Immunzellen gegen hartnäckige Viren: With a little help from my friends

Medienmitteilung der Universität Basel vom 09.11.2021

Viren wie HIV oder der Erreger von Hepatitis C können das Immunsystem überrennen. Ein Ansatz zur Entwicklung von Impfstoffen gegen diese chronischen Infektionen zielte bisher auf die sogenannten B-Gedächtniszellen des Immunsystems. Forschende der Universität Basel berichten nun, dass diese Zellen die Hilfe anderer Gedächtniszellen brauchen, um den Organismus effektiv gegen chronische Viren zu verteidigen. Eine wichtige Erkenntnis für das Impfstoff-Design.

Ein Arsenal aus Immunzellen verteidigt den Organismus gegen Krankheitserreger. Bei einer Virus-Infektion produzieren B-Zellen passende Antikörper, die das Virus inaktivieren. Ein Teil dieser B-Zellen stirbt nach der Infektion oder Impfung wieder ab, doch einige B-Zellen verbleiben als Gedächtniszellen im Körper, um bei einer erneuten Infektion mit dem gleichen Erreger rascher die richtigen Antikörper zu produzieren. Impfstoffe zielen unter anderem auf die Bildung solcher B-Gedächtniszellen ab.

Viren wie HIV oder das Hepatitis-C-Virus überrennen jedoch die Abwehr der B-Gedächtniszellen – eine Hürde für die Entwicklung effizienter Impfstoffe. Um dieses Hindernis zu überwinden, untersucht das Forschungsteam um Prof. Dr. Daniel Pinschewer vom Departement Biomedizin der Universität Basel das Zusammenspiel der Immunzellen bei chronischen Virusinfektionen.

«Ein Problem ist, dass die B-Gedächtniszellen angesichts der Dauerpräsenz des Erregers und der damit einhergehenden Entzündung in eine Art Panikreaktion verfallen», erklärt Pinschewer. Aus einem Programm der Vermehrung und Reifung wechseln sie allesamt in den Modus der Antikörperproduktion und gehen bald darauf zugrunde. Über mögliche Abhilfe für dieses Problem berichtet das Team nun im Fachjournal «PNAS».

T-Helfer-Gedächtniszellen verhindern Panikreaktion

Für ihre Experimente studierten die Forschenden die Infektion von Mäusen mit einem Maus-Virus namens Lymphozytäres Choriomeningitis Virus (LCMV), das bei den Tieren zu einer chronischen Infektion führt. Dabei stellten sie fest, dass die B-Gedächtniszellen für eine nachhaltige Reaktion auf die Viren die Hilfe anderer Immunzellen brauchen: nämlich T-Helfer-Gedächtniszellen, deren Bildung ebenfalls durch passende Impfstrategien ausgelöst werden kann.

Regten die Forschenden bei den Versuchstieren vorgängig zur LCMV-Infektion die Bildung von passenden T-Helfer-Gedächtniszellen an, verhinderten letztere nach der Infektion die Panikreaktion der B-Gedächtniszellen. «Anstatt dass sich der gesamte Bestand an B-Zellen im erfolglosen Kampf gegen die Viren verausgabt, bleibt dank der T-Helfer-Gedächtniszellen eine Reserve an B-Zellen zurück, die sich weiter vermehren und reifen und die Abwehr gegen das Virus aufrechterhalten», so Dr. Kerstin Narr, die Erstautorin der Studie.

Die Rolle der T-Helfer-Gedächtniszellen bei der Impfung gegen chronische Viren sei bislang unzureichend berücksichtigt worden. «Die Erkenntnis, dass man über diese Zellen eine nachhaltigere Immunantwort durch B-Gedächtniszellen fördern kann, hat direkte Relevanz für Strategien zur Entwicklung neuer Impfstoffe gegen HIV und Hepatitis C», betont Pinschewer.

Originalpublikation:
Kerstin Narr et al.
Vaccine-elicited CD4 T cells prevent the deletion of antiviral B cells in chronic infection
PNAS (2021), doi: 10.1073/pnas.2108157118

Externer Link: www.unibas.ch

Biosignale präzise messen: Informatiker erleichtern die Positionierung von Elektroden am Körper

Pressemitteilung der Universität des Saarlandes vom 04.11.2021

Vielen ist es aus der Medizin bekannt: Um Biosignale wie den Herzschlag oder Muskelkontraktionen zu messen, müssen Sensorelektroden auf der Haut platziert werden. Bisher war das eine Aufgabe für Experten, denn die Qualität der erhaltenen Messungen hängt maßgeblich von der korrekten Positionierung dieser Elektroden ab. Informatiker der Universität des Saarlandes haben ein Verfahren entwickelt, das diesen Prozess für eine bestimmte Körperzone mit nur wenigen Mausklicks automatisiert.

