist sehr deutlich zu sehen“, berichtet Kaniusas.

Langfristig sollen Geräte entwickelt werden, die noch flexibler sind und sich auch kurzfristig an Herzschlag und Atmung anpassen, um so die therapeutische Wirkung weiterhin zu steigern. Auch wenn es bereits klinische Studien gibt, in denen die Wirksamkeit der Elektrostimulation bestätigt wurde, sollen noch weitere Studien durchgeführt werden. „Je mehr Daten wir sammeln können, umso bessere Ergebnisse werden wir erzielen“, meint Eugenijus Kaniusas. (Florian Aigner)

Externer Link: www.tuwien.ac.at

Gummidichtungen halten oft besser dicht als bisher vermutet

Pressemitteilung der Universität des Saarlandes vom 22.06.2012

Was in einer Dichtung passiert, wenn sie zu tropfen beginnt, haben Wissenschaftler vom Forschungszentrum Jülich und der Universität des Saarlandes genauer untersucht. Ihre Simulationen auf Jülicher Superrechnern haben Überraschendes gezeigt. Die untersuchten Gummiringe und anderen Dichtungen schließen nämlich oft dichter ab, als man bisher durch theoretische Berechnungen vorhergesagt hat. Sobald ihre Oberfläche zu mehr als 42 Prozent an dem Anschlussstück anliegt, tritt keine Flüssigkeit mehr aus. Bislang war man von höheren Werten ausgegangen. Ihre Ergebnisse haben die Wissenschaftler in der aktuellen Ausgabe der internationalen Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Dichtungen erfüllen eine wichtige Funktion in allen möglichen Geräten, vom Raumschiff bis zum Wasserhahn. Die geläufigste Form besteht aus einem Gummiring und zwei festen Anschlussteilen. „Wie gut Flüssigkeiten zurückgehalten werden, hängt in erster Linie davon ab, wie eng die Dichtung anliegt. Da alle Oberflächen auf mikroskopischer Ebene uneben und rau sind, liegen Dichtungsring und Anschlussstück nie völlig lückenlos aufeinander“, erklärt Martin Müser, Professor für Materialsimulation der Universität des Saarlandes und Leiter einer Forschergruppe am Forschungszentrums Jülich. In die kleinen Poren und Kanäle an der Kontaktstelle dringe Flüssigkeit ein, die über kleine Wege auch nach außen gelangen könne. Diese Tropfen könne man nur verhindern, indem man die Dichtung fester anziehe. „Das elastische Gummi wird dann in die mikroskopischen Unebenheiten gepresst. Dadurch vergrößert man die Kontaktfläche und verschließt damit weitere Lücken, so dass weniger Flüssigkeit entweichen kann“, erläutert Müser, der gemeinsam mit Bo N. J. Persson am Forschungszentrum Jülich die Vorgänge in den Dichtungen simuliert hat.

Die Wissenschaftler wollten besser verstehen, was genau passiert, wenn eine Dichtung leckt. Theoretische Modelle konnten die Zusammenhänge bisher nur unzureichend beschreiben. Ältere Modelle vernachlässigten die Elastizität des Dichtungsmaterials, anders als die aktuelle Theorie von Bo N. J. Persson, dem Mitautor der neuen Studie. Seine Theorie enthielt allerdings einige nicht bestätigte Annahmen. „Die Vorhersagen waren besser, als sie sein sollten. Mit den Simulationen wollten wir die Vorgänge auf mikroskopischer Ebene besser verstehen, als es experimentell möglich ist“, begründet Martin Müser.

Das Ergebnis war für auch für die Wissenschaftler überraschend. „Nur 42 Prozent der Oberflächen von Dichtung und Anschlussstück müssen sich direkt berühren, um die Verbindung undurchlässig abzuschließen. Bisherige Theorien waren aus Symmetriegründen von 50 Prozent ausgegangen.“, sagt der Materialforscher.

In ihren Computersimulationen konnten die Wissenschaftler die Kontaktfläche präziser ermitteln, weil sie auch die Elastizität des Dichtungsmaterials einbezogen. Dabei zeigte sich, dass mikroskopisch kleine Erhöhungen der Oberfläche, die in das weiche Gummi gepresst werden, die Dichtung nicht vollständig berühren. Dadurch entstehen weitere kleine Lücken. „Das Ergebnis könnte dazu beitragen, die Durchlässigkeit von alternden Dichtungen besser einzuschätzen“, hofft Martin Müser. Die Jülicher Forschungsgruppe arbeitet bereits mit einem Unternehmen aus der Medizintechnik zusammen, um die Leckrate von Gummistopfen für Spritzen zu berechnen.

Originalveröffentlichung:
Wolf B. Dapp, Andreas Lücke, Bo N. J. Persson, Martin H. Müser
Self-affine elastic contacts: percolation and leakage, Phys. Rev. Lett. 108, 244301 (2012), DOI: 10.1103/Physics.5.66

Externer Link: www.uni-saarland.de

Graphen-Forschung

Presseinformation der LMU München vom 21.06.2012

Lichtwellen im Kohlenstoff-Netz fangen

Graphen ist das wohl dünnste Netz der Welt – und zeichnet sich doch durch seine Festigkeit aus. Eine neue Studie zeigt, dass dieses zweidimensionale Gitter aus Kohlenstoff-Atomen sogar Licht gefangen nehmen kann.

Dünn, dünner, Graphen: Bei diesem Material ordnen sich Kohlenstoff-Atome zu sechseckigen Maschen in einem nur zweidimensionalen Gitter an. Das wohl dünnste Netz der Welt ist aber sehr stabil und kann sogar Strom leiten. Andre Geim und Konstantin Novoselov erhielten für diese Entdeckung den Nobelpreis für Physik im Jahr 2010. Graphen könnte das Silizium als Basis für außerordentlich kleine und schnelle Transistoren ablösen und wird deshalb intensiv erforscht.

Stromleitend ist Graphen, weil Elektronen in seinem Netz gefangen sind und sich dabei mit großer Freiheit bewegen. Ein internationales Team um den US-amerikanischen Forscher Dimitri Basov hat nun aber gezeigt, dass sich überraschenderweise auch Photonen vom Graphennetz einfangen lassen und auf ihm bewegen. „Die Lichtwellen können dort sogar gesteuert werden“, sagt der Physiker Dr. Fritz Keilmann, der der LMU, dem Center for Nanoscience (CeNS) sowie dem Max Planck Institut für Quantenoptik (MPQ) angehört, und maßgeblich zu dieser Arbeit beigetragen hat.

Computer auch per Licht schalten

Die Steuerung erfolgt direkt über elektrische Felder und Stöme. Demnach könnte künftig in Graphen das Licht durch Strom und möglicherweise auch Strom durch Licht manipuliert werden, und dies auf nanoskopisch kleinen Leitungsbahnen von Millionstel Millimetern und mit extrem kurzen Schaltzeiten von weniger als einer Pikosekunde – also 0,000000000001 Sekunden. „Möglicherweise lassen sich auf dieser Grundlage Computer entwickeln, bei denen Graphen-Transistoren mit Strom wie mit Licht geschaltet werden können“, sagt Keilmann.

Schon länger hatten Berechnungen vermuten lassen, dass Photonen entlang von Graphen geleitet werden können. Es sollte sich dabei um Photonen des langwelligen Infrarotlichts handeln, die dabei aber enorm gebremst laufen würden. Dies wäre ihrer Elektronenlast zu verdanken: Photonen und Elektronen sollten zusammen eine Art Mischteilchen bilden. Diese Plasmonen konnten bislang aber nicht untersucht werden, weil der Impuls der anregenden Photonen viel zu niedrig war.

Photonen auf die Spitze getrieben

Den Durchbruch brachte eine nanometrisch feine Metallspitze, an deren Spitze sich das Infrarotlicht – ähnlich wie bei einem Blitzableiter – konzentriert. Die Infrarot-Photonen bekommen so einen Impuls, der bis zu 60-mal erhöht ist. Sie können sich mit diesem „Schub“ problemlos in Plasmonen umwandeln und von der Metallspitze weg auf dem Graphen „loslaufen“. Die hierfür nötige Apparatur stand bereits in Form eines kommerziellen „Infrarot-Nahfeldmikroskops“ zur Verfügung, dessen feine Abtastspitze normalerweise benutzt wird, um Rasterbilder der chemischen Zusammensetzung aufzunehmen.

In diesem Fall wurde nur ein einziges Rasterbild vom Rand der Graphenprobe aufgenommen. Die Reflektion der Plasmonen an diesem Rand erzeugte ein Interferenzmuster, das die Existenz dieser Mischteilchen ableiten und sogar ihre interessanten Eigenschaften ablesen ließ. Dazu gehören unter anderem die Stärke der Reflektion am Graphenrand sowie eine für Anwendungen besonders wichtige elektrische Geschwindigkeitsänderung. „Die lang gesuchte elektrische Kontrolle von Licht ist damit Realität geworden“, sagt Keilmann.

