Eine neue Rolle für Membranbausteine

Pressemitteilung der Universität Heidelberg vom 09.01.2012

Heidelberger Forscher entdecken unerwartete Genauigkeit der Wechselwirkung von Membranbausteinen

Biochemiker der Universität Heidelberg haben mit Hilfe eines neu entwickelten Verfahrens Licht in die bisher weitgehend unerforschte Funktionsweise von Membranbausteinen gebracht. Die Wissenschaftler am Biochemie-Zentrum der Universität Heidelberg (BZH) entdeckten in Zusammenarbeit mit Bioinformatikern der Universität Stockholm in der biologischen Membran, die eine Zelle eines Organismus umgibt, eine hochspezifische Erkennung und Wechselwirkung zwischen dem wasserabstoßenden Teil eines Proteins und eines Lipids. Der Lipidbaustein reguliert in der wasserabstoßenden Phase von biologischen Membranen einen intrazellulären Transportprozess. Bisher hatte die Forschung eine derartige Wechselwirkung in Membranen für nicht wahrscheinlich gehalten. Die Forschungsergebnisse wurden in der Fachzeitschrift „Nature“ veröffentlicht.

„Diese neue und unerwartete Rolle eines Membran-Lipidbausteins ist deshalb aufregend, weil biologische Membranen aus mehr als 1.000 verschiedenen Lipidbausteinen aufgebaut sind, die exakt mit einigen der mehr als 10.000 Membranproteine binden und damit deren Aktivität regulieren können“, erklärt Prof. Dr. Felix Wieland vom BZH, der die Forschergruppe zusammen mit Dr. Britta Brügger leitet. „Mit diesen Befunden ist die Tür offen zur Erforschung eines neuartigen molekularen Mechanismus der Kontrolle zellulärer Aktivitäten.“ Die Heidelberger Wissenschaftler arbeiteten bei ihren Untersuchungen mit den Forschungsgruppen von Prof. Dr. Gunnar von Heijne und Prof. Dr. Erik Lindahl in Stockholm zusammen.

Organismen funktionieren durch eine Vielzahl exakter Bindungen unterschiedlicher biologischer Bausteine miteinander. Wie die Grundprinzipien solcher hochspezifischer Wechselwirkungen im wässrigen Milieu in Zellen funktionieren, ist der Wissenschaft bereits bekannt. „Im Gegensatz dazu stellt man sich den inneren, wasserabstoßenden Raum biologischer Membranen weitgehend wie ein Öl vor, in dem Proteine herumschwimmen“, erläutert Prof. Wieland. „Die Prinzipien der spezifischen Erkennung von Bausteinen in diesem ‚öligen Meer aus Lipiden‘ sind bisher wenig bekannt. Das liegt daran, dass die Prinzipien der spezifischen Bindung im Wässrigen nicht auf nicht-wässrige Phasen anwendbar sind, außerdem stehen noch nicht lange empfindliche Methoden zur Bestimmung von Membran-Lipiden zur Verfügung.“

Um zu verstehen, wie der Transport von Membranvesikeln in einer Zelle funktioniert, arbeiteten die Wissenschaftler Methoden aus, mit denen man alle Lipidbausteine einer biologischen Membran mit hoher Empfindlichkeit auch mengenmäßig genau erfassen kann. „Bei der Untersuchung solcher Vesikel fiel uns auf, dass ihre Lipidzusammensetzung sich von den Membranen unterschied, aus denen sie gebildet worden waren“, erläutert Dr. Brügger. „Dieser Unterschied konnte nur erklärt werden, wenn man annahm, dass in der Membran eine hochspezifische Erkennung zwischen den Bausteinen möglich ist.“ Die Forscher entwickelten daher ein Verfahren zur Vermessung solcher Wechselwirkungen in der Lipidphase im Reagenzglas. Damit konnten sie Befunde aus der lebenden Zelle bestätigen und ein Strukturmerkmal im betreffenden Protein charakterisieren, das für die Spezifität der Wechselwirkung verantwortlich ist. „‚Transplantiert‘ man diesen Strukturteil in ein anderes Protein, welches vorher nicht in der Lage war, den Lipidbaustein zu erkennen, dann erwirbt dieses Protein die Fähigkeit seiner spezifischen Erkennung“, erklärt Prof. Wieland.

Die Forscher erkannten auch eine Funktion dieser exakten Wechselwirkung: Durch seine Bindung stimuliert das Lipid sein Protein dazu, sich mit einem identischen Protein zusammenzuschließen. Nur das daraus resultierende „Doppelprotein“ kann zur Bildung eines Transportvesikels beitragen. „Der Lipidbaustein übernimmt also die Rolle eines ‚Kofaktors‘ und reguliert damit einen zellulären Prozess“, erklärt Prof. Wieland. Bisher haben die Wissenschaftler in Heidelberg und Stockholm bereits rund 50 Membranprotein-Kandidaten identifiziert, die allein mit den verschiedenen Mitgliedern einer Membranbausteinfamilie ähnlich spezifische Wechselwirkungen eingehen könnten.

Originalpublikation:
F-X. Contreras, A.M. Ernst, P. Haberkant, P. Björkholm, E. Lindahl, B. Gönen, C. Tischer, A. Elofsson, G. von Heijne, C. Thiele, R. Pepperkok, F. Wieland, B. Brügger: Molecular recognition of a single sphingolipid species by a protein’s transmembrane domain. Nature (8. Januar 2012), doi: 10.1038/nature10742

Externer Link: www.uni-heidelberg.de

Rückwärtsgang im Nanotunnel

Presseinformation der LMU München vom 09.01.2012 

Neues Verfahren erleichtert Analyse von Nukleinsäuren

Wie bei Proteinen beeinflusst auch bei Nukleinsäuren – also den Erbmolekülen DNA und RNA – die dreidimensionale Struktur deren Eigenschaften. Die Verwendung von Nanoporen zur Strukturbestimmung ist eine noch junge, aber vielversprechende Technik. Allerdings verhinderten Interaktionen zwischen Protein-Pore und Molekül bisher, das Verhalten selbst einfach strukturierter Moleküle während der Passage durch die Pore – der sogenannten Translokation – quantitativ zu verstehen. Dies ist aber notwendig, um die Technik langfristig für die Strukturbestimmung einsetzen zu können. Einem Forscherteam um LMU-Physiker Professor Ulrich Gerland und Professor Friedrich Simmel, TU München, gelang es nun im Rahmen des Exzellenzclusters „Nanosystems Initiative Munich“ (NIM), ein neues Verfahren zu entwickeln, das die Nukleinsäuren im Rückwärtsgang analysiert und so störende Einflüsse minimiert. Dies erlaubte den Wissenschaftlern, ein theoretisches Modell zu erstellen, das die Translokationsdynamik verschiedener Molekülsequenzen vorhersagen kann.

Die Nukleinsäuren RNA und DNA sind sogenannte Polynukleotide, die aus einer kettenförmigen Abfolge bestimmter Bausteine bestehen. Sofern sie als Einzelstrang vorliegen, können sie zudem sogenannte Sekundärstrukturen ausbilden: Bestimmte Abschnitte des Strangs gehen dann eine Verbindung ein, während das dazwischen liegende Stück eine Schleife bildet. Ist die Schleife kurz, wird die Sekundärstruktur als Haarnadelstruktur bezeichnet. Wie bei Proteinen beeinflusst die Sekundärstruktur auch bei Nukleinsäuren die Moleküleigenschaften, ihre Aufklärung ist daher von großem Interesse. „Um die Sekundärstruktur von RNA und DNA zu untersuchen, werden zunehmend Nanoporen eingesetzt: Man nutzt dabei aus, dass die Moleküle sich bei der Passage durch die engen Poren entfalten müssen und gewinnt Einblick in die Moleküleigenschaften, ohne dass man fluoreszierende Markierungen anbringen muss“, erklärt Gerland, „diese Technik ist noch recht jung und ihre Möglichkeiten sind bei Weitem noch nicht ausgeschöpft“. Nun gelang es den Wissenschaftlern, ein neues experimentelles Verfahren zu entwickeln, das es ermöglicht, die Passage einfach strukturierter Polynukleotide durch Nanoporen quantitativ zu verstehen und in einem theoretischen Modell darzustellen. Bisher war dies nicht möglich, weil Komplikationen wie etwa Interaktionen zwischen der Protein-Nanopore und dem Polynukleotid die Messungen signifikant beeinflussten und schwer vorherzusagen waren. Diese Komplikationen konnten nun durch ein verändertes experimentelles Design minimiert werden. Der entscheidende Trick dabei ist, die Analyse im Rückwärtsgang – das heißt gegenläufig zur Einfädelrichtung – zu machen: Das Polynukleotid wird durch das Anlegen einer elektrischen Spannung zunächst durch die trichterartige Öffnung auf der einen Seite der Pore gefädelt, wobei es sich entfaltet und nach der Passage – der sogenannten Translokation – seine Sekundärstruktur wieder einnimmt. Ein „Anker“ am Ende des Strangs verhindert das vollständige Durchrutschen durch die Pore. Anschließend wird der Strang wieder auf die Startseite zurückgeholt, wobei er sich nun an der engen Seite der Pore entfalten muss – und erst jetzt erfolgt die Analyse. „Im Gegensatz zur Vorwärts-Translokation scheinen dabei keine signifikanten Interaktionen stattzufinden“, sagt Simmel. Mithilfe der Ergebnisse entwickelten die Wissenschaftler ein theoretisches Modell, das die Translokationsdynamik verschiedener Haarnadelstrukturen mithilfe thermodynamisch berechneter sogenannter „freier Energielandschaften“ vorhersagen kann. „Dies kann eine Grundlage sein für die zukünftige Strukturaufklärung auch von komplizierteren Polynukleotid-Sekundärstrukturen“, blickt Gerland in die Zukunft. (göd)

Publikation:
„Quantitative Analysis of the Nanopore Translocation Dynamics of Simple Structured Polynucleotides“;
S. Schink, S. Renner, K. Alim, V. Arnaut, F.C. Simmel, U. Gerland;
Biophysical Journal Volume 102 January 2012 1-11;
doi: 10.1016/j.bpj.2011.11.4011

Externer Link: www.uni-muenchen.de

Nicht nur unsichtbar, sondern auch lautlos

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 20.12.2011

KIT-Forscher haben das Konzept der optischen Tarnkappe auf Schallwellen übertragen.

Die Fortschritte der Nanotechnologie bei den Metamaterialien haben die Tarnkappe aus Mythologie und Science Fiction in die Wirklichkeit gebracht: Lichtwellen lassen sich so um ein zu versteckendes Objekt lenken, dass es aussieht, als wäre dieses nicht da. Was dabei für elektromagnetische Lichtwellen gilt, lässt sich auch auf andere Wellentypen wie Schallwellen übertragen: Einem Forscherteam des Karlsruher Instituts für Technologie (KIT) gelang nun die erste Demonstration einer Tarnkappe für elastische Wellen, wie sie auch in Gitarrensaiten oder Trommelmembranen auftreten.

Es ist, als hätte Harry Potter nun auch einen Tarnumhang, der unHÖRbar macht. „Vielleicht ein Ort der Ruhe und Besinnlichkeit zu den Festtagen“, so die KIT-Forscher, denen es gelungen ist, die der optischen Tarnkappe zugrunde liegenden Konzepte auf Schwingungen in einer Platte im akustischen Bereich zu übertragen.

„Der Schlüssel zur Steuerung von Wellen liegt darin, ihre lokale Geschwindigkeit gezielt beeinflussen zu können – und das abhängig von der ‚Laufrichtung‘ der Welle“, sagt Dr. Nicolas Stenger vom Institut für Angewandte Physik (AP). In seinem Experiment setzte er das mit einem raffiniert mikrostrukturierten Material um, das aus zwei Polymeren zusammengefügt ist: einem weichen und einem harten Kunststoff in einer dünnen Platte. Die Schwingungen dieser Platte liegen im Bereich akustischer Frequenzen, also bei wenigen 100 Hertz, und lassen sich direkt von oben beobachten. Die Wissenschaftler fanden so heraus: Die Schallwellen werden um einen kreisförmigen Bereich in der einen Millimeter dünnen Platte herum gelenkt – sodass Schwingungen weder in diesen Bereich hinein noch heraus dringen. „Im Gegensatz zu anderen bekannten ‚Lärmschutzmaßnahmen‘ werden die Schallwellen hierbei aber weder absorbiert noch reflektiert“, sagt Professor Martin Wegener vom Institut für Angewandte Physik und Koordinator des DFG-Centrums für Funktionelle Nanostrukturen (CFN) am KIT. „Es ist so, als wäre einfach nichts da.“ Ihre Ergebnisse veröffentlichten die beiden Physiker und Professor Manfred Wilhelm vom Institut für Technische Chemie und Polymerchemie des KIT jetzt in der Fachzeitschrift „Physical Review Letters“.

Ihre Grundidee veranschaulichen die Wissenschaftler mit einer Geschichte: Eine kreisförmige Stadt litt unter dem lärmenden Autoverkehr durch ihr Zentrum. Schließlich kam der Bürgermeister auf die Idee, eine Geschwindigkeitsbeschränkung für Autos einzuführen, die zentral auf die Stadt zu fahren: Je näher die Autos dem Stadtbereich kämen, umso langsamer mussten sie fahren. Gleichzeitig ließ der Bürgermeister Kreisstraßen um die Stadt herum bauen, auf denen man sogar schneller fahren durfte als sonst üblich. Auf diese Weise konnten die Autos zunächst auf die Stadt zu fahren und dann schnell um sie herum, sodass sie am Ende in der gleichen Richtung wieder herauskamen. Dabei brauchten sie genau so viel Zeit wie ganz ohne Stadt – von außen betrachtet wirkte es so, als wäre die Stadt einfach nicht da. (le)

Externer Link: www.kit.edu

An der Grenze der Reibung

Pressemitteilung der Universität Stuttgart vom 20.12.2011

Genaue Einblicke, wie zwei mikroskopische Flächen übereinander gleiten, könnten helfen, reibungsarme Oberflächen herzustellen

Das Problem gibt es im Großen wie im Kleinen, und schon den alten Ägyptern machte es zu schaffen. Doch während Physiker die Reibung etwa eines Steinquaders, den Arbeiter zu einer Pyramide ziehen, bereits seit längerem gut verstehen, können sie Reibung in mikroskopischen Dimensionen erst jetzt im Detail erklären. Forscher der Universität Stuttgart und des Max-Planck-Instituts für intelligente Systeme ebenfalls in Stuttgart haben in einem ausgeklügelten Experiment eine Lage regelmäßig angeordneter Kunststoffkügelchen über einen künstlichen Kristall aus Licht gezogen. Auf diese Weise konnten sie im Detail beobachten, wie die Schicht der Kügelchen über den Lichtkristall glitt. Anders als man intuitiv vermuten könnte, bewegen sich die Kügelchen dabei nicht alle gemeinsam. Vielmehr gleiten immer nur einige von ihnen, während die anderen auf ihren Plätzen sitzenbleiben. Diese Beobachtung bestätigt theoretische Voraussagen und erklärt auch, warum die Reibung zwischen mikroskopischen Oberflächen von ihrer atomaren Struktur abhängt.

Reibung bringt der Wirtschaft immense Verluste, ganz ohne Reibung liefe aber gar nichts mehr: Auf etwa acht Prozent des Bruttoinlandprodukts – das sind in Deutschland rund 200 Milliarden Euro – werden die Kosten geschätzt, die etwa durch den Verschleiß aufeinander reibender Maschinenteile verursacht werden. Und dass aneinander reibende Erdplatten in manchen Ländern durch Erdbeben schwere Schäden verursachen, ist dabei noch nicht berücksichtigt. Wenn jedoch Reifen oder Schuhsohlen nicht auf dem Boden haften würden, kämen weder Räder noch Füße voran. Die Faktoren, die bei diesen Beispielen für Reibung zwischen großen Objekten dominieren, haben Physiker bereits seit einiger Zeit recht gut verstanden. Entscheidend sind dabei nämlich die unzähligen kleinen Unebenheiten, die es auf jeder Oberfläche gibt. Sie bewirken, dass sich zwei ausgedehnte Oberflächen immer nur an einzelnen Punkten berühren.

Ganz anders ist das, wenn zwei mikroskopisch kleine Flächen aufeinander reiben. Sie berühren sich – wenn sie entsprechend akkurat gearbeitet sind – mit allen Atomen ihrer Oberfläche. Wie Reibung auf dieser atomaren Ebene stattfindet, haben Stuttgarter Forscher nun erstmals beobachtet. Sie können in ihrem Experiment auch nachvollziehen, warum Oberflächen mit gleicher Struktur stärker aufeinander reiben als solche mit unterschiedlicher Struktur. „Wir schaffen so die Basis, möglichst reibungsarme Mikro- und Nanomaschinen zu konstruieren“, sagt Clemens Bechinger, Professor an der Universität Stuttgart und Fellow des Max-Planck-Instituts für intelligente Systeme.

Verzerrungen der Oberfläche schaffen Bewegung

Sein Team hat aus Laserlicht und elektrisch geladenen Kunststoffkügelchen in einem Wasserbad ein zweidimensionales Modell für zwei aufeinander reibende Oberflächen geschaffen. Da sich die in dem Wasser schwebenden Kügelchen elektrisch abstoßen, ordnen sie sich in einer periodisch geordneten Schicht an. Sie bilden die eine Oberfläche. Die andere Oberfläche erzeugten die Forscher unter der Schicht der Kügelchen mit intensiven Laserstahlen. Deren elektromagnetische Wellen überlagern sie so, dass sich ein Lichtkristall, eine Art optischer Eierkarton bildet. „Die Verwendung einer durch Licht erzeugten Oberfläche ermöglicht es uns erstmals, die Vorgänge an reibenden Flächen direkt mit einer Kamera zu beobachten“, sagt Thomas Bohlein, der das Experiment im Rahmen seiner Doktorarbeit vorgenommen hat. „In Experimenten mit dreidimensionalen Objekten ist das nicht möglich, weil die Grenzschicht nicht zu sehen ist.“

Zunächst stimmte Thomas Bohlein den Abstand der Mulden in dem optischen Eierkarton genau auf den Abstand der Kunststoffkügelchen ab. Eigentlich könnte man vermuten, dass die Flächen sich ruckartig voneinander lösen und neu ineinander einrasten würden, so als würde man versuchen zwei ineinander sitzende Eierkartons übereinander zu ziehen.

Im Experiment zeigte sich allerdings ein anderer Mechanismus. Als das Team die Kunststoff-Kugeln über die optische Oberfläche zog, fingen nicht alle Kügelchen gleichzeitig an zu rutschen, vielmehr bewegten sich die Partikel nur in einzelnen Bereichen. In diesen Arealen verließen die Kügelchen ihre komfortablen Mulden und rückten zudem ein wenig zusammen. Möglich ist das, weil die Kügelchen, aber auch die Atome in einer Oberfläche nicht wie betoniert nebeneinander sitzen, sondern immer ein bisschen Spielraum haben. Die durch den Zug hervorgerufenen Verzerrungen der Kugel- oder Atomschicht passen dann einfach nicht mehr genau auf die Oberfläche des optischen Kristalls. Das machte es viel einfacher, die Teilchen aus ihren Mulden zu ziehen.

Oberflächen mit unterschiedlichen Strukturen gleiten besser

Während die Forscher an der Teilchenlage ziehen, wandern die gestauchten Zonen durch die Kugelschicht, wobei sich nur die Teilchen in diesen Zonen aus ihren Mulden lösen können. „Für die gesamte Lage ist es effizienter, eine Verzerrungszone sukzessive durch die Schicht wandern zu lassen, als alle Kugeln gleichzeitig von einer Mulde zur nächsten zu bewegen“, sagt Clemens Bechinger. Die gestauchten Gebiete, die in Richtung der ziehenden Kraft über die optische Oberfläche wanderten, wurde umso größer, je stärker das Team an der Lage der Kunststoff-Kügelchen zog.

Im nächsten Experiment schoben die Stuttgarter Physiker die Mulden des optischen Eierkartons etwas enger zusammen, so dass dieser von vorne herein schlechter mit der Anordnung der Kunststoff-Kügelchen übereinstimmte. „Dadurch finden weniger Teilchen einen Platz in einer Mulden, und die Verzerrungszonen lassen sich deutlich einfacher über die Oberfläche bewegen“, sagt Thomas Bohlein.

Dass lokale Verzerrungen – Physiker sprechen hierbei von kinks und antikinks – bei der Reibung zwischen mikroskopischen Oberflächen die entscheidende Rolle spielen, hatten Physiker schon vermutet. „Wir haben diese Veränderungen in der Oberfläche jetzt aber zum ersten Mal experimentell beobachtet“, sagt Clemens Bechinger. „Damit haben wir die theoretischen Vorhersagen über den Reibungsmechanismus in atomaren Dimensionen bestätigt.“

Reibungslos gleitende Oberflächen werden denkbar

Die Stuttgarter Forscher gingen aber noch einen Schritt weiter. Kaum eine Vorstellung hatten Physiker nämlich, wie eine kristalline auf einer quasikristallinen Oberfläche reibt. Quasikristalle, für deren Entdeckung Shechtman in diesem Jahr den Chemie-Nobelpreis erhielt, weisen kleine Bereiche mit einer strengen Ordnung auf. Diese wiederholt sich in größeren Dimensionen aber nicht regelmäßig wie in einem echten Kristall.

Einen Quasikristall formte Thomas Bohlein nun unter der kristallinen Lage der Kunststoff-Kügelchen, indem er wiederum die Laserstrahlen geschickt überlagerte. In den Mulden auf der quasikristallinen Oberfläche kamen die Kunststoff-Kügelchen nur noch selten zu liegen, und die Reibung reduzierte sich verglichen mit zwei kristallinen Oberflächen drastisch. „Unser Experiment liefert den Beweis, dass die Reibung auf quasikristallinen Oberflächen unter anderem deshalb so gering ist, weil die Strukturen nicht zueinander passen“, sagt Thomas Bohlein.

Die Erkenntnisse, wie Reibung im Mikro-Maßstab funktioniert, könnten auch praktische Konsequenzen haben. „Vor allem die Kombination einer kristallinen und einer quasikristallinen Oberfläche bietet die Möglichkeit die Reibung in Mikro- und Nano-Systemen zu reduzieren“, sagt Clemens Bechinger. „Denkbar ist aber auch, Oberflächen so zu gestalten, dass diese nahezu reibungslos übereinander gleiten.“

Originalveröffentlichung:
Thomas Bohlein, Jules Mikhael und Clemens Bechinger
Observation of kinks and antikinks in colloidal monolayers driven across ordered surfaces
Nature Materials, published online: 18. Dezember 2011; DOI: 10.1038/NMAT3204

Externer Link: www.uni-stuttgart.de

Forscher der TU Wien bauen Spektral-Kamera

Presseaussendung der TU Wien vom 21.12.2011

Eine handelsübliche Digitalkamera bauten Forscher zu einer Spezial-Kamera um, mit der man das Farbspektrum von Objekten genau untersuchen kann.