Ihre Ergebnisse veröffentlichen sie nun in dem international renommierten Fachmagazin Nature Communications.

Ob im Sport, der Rehabilitation oder für neuartige IT-Anwendungen: Genau erfasste Biosignale wie Herzschlag oder Muskelaktivität sind wichtig um Leistung zu messen, gesundheitlichen Fortschritt sicherzustellen und können sogar genutzt werden, um Computer zu steuern. Elektrophysiologische Sensorelektroden, die auf der Haut angebracht werden, erfassen diese Signale. „Die manuelle Platzierung dieser Elektroden erfordert anatomische Kenntnisse und beruht auf einer Reihe medizinischer Leitfäden, die beschreiben, an welchen Stellen die besten Signale abgegriffen werden können“, erklärt Aditya Shekhar Nittala, Doktorand in der Forschungsgruppe zur Mensch-Maschine-Interaktion von Professor Jürgen Steimle am Saarland Informatics Campus.

Manche Anwendungsfälle stellen besondere Anforderungen an die Positionierung der Sensorelektroden: So kann es im Leistungssport für die Kontrolle von Trainingserfolgen nötig sein, dass gleichzeitig mehrere Biosignale erfasst werden, ohne dabei die Bewegungsfreiheit des Trägers einzuschränken. „In so einem Fall greifen viele verschiedene Variablen ineinander, sodass es auch für Experten eine große Herausforderung ist, mit vertretbarem Zeitaufwand gute Messergebnisse zu erzielen“, ergänzt Aditya Nittala. Als Teil seiner Doktorarbeit über computerbasiertes Design hat er nun ein Verfahren entwickelt, das mit nur wenigen Mausklicks in Sekundenschnelle ein Elektroden-Layout errechnen kann, um am Unterarm gleichzeitig Muskelaktivitäten (EMG), die Leitfähigkeit der Haut (EDA), und die Herzspannungskurve (EKG) zu messen.

Jürgen Steimle, Informatik-Professor der Universität des Saarlandes und Experte für Mensch-Maschine-Interaktion, erklärt dazu: „Wir zeigen, dass ein Optimierungsansatz verwendet werden kann, um kompakte, tragbare Geräte zu entwickeln, die mehrere Biosignal-Modalitäten messen können. Der Hauptbeitrag liegt hier nicht nur in der Anwendung geometrischer Optimierung zur Lösung des Problems der Elektrodenplatzierung, sondern auch in der Identifizierung, Formalisierung und Integration der Regeln, die der Elektrodenplatzierung für die Messung mehrerer Modalitäten innewohnen“, so der Informatiker. Bisher errechnet das Design-Programm ausschließlich Elektroden-Layouts für den Unterarm, da die Forscher hier auf eine ausgeprägte Datengrundlage zurückgreifen konnten. Mit den passenden Daten ließe sich die Methode aber auch auf andere Körperregionen erweitern.

Die Arbeit unter dem Titel „Computational Design and Optimization of Electro-Physiological Sensors“ wurde nun im international renommierten Fachmagazin Nature Communications veröffentlicht. Neben Aditya Shekhar Nittala und Professor Jürgen Steimle waren Dr. Andreas Karrenbauer vom Saarbrücker Max-Planck-Institut für Informatik sowie Professor Tobias Kraus und Dr. Arshad Khan vom Leibniz Institut für neue Materialien (INM) in Saarbrücken beteiligt. In die Entwicklung der neuen Methode ist zudem der Input unabhängiger Sportexperten eingeflossen.

Ergänzt wird der neue Ansatz durch das Projekt „PhysioSkin“, das ebenfalls in Jürgen Steimles Gruppe entwickelt wird. „PhysioSkin“ ist eine Methode, anhand derer mit handelsüblichen Tintenstrahl-Druckern ultradünne, leitfähige Tattoos hergestellt werden können. Indem man mit dem neuen Tool am Computer ein Elektroden-Layout errechnet und dieses dann anschließend mit „PhysioSkin“ ausdruckt, können schnell und einfach Prototypen für tragbare elektronische Geräte hergestellt werden. So haben die Forscher eine Steuerung entwickelt, die Muskelkontraktionen als Eingabesignale erkennt und so beispielsweise nachvollzieht, wie der Nutzer Liegestütze macht.

Originalpublikation:
Nittala, A.S., Karrenbauer, A., Khan, A. et al. Computational design and optimization of electro-physiological sensors. Nat Commun 12, 6351 (2021).