Eine Arbeitsgruppe in Spanien ist unabhängig zum gleichen Ergebnis gekommen, und zwar für einen aus der Gasphase abgeschiedenen statt dem hier von Graphit abgezogenen Graphenfilm. Ihr Bericht wird in der gleichen Ausgabe des Fachmagazins Nature publiziert werden und so die Befunde sowie deren Bedeutung für die Nanoelektronik bestärken. (suwe)

Publikation:
Nature, 20. Juni 2012

Externer Link: www.uni-muenchen.de

Organische Leuchtdioden (OLEDs) als Kompassnadel

Pressemitteilung der Universität Regensburg vom 11.06.2012

Forscher entwickeln neuartige Magnetsensoren

OLEDs gehören zu den Technologien der Zukunft. Schon jetzt finden sie sich in vielen Display- und Beleuchtungsanwendungen. Denn OLEDs erzeugen ein brillantes Bild, sind relativ einfach herzustellen, sehr dünn, energiesparend und sogar auf flexiblen Trägerfolien einsetzbar. Forscher der Universität Regensburg konnten jetzt auch zeigen, dass die elektrische Lichterzeugung dabei sehr stark von magnetischen Feldern abhängt. Damit lassen sich OLEDs als empfindliche Magnetsensoren einsetzen – beispielsweise, um in Navigationsgeräten das Erdmagnetfeld zu vermessen. Prof. Dr. John Lupton vom Institut für Experimentelle und Angewandte Physik der Universität Regensburg entwickelte in Kooperation mit Wissenschaftlern der University of Utah und der University of Sydney ein entsprechendes Gerät, das die Eigenschaften von OLEDs mit der Präzision herkömmlicher Magnetsensoren verbindet. Die Einheit benötigt keine Kalibrierung und funktioniert auch bei extremen Temperaturen.

Für die Umwandlung von Strom in Licht bringen OLEDs positive und negative Ladungen zusammen, sogenannte Elektronen und Löcher. Diese Elementarladungen haben neben der elektrischen Eigenschaft noch ein weiteres Merkmal: So verhält sich ein Elektron mikroskopisch gesehen wie ein kleiner Stabmagnet. Richten sich viele dieser Stabmagnete zusammen in die gleiche Richtung aus, so spricht man von Magnetismus. Während im Alltag die statischen Eigenschaften magnetischer Felder dominieren, so sind für Physiker besonders die dynamischen magnetischen Prozesse – wie beispielsweise die Spinresonanz – interessant. Diese lässt sich leicht veranschaulichen. Läuft man mit einem Kompass unter einer Stromleitung durch, so schlägt die Kompassnadel aus, da der Strom ein Magnetfeld erzeugt, das das Erdmagnetfeld überlagert. Ändert sich die Stromrichtung nun regelmäßig, so ist es möglich, die Kompassnadel gleichmäßig auszulenken oder gar zum Rotieren zu bringen.

Eine solche Rotation können die Stabmagnete der Elektronen auch in OLEDs erfahren. Wie bei einer Reihe von Stabmagneten hängt hier die Wechselwirkung zwischen den Magneten von der jeweiligen Richtung ab: Zwei Nordpole stoßen sich ab, Nord- und Südpol ziehen sich an. Mit einem stromdurchflossenen Draht können die Elektronen in der OLED nun zum Schwingen angeregt werden. Kleinste Änderungen in Magnetfeldern können als eine Änderung der Schwingung exakt ausgemessen werden. Somit wird aus einem – OLED-basierten – Display eines Navigationsgeräts das Navigationsinstrument selbst.

In organischen Halbleitern, aus denen OLEDs hergestellt werden, können Elektronen ihre Eigenschaften als Stabmagneten besonders gut zur Schau stellen. OLED-basierte Magnetfeldsensoren sind deshalb auch außerordentlich empfindlich. Solche Sensoren könnten auch in medizinisch-diagnostischen Verfahren Anwendung finden. So ließe sich mit einem OLED-Display ein magnetisches Feld so genau abbilden, dass sogar biologische Prozesse untersucht werden könnten.

Die Ergebnisse der Regensburger Physiker werden in der renommierten Fachzeitschrift „Nature Communications“ veröffentlicht (DOI: 10.1038/ncomms1895). (Alexander Schlaak)

Externer Link: www.uni-regensburg.de

Neue Röntgentechnik mit höherer Schärfe und reduzierter Strahlendosis

Pressemitteilung der TU München vom 08.06.2012

3-D-Aufnahmen von Körpergewebe:

Wissenschaftler haben eine neue Röntgentechnik entwickelt, die den Kontrast von Computertomographen (CT) drastisch verbessert und zugleich die während der Aufnahme freigesetzte Strahlendosis reduziert (Proceedings of the National Academy of Sciences). Die Methode basiert auf einer neuartigen Kombination der Gitter-Interferometrie, die sich durch hohen Kontrast auszeichnet, mit der Computertomographie, die dreidimensionale Röntgenaufnahmen erzeugt. Die Technik kann auch im Krankenhaus eingesetzt werden, wo sich Röntgen-Quelle und Detektor während eines Scans kontinuierlich um den Patienten drehen müssen.

Bei einer klassischen Röntgenaufnahme wird die Intensität eines Röntgenstrahls hinter dem Untersuchungsobjekt aufgezeichnet. Die Bildgebung beruht dabei auf Variationen in der Absorption der Röntgenstrahlung in den verschiedenen Bestandteilen des untersuchten Körpergewebes. Im medizinischen Bereich ist dieses Verfahren oft nur eingeschränkt verwendbar, zum Beispiel wenn Krebszellen nur wenig Kontrast zu gesundem Gewebe zeigen.

Neue Röntgentechniken setzen an diesem Problem an: Sie verlassen sich nicht ausschließlich auf die Absorption, sondern verbessern den Kontrast durch die Beobachtung anderer Wechselwirkungen der Röntgenstrahlung mit Materie. Die sogenannte Gitter-Interferometrie setzt zum Beispiel Mikrostrukturen als optische Gitter für Röntgenstrahlen ein. In Kombination mit einem Röntgentomographen können mit diesem vielversprechenden Verfahren virtuelle Schnittbilder und damit dreidimensionale Darstellungen eines Objekts erzeugt werden.

Einem Wissenschaftlerteam um Irene Zanette von der Technischen Universität München und der European Synchrotron Radiation Facility (ESRF) in Grenoble ist nun mit der Entwicklung des sogenannten Schiebefenster-Verfahrens ein wichtiger Schritt in Richtung klinische Anwendung geglückt. „Wir wollten die Lücke zwischen dem außerordentlichen Potenzial dieser Technik und ihrer klinischen Anwendung schließen“, erklärt Timm Weitkamp, Co-Autor der Studie vom Synchrotron SOLEIL. „Das Schiebefenster-Verfahren verkürzt die Messzeit und reduziert daher die Dosis. Es ermöglicht zugleich, Röntgenquelle und Detektor, wie in klinischen Tomographen notwendig, kontinuierlich um den Patienten zu drehen, anstatt, wie bisher in der Gitter-Interferometrie erforderlich, die Drehung bei jeder Einzelaufnahme zu unterbrechen“, so Weitkamp.

Die außergewöhnliche Auflösung der neuen Technik demonstrierten die Wissenschaftler mit Aufnahmen der Weichteile einer Ratte, in denen auch kleinste Details wiedergegeben werden wie z.B. einzelne Hodenkanälchen, winzige Röhren, in denen Spermien gebildet werden. „Diese Strukturen sind in normalen Tomographieaufnahmen schlichtweg unsichtbar, selbst wenn in hoher Auflösung gemessen wird, nicht nur wegen ihrer geringen Größe, sondern vor allem wegen mangelnden Kontrasts,“ fügt Irene Zanette hinzu, der von der ESRF für ihre Arbeiten kürzlich der Jahrespreis für junge Wissenschaftler verliehen wurde.

Die Gitter-Interferometrie erlaubt neben der Phasenkontrast auch die Dunkelfeldtechnik anzuwenden. Diese zeigt winzige Strukturen im Objekt auf, die kleiner als ein einzelnes Pixel sind, zum Beispiel Fasern, Risse oder Poren. Die Veröffentlichung in PNAS illustriert diese Fähigkeit mit der Röntgenaufnahme einer in Bernstein eingeschlossenen Wespe, deren Flügel in voller Länge sichtbar sind. Frühere Röntgenaufnahmen dieses Fossils hatten dieses Detail nicht abbilden können. Dieses Ergebnis regt den Einsatz der Dunkelfeld-Tomographie in Paläontologie und Materialforschung sowie im medizinischen Bereich an, wo z.B. winzige Risse in Knochen oder kleinste Fasern im Körpergewebe sichtbar gemacht werden können.

Die Wissenschaftler sehen deshalb für die neue Bildgebungstechnik vielfältige Potenziale: In der Biologie, den Materialwissenschaften und der Paläontologie könnte die Technik zum Einsatz kommen, ebenso möglicherweise in einer neuen Generation Computertomographen im Krankenhaus.

Publikation:
I. Zanette, M. Bech, A. Rack, G. Le Duc, P. Tafforeau, C. David, J. Mohr, F. Pfeiffer and T. Weitkamp, Trimodal low-dose X-ray tomography, Proc. Natl. Acad. Sci. USA (2012), 4-8 June 2012; doi: 10.1073/pnas.1117861109

Externer Link: www.tu-muenchen.de