Rot, blau und grün – nur drei Farben kann man mit einer gewöhnlichen Digitalkamera aufnehmen. Für unser Auge genügt das um einen natürlichen Farbeindruck zu erhalten. In Wirklichkeit setzt sich das Licht, das wir wahrnehmen, aus unendlich vielen Primärfarben unterschiedlicher Wellenlänge zusammen. Um diese Farb-Kombinationen untersuchen zu können, brauchte man bisher komplizierte, teure Spezialapparate. An der TU Wien wurde nun mit ganz einfachen Mitteln ein Gerät entwickelt, das aus einer handelsüblichen Digicam eine Spektral-Kamera macht.

Optisches Gitter spaltet Lichtstrahlen auf

Das Licht, das vom fotografierten Objekt kommt, wird durch eine Linse auf ein optisches Gitter abgebildet. „Das optische Gitter ist in unserem Fall eine Spezialfolie aus Plastik – die gibt es fertig zu kaufen und sie ist leicht zu bearbeiten“, erklärt Ralf Habel vom Institut für Computergraphik und Algorithmen der TU Wien. Diese Folie lenkt die Lichtstrahlen ab, bevor sie in die Kamera gelangen – und zwar je nach Wellenlänge unterschiedlich stark. Dadurch landet das Licht unterschiedlicher Farben an unterschiedlichen Positionen des Kamerasensors. Aus den Sensormessdaten lässt sich dann – auf mathematisch etwas aufwändige Weise – die farbliche Zusammensetzung des fotografierten Objektes berechnen.

Auf die richtige Belichtung kommt es an

Durch die Lichtbrechung am optischen Gitter entstehen am Sensor große Helligkeitsunterschiede. Sowohl ganz dunkle als auch ganz helle Bildbereiche müssen richtig dargestellt werden, damit sich das Farbspektrum richtig zurückrechnen lässt. Deshalb griff man auf die HDR-Technik zurück, die auch in der Standard-Fotografie mittlerweile gerne verwendet wird: Mehrere Fotos vom selben Objekt werden hintereinander mit unterschiedlicher Belichtungszeit aufgenommen. Auf jedem Foto ist jeweils ein bestimmter Bildbereich richtig belichtet. Der Computer setzt daraus ein einziges Bild zusammen, das die gesamte Helligkeitsinformation enthält – mit viel mehr Zwischenschritten zwischen hell und dunkel als das bei einem gewöhnlichen Foto möglich wäre.

„Andere Spektral-Kameras verwenden mechanische Bauteile wie rotierende Spiegel. Das macht diese Geräte teuer und kompliziert“, meint Ralf Habel. Durch die an der TU Wien entwickelte Lösung wurde nun bewiesen, dass es auch einfacher geht – das nötige Computer Know-How vorausgesetzt. „Spektrale Analysen, wie sie durch diese Methode möglich sind, spielen heute in vielen Technologie-Bereichen eine Rolle“, sagt Habel, „etwa um Mineralien zu analysieren, Pflanzen auf ihre Gesundheit zu untersuchen, oder auch bei Satellitenbildern.“

Konkurrenzfähige Auflösung mit Plastikrohr und Klebeband

Die Spektral-Kamera kann auf zwei verschiedene Arten verwendet werden: Entweder wird nur ein enger Schlitz mit einem Pixel Breite analysiert – dann lässt sich für jeden Punkt des Schlitzes ein Farbspektrum mit einer Wellenlängen-Auflösung von 0.8 Nanometern berechnen, oder man nimmt ein volles zweidimensionales Bild (120×120 Pixel) auf und erreicht für jeden Punkt eine spektrale Auflösung von immer noch 5 Nanometern. Damit kann das Gerät jedenfalls mit komplizierteren, teureren Spektral-Analysatoren mithalten. Die verwendete Kamera ist eine Canon EOS 5D, als Linsen wurden handelsübliche Kameraobjektive verwendet. Ein gewöhnliches schwarz ausgekleidetes PVC-Rohr bildet das Gehäuse. (Florian Aigner)

Externer Link: www.tuwien.ac.at