Externer Link: www.uni-saarland.de

Simultankonzept beschleunigt Elektrodenherstellung

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 27.10.2021

Trocknungszeiten deutlich reduziert ohne Kapazitätseinbußen bei der Batterie – Ergebnisse in Energy Technology publiziert

Ein innovatives Konzept für die simultane Beschichtung und Trocknung zweilagiger Elektroden haben Forschende am Karlsruher Institut für Technologie (KIT) entwickelt und erfolgreich angewendet. Dadurch gelingt es, Trocknungszeiten auf unter 20 Sekunden zu verkürzen, was gegenüber dem derzeitigen Stand der Technik eine Reduktion auf die Hälfte bis ein Drittel bedeutet – ohne dass es zu Kapazitätseinbußen bei der Batterie kommt. Das Konzept ermöglicht, Lithium-Ionen-Batterien schneller und kostengünstiger zu produzieren. Die Forschenden berichten in der Zeitschrift Energy Technology. (DOI: 10.1002/ente.202100367)

Für die Mobilität der Zukunft haben Elektrofahrzeuge eine zentrale Bedeutung. Die Nachfrage nach leistungsfähigen und kostengünstigen Batterien steigt stetig an. In Batterien auf der Basis von Lithium-Ionen sind die Elektrodenschichten entscheidend, denn diese Aktivmaterialien speichern die Energie. Die Beschichtung und die anschließende Trocknung der Elektroden verursachen allerdings einen großen Teil der Batterieproduktionskosten. Dabei liegt in der Prozess- und Verfahrungstechnik ein hohes Einsparpotenzial. Forschende der Gruppe Thin Film Technology (TFT – Technologie dünner Schichten) des KIT unter Leitung von Professor Wilhelm Schabel und Dr. Philip Scharfer forschen seit Jahren in diesem Bereich. So gelang es den Wissenschaftlerinnen und Wissenschaftlern bereits, die Beschichtungsgeschwindigkeit deutlich zu steigern. Zudem startete die TFT ein innovatives Trocknungsmanagement. Nun hat die Gruppe damit neue Ergebnisse erzielt: Die Kopplung der Prozessschritte Beschichtung und Trocknung führte zu einem Simultankonzept. In der Zeitschrift Energy Technology stellt die TFT die Ergebnisse vor. Jana Kumberg, Doktorandin am KIT, war bei der Publikation federführend. Die Gruppe TFT entwickelt ihre Technologien zur Elektrodenherstellung in CELEST – Center for Electrochemical Energy Storage Ulm & Karlsruhe, einer der größten Batterieforschungsplattformen weltweit.

Kostengünstigere Produktion ermöglicht

„Unsere Arbeit zeigt, dass wir im Prinzip alle Prozessschritte beherrschen, um Batterien künftig schneller und damit kostengünstiger zu produzieren, ohne dass die Qualität darunter leidet“, erklärt Schabel. Bei der üblichen Elektrodentrocknungszeit von bis zu einer Minute sind bei Produktionsgeschwindigkeiten von 100 Metern pro Minute (m/min) und mehr lange Trocknerstrecken erforderlich. Dies ist bei Elektroden mit hohem Auftragsgewicht technisch kaum realisierbar und zunehmend teuer. Nach dem neuen Konzept werden für die einzelnen Schichten verschiedene Aktivmaterialien eingesetzt und simultan appliziert. Eine Schicht ist für die Adhäsion verantwortlich, eine für die spezifische Kapazität. Diese Schichtstruktur erlaubt eine Herstellung bei ausgesprochen hoher Trocknungsrate und auf ein Drittel reduzierten Trocknungszeiten.

Eigenschaften gezielt in den Elektrodenlagen verteilt

Trotz der reduzierten Trocknungszeit kommt es nicht zu Einbußen bei der Kapazität und damit der Reichweite der Batterie, auch nicht bei sogenannten 3C-Zyklen, das heißt Schnellladezeiten von 20 Minuten. In ihrer Studie brachten die Wissenschaftlerinnen und Wissenschaftler verschiedene Aktivmaterialien in den Lagen einer Anode über die Dicke verteilt auf, sodass sich die unterschiedlichen Eigenschaften gezielt in den Elektrodenlagen verteilten. Die Elektroden lassen sich dadurch maßschneidern und weisen verbesserte mechanische sowie elektrochemische Eigenschaften auf. „Wir haben erste vielversprechende Ergebnisse erzielt“, sagt Schabel. „Nun gilt es, weiter an der industriellen Verwirklichung zu forschen.“ Derzeit arbeitet die Gruppe an verschiedenen Möglichkeiten, