Lauschangriffen auf der Spur

Presseinformation der LMU München vom 24.08.2011

Sichere Übertragung in der Quantenkryptographie

Die Quantenkryptographie ermöglicht das abhörsichere Übertragen von Nachrichten. Dabei werden kleinste Lichtquanten, die Photonen, versendet. Obwohl die Quantenkryptographie – genauer: die Quantenschlüsselverteilung oder auch QKD – in der Theorie beweisbar sicher ist, werden immer wieder Schwachstellen aufgedeckt und erfolgreiche Abhörversuche gemeldet. So hat ein Forscherteam um den LMU-Physiker Professor Harald Weinfurter in Zusammenarbeit mit der Firma qutools GmbH nun selbst einen erfolgreichen und dabei unübertroffen einfachen Angriff auf ein QKD-System durchgeführt – und gleich eine Gegenmaßnahme vorgestellt. Beim „Lauschangriff“ schleusten die Wissenschaftler lediglich zusätzliche schwache Lichtpulse in die Verbindung zwischen Sender und Empfänger ein. Erstmals mussten damit die ausgetauschten Photonen nicht mehr gemessen werden, weil die Einzelphotondetektoren des Empfängers für kurze Zeit selektiv geblendet wurden. Unbemerkt konnten die Forscher über 98 Prozent des ausgetauschten Schlüssels bestimmen – und die anschließend übertragene verschlüsselte Nachricht erfolgreich abhören. „Dies zeigt einmal mehr, wie wichtig die konsequente Aufdeckung und Beseitigung von technischen Sicherheitslücken ist“, betont Weinfurter. „Das ist bei der QKD nicht anders als bei klassischen Verschlüsselungsverfahren. In diesem Fall gibt es aber eine erfreulich einfache Gegenmaßnahme.“ Denn durch verbesserte Elektronik kann stets kontrolliert werden, ob alle Detektoren auch bereit sind zum Nachweis von Photonen – als Voraussetzung für einen sicheren Schlüssel. Nicht nur diese Art von Angriff, sondern alle bisher berichteten Attacken mit hellen Lichtpulsen können so abgewehrt werden. „Eine sorgfältige Konstruktion und Steuerung vorausgesetzt, bietet die Quantenkryptographie auch weiterhin die perfekte Sicherheit, wie sie eben nur mit Naturgesetzen gewährleistet werden kann“, sagt Weinfurter. Nach erfolgreichen Demonstrationen in Netzwerken (SECOQC/TOKIO) werden sich nun auch kommerziell erhältliche Systeme in naher Zukunft weiter verbreiten. (suwe)

Publikation:
„Quantum eavesdropping without interception: an attack exploiting the dead time of singlephoton detectors“;
Henning Weier, Harald Krauss, Markus Rau, Martin Fürst, Sebastian Nauerth and Harald Weinfurter;
New Journal of Physics online, Juli 2011

Externer Link: www.uni-muenchen.de

Wie Gene reguliert werden: Das Bild fügt sich zusammen

Pressemitteilung der Universität Regensburg vom 17.08.2011

Forscher klären Ursprung von „kleiner RNA“

Wissenschaftler haben den Ursprung einer Klasse von kleinen Ribonukleinsäuren (sRNA für „small RNA“) geklärt. Diese Entdeckung kann zu einem besseren Verständnis der gesamten menschlichen Genaktivität beitragen. So könnten die Wissenschaftler in Zukunft gezielt Gene regulieren und steuern, die an der Entstehung bestimmter Krankheiten beteiligt sind.

Vor kurzem war es noch so einfach: Jahrzehntelang betrachtete man die Ribonukleinsäure (RNA) als ein Molekül, dessen Rolle im Wesentlichen darin zu bestehen schien, als „Bote“ die genetische Information von der DNA im Zellkern in die äußeren Bereiche der Zelle zu transportieren. Dort kann die genetische Information dann als Vorlage für die Produktion von Proteinen dienen. In Form der sogenannten mRNA (für „messenger RNA“) fungiert die RNA dabei als Informationsträger für die Synthese von Proteinen in der Zelle. Für ihre eigene Produktion – die Transkription – ist die mRNA wiederum auf die „molekulare Maschine“ RNA Polymerase II (RNAPII) angewiesen.

Technische Fortschritte haben in den letzten Jahren aber einen tieferen Einblick in die molekularen Prozesse in den Zellen ermöglicht. Dabei wurden neben der mRNA auch weitere RNA-Klassen identifiziert. Allerdings konnten der Ursprung und die Funktion nicht vollständig geklärt werden. Ein internationales Forscherteam, an dem neben Prof. Dr. Gunter Meister und Anne Dueck vom Institut für Biochemie, Genetik und Mikrobiologie der Universität Regensburg auch Wissenschaftler aus Aarhus, Kopenhagen und Martinsried bei München beteiligt waren, konnte nun den Ursprung einer großen Klasse von sRNA-Molekülen klären.

Die sRNA besteht lediglich aus bis zu 25 Nukleotiden, den Grundbausteinen der Nukleinsäuren DNA und RNA, während beispielsweise mRNA eine Länge von mehreren Tausend Nukleotiden aufweisen kann. Im Gegensatz zu „klassischer“ RNA dienen die sRNA-Moleküle nicht direkt zur Herstellung von Proteinen, sondern greifen regulierend in die vielfältigen Prozesse ein, die auf dem Weg von der nackten genetischen Information zum fertigen Protein ablaufen. Obwohl klein und unscheinbar, sind sie also durchaus „big player“ im Netzwerk der genetischen Regulation.

Im Rahmen ihrer Untersuchungen konnten die Forscher die „Ursprungsorte“ der sRNA identifizieren. Dabei konnten sie zeigen, dass die extrem kurze sRNA ein Produkt des Abbaus der mRNA durch zelluläre Enzyme sein kann. Wenn mRNA produziert wird, passiert der vordere Teil des mRNA-Moleküls einen Tunnel, der durch die RNA Polymerase II (RNAPII) gebildet wird. Die maximale Länge von sRNA-Molekülen entspricht erstaunlicherweise genau der Länge dieses Tunnels. So entstehen die sRNA-Moleküle scheinbar genau dann, wenn die Produktion bzw. Transkription der mRNA abgebrochen wird und das unvollendete mRNA-Molekül vom zellulären Enzym Dicer aufgespalten wird, während das eine sRNA-Molekül im geschützten Tunnel verbleibt. Die Wissenschaftler konnten zudem weitere sRNAs beobachten, die als Beiprodukt oder Überbleibsel eines Prozesses entstehen, den man in der Forschung „splicing“ nennt. Auch dieser Prozess ist von herausragender Bedeutung für die Produktion der wichtigen mRNA.

Es ist bekannt, dass die Produktion bzw. der Transkriptionsprozess von mRNA sehr anfällig für Fehlfunktionen oder Defekte ist. Die Forscher konnten in diesem Zusammenhang zeigen, dass eine Vielzahl von mRNA-Molekülen unvollendet bleibt und diese daraufhin rasch „ausrangiert“ werden. Allerdings besteht das Resultat solcher unvollendeten Transkriptionsprozesse von mRNA nicht aus „genetischem Müll“, sondern aus sRNA-Molekülen, die ihrerseits wiederum wichtige Funktionen im Rahmen der Genregulation übernehmen; frei nach dem Motto: „Doppelt genäht hält besser“.

Die Forscher wollen ihre Beobachtungen nun ausweiten. Dabei werden weitere Genomuntersuchungen sowie die Analyse ausgewählter Gene im Vordergrund stehen. Dadurch soll geklärt werden, wie die RNA Polymerase II (RNAPII) während der Frühphase der mRNA-Transkription kontrolliert wird. Darauf aufbauend könnten künftig auch gezielt Gene reguliert und gesteuert werden, die an der Entstehung bestimmter Krankheiten beteiligt sind.

Die Ergebnisse der Forscher sind vor kurzem in der weltweit bekannten Fachzeitschrift „Nature Structural and Molecular Biology“ veröffentlicht worden (DOI: 10.1038/nsmb.2091). (Alexander Schlaak)

Externer Link: www.uni-regensburg.de

Diamant als Quantenspeicher

Presseaussendung der TU Wien vom 10.08.2011

Zwei völlig verschiedene Quanten-Systeme wurden an der Technischen Universität (TU) Wien erfolgreich vereint. Das Ergebnis soll den Weg zu praxistauglichen Quanten-Computerchips ebnen.

Quantencomputer gehörten schon seit Jahren zu den großen Zielen der Wissenschaft. Wenn ein gewöhnlicher Computer eine Liste von Aufgaben zu erledigen hat, muss er sie mühsam nacheinander abarbeiten. Ein Quantencomputer könnte verschiedene Zustände gleichzeitig einnehmen – und dadurch verschiedene mögliche Lösungen eines Problems gleichzeitig ausprobieren. Einen wesentlichen Schritt Richtung Quantencomputer könnten nun Diamanten bringen. An der TU Wien gelang es, Mikrowellen an Quanten-Zustände eines Diamanten anzukoppeln. Die Ergebnisse dieses Forschungsprojektes wurden nun im angesehenen Fachjournal „Physical Review Letters“ veröffentlicht.

Unterschiedliche Quanten-Technologien in einem Chip

Schon lange sucht man nach passenden physikalischen Bausteinen für einen Quantencomputer – bisher jedoch ohne den gewünschten Erfolg. Zwar gab es schon verschiedene Ideen für Systeme, die auf quantenphysikalische Weise Information speichern, doch meist sind sie sehr fragil und instabil. Wenn etwas als Bauelement für einen Computer dienen soll, dann muss es sich sehr rasch umschalten lassen. Gleichzeitig muss es einen quantenphysikalischen Zustand ausreichend lange zuverlässig konservieren können, sodass genug Zeit besteht um damit Rechnungen durchzuführen. „Es gibt kein Quantensystem, das alle Anforderungen gleichzeitig erfüllt“, meint Johannes Majer vom Atominstitut der TU Wien. Mit seinem Forschungsteam koppelte er daher zwei völlig verschiedene Quantensysteme, um die Vorteile beider Seiten nutzen zu können: Mikrowellen und Diamanten.

Lichtteilchen und Diamanten

Auch bei herkömmlichen Computern gibt es einen Prozessor und einen Arbeitsspeicher. Der Prozessor führt schnelle Rechnungen durch, der Speicher soll sich die Ergebnisse möglichst dauerhaft merken. Ähnlich verhalten sich die beiden Quantensysteme zueinander, die auf dem Quanten-Chip an der TU Wien nun vereint wurden: Schnelle Rechenoperationen werden durch einen sogenannten Mikrowellen-Resonator ermöglicht. Sein Quantenzustand wird durch Lichtteilchen im Mikrowellen-Bereich bestimmt. Dieser Mikrowellen-Resonator wird an eine dünne Diamantschicht angekoppelt, in der Quantenzustände gespeichert werden können.

Fehler sind erwünscht

Während man für wertvollen Schmuck möglichst reine, makellose Diamanten sucht, benötigt man für die Quantenexperimente genau das Gegenteil: Hier sind Diamanten mit Fehlern gefragt. Wenn sich im regelmäßigen Kohlenstoff-Gitter des Diamanten nämlich Stichstoff-Atome einschleichen, dann wird der Diamant zwar beinahe schwarz, doch dafür kann er dann Quantenzustände stabil speichern. „Wir konnten zeigen, dass sich in unserem Chip Quanten-Zustände zwischen Mikrowellen und den Stickstoff-Zentren im Diamanten übertragen lassen“, erklärt der TU-Assistent Robert Amsüss. Je mehr Stickstoffatome bei dieser Übertragung beteiligt sind, umso stabiler „merkt“ sich der Diamant den eingespeicherten Quantenzustand. Überraschenderweise konnte bei dem Experiment auch gezeigt werden, dass sich sogar im Drehimpuls der Atomkerne Quantenzustände speichern lassen. „Das könnte der erste Schritt zu einem Atomkern-Speicher sein“, mutmaßt Johannes Majer – doch zunächst soll der Diamant-Quantenchip in seiner jetzigen Form weiterentwickelt werden. Die nötigen Teilelemente sind nun vorhanden – jetzt geht es darum, sie für echte, stabile Rechenoperationen zu nützen. (Florian Aigner)

Originalpublikation:
R. Amsüss et al., Phys. Rev. Lett 107 (2011)

Externer Link: www.tuwien.ac.at

Zentraler Schalter für das Immunsystem

Pressemitteilung der Universität Bonn vom 15.08.2011

Forscher der Universität Bonn entdecken, wie Abwehrzellen durch ein einziges Gen „scharf“ werden

Ein internationales Forscherteam unter Leitung der Universität Bonn hat einen zentralen Schalter für die Steuerung des Immunsystems entdeckt. Das Protein SATB1 verwandelt weiße Blutkörperchen, die eine hemmende Wirkung haben, in angreifende Abwehrzellen. Mit diesem Schalter lässt sich das Immunsystem entweder „scharf“ machen oder gezielt herunterfahren. Die Wissenschaftler hoffen, dass sich mit dem wissenschaftlichen Ergebnis Krebs und chronische Entzündungen besser bekämpfen lassen.

Wie Polizisten gehen die T-Lymphozyten – oder kurz T-Zellen – im Körper ständig auf Streife. Sie zählen zu den weißen Blutkörperchen und überwachen, ob es an den Körperzellen zu irgendwelchen krankhaften Veränderungen kommt. Ist das der Fall, verwandeln sie sich in Killerzellen und zerstören die erkrankten Zellen. Allerdings sollte das in der richtigen Dosierung erfolgen. „Das körpereigene Abwehrsystem muss einerseits auf einen Angriff durch Krankheitserreger sehr schnell reagieren können, etwa wenn die nächste Sommergrippe droht“, berichtet Prof. Dr. Joachim Schultze, Direktor Genomforschung und Immunregulation am Institut Life and Medical Sciences (LIMES) der Universität Bonn. Andererseits darf die Abwehrreaktion aber auch nicht zu heftig sein, weil sonst das körpereigene Gewebe angegriffen wird. So genannte Autoimmunerkrankungen sind dann die Folge.

Bei dieser feinen Austarierung des Immunsystems helfen spezialisierte Lymphozyten – die regulatorischen T-Zellen. Sie greifen immer dann bremsend ein, wenn die körpereigenen Streifenpolizisten zu aktiv sind.  „Die regulatorischen T-Zellen nehmen über spezielle Andockstellen auf ihrer Oberfläche wahr, wenn zu viele angreifende Kollegen unterwegs sind“, sagt Prof. Schultze. Ein Protein namens SATB1 macht die T-Zellen für die Bekämpfung von Krankheitserregern scharf. „SATB1 wird in den Abwehrzellen hochgefahren, um eine Immunantwort zu ermöglichen“, führt Prof. Schultze aus. Die regulatorischen T-Zellen als „Bremser“ haben dagegen das SATB1 abgeschaltet.

Hemmende Zellen lassen sich in Angreifer umprogrammieren

Diese Erkenntnis ist sehr wichtig für das Verständnis und die Therapie von Krankheiten. „Tumore können sich entwickeln, weil das Immunsystem von den Krebszellen gehemmt wird“, berichtet der Immunologe. Mit SATB1 lassen sich die bremsenden regulatorischen T-Zellen in Angreifer umprogrammieren, die dann die Krebsgeschwüre abtöten. „Umgekehrt ist bei chronischen Entzündungen die Immunantwort dauerhaft zu stark“, sagt Prof. Schultze. Die hochgeschaukelte Abwehrreaktion ließe sich also durch Abschalten von SATB1 auf ein normales Maß herunterregeln.

Die Forscher zeigten an Mäusen, dass dies grundsätzlich möglich ist. So lange die Zahl der angreifenden und der hemmenden T-Zellen in den Tieren in einem Gleichgewicht ist, bleiben die Mäuse gesund. Regelten die Forscher aber durch die Übertragung eines Gens, das das Protein SATB1 codiert, die Zahl der Abwehrzellen hoch, erkrankten die Mäuse an einer chronischen Darmentzündung. Schalteten die Wissenschaftler jedoch das SATB1-Gen ab, überwogen die hemmenden T-Zellen in den Tieren und es kam zu keinen Entzündungen.

Ergebnisse lassen auf bessere Therapien hoffen

„Erstmals zeigten wir, dass durch den Transfer eines einzigen Gens hemmende T-Zellen in normale Abwehrzellen verwandelt werden können“, sagt Prof. Schultze. „Die angreifenden und die hemmenden T-Zellen sind nicht verschiedene Typen, wie bislang angenommen.“ Beide verfügten zwar über ganz verschiedene Ausprägungen, ließen sich aber mit SATB1 ineinander umprogrammieren. „Das ist wie die Hauptsicherung in einem Gebäude“, führt der Immunologe aus. „Es reicht, sie herauszudrehen – dann muss man nicht in jedem Zimmer einzeln das Licht ausschalten.“

Während der Immuntherapie von Tumorerkrankungen wird üblicherweise versucht, zuerst das fehlprogrammierte Abwehrsystem komplett auszuschalten, damit anschließend aus dem Knochenmark neue Abwehrzellen entstehen können. Dies funktioniert aber bei vielen Patienten im höheren Alter nicht mehr so gut. „Mit SATB1 könnten bereits vorhandene hemmende T-Zellen in angreifende umgewandelt werden, die die Tumore bekämpfen“, schlägt der Immunologe vor. Bis zu einer solchen Therapie sei es aber noch ein weiter Weg. (Johannes Seiler)

Publikation:
Repression of the genome organizer SATB1 In regulatory T cells is required for suppressive function and inhibition of effector differentiation, Fachmagazin „Nature Immunology“, DOI: 10.1038/ni.2084

Externer Link: www.uni-bonn.de

Grosse organische Moleküle zeigen Wellencharakter

Medienmitteilung der Universität Basel vom 12.08.2011

Wenn sich Wellen treffen, entsteht eine neue einzelne Welle. Dieses Interferenz genannte Phänomen kennt man von Schall- oder Lichtwellen. Interferenzmuster lassen sich aber auch für grosse organische Moleküle beobachten, womit die Wellennatur dieser Teilchen nachgewiesen werden kann. Chemikern der Universität Basel ist es nun zusammen mit Kollegen der Universität Wien gelungen, Moleküle herzustellen, die sich für solche Untersuchungen speziell eignen. Synthese und Ergebnisse der Interferenzexperimente wurden unlängst im «European Journal of Organic Chemistry» veröffentlicht.

Die von den Autoren verwendete Methode der Molekülinterferometrie erlaubt es, den quantenmechanischen Welle-Teilchen-Dualismus mit grossen organischen Molekülen zu untersuchen. Hierbei interessiert insbesondere die Frage, wie sich die innere Struktur und die Dynamik komplexer Teilchen auf das Wellenverhalten ihrer Schwerpunktsbewegung auswirken. Es handelt sich um die ersten Experimente dieser Art im Graubereich zwischen Quantenwelt und klassischer Mechanik.

Um den Übergang zwischen der Quantenwelt und der klassischen Mechanik zu verstehen, ist es wichtig, Moleküle mit zunehmender Masse und Komplexität zu untersuchen. Für Interferenzexperimente werden zur Erzeugung des Molekularstrahls Verbindungen benötigt, die einen hohen Dampfdruck haben, auch bei hohen Temperaturen stabil bleiben und leicht ionisierbar sind. Die zwei ersten Eigenschaften finden sich bei hoch fluorierten Verbindungen, also Verbindungen, die viele Fluoratome enthalten. Um hohe Molekulargewichte und gute Ionisierungseigenschaften zu erreichen, wählten die Basler Chemiker um Prof. Marcel Mayor einen Ansatz, bei dem sie verzweigte fluorierte Gruppen an einen Porphyrin-Kern anhängten.

Modulare Synthesestrategie

Das Ziel der Forscher war es, einen bestimmten Massenbereich abzudecken und das Moleküldesign bezüglich der gewünschten Eigenschaften zu verbessern. Durch die modulare Synthesestrategie, bei der zunächst die peripheren fluorierten Bausteine synthetisiert und danach an das Porphyrin-Zentrum gekoppelt werden, ist es leicht möglich, die Molekülstrukturen zu modifizieren und im Hinblick auf die Interferenzexperimente zu optimieren.

Die Forscher konnten zeigen, dass mit sieben von ihnen synthetisierten fluorierten Porphyrinen Molekülinterferometrie-Experimente möglich sind. Einige dieser Verbindungen zählen zu den grössten Objekten, für die Welleneigenschaften bislang beobachtet werden konnten, sodass die hier beschriebenen Experimente massgeblich zur Erforschung der Grenzen der Quantenmechanik beitragen.

Im Vordergrund steht dabei die Frage, ob es für den Welle-Teilchen-Dualismus praktische oder prinzipielle Grenzen für Masse und Komplexität gibt. In Zukunft wird daher versucht werden, über die modulare Synthesestrategie die Komplexität solcher Verbindungen weiter zu erhöhen, um Interferenzexperimente mit noch grösseren Objekten zu ermöglichen.

Originalpublikation:
Jens Tüxen, Sandra Eibenberger, Stefan Gerlich, Markus Arndt, Marcel Mayor
Highly Fluorous Porphyrins as Model Compounds for Molecule Interferometry
European Journal of Organic Chemistry, published online 13. Juli 2011 | doi: 10.1002/ejoc.201100638

Externer Link: www.unibas.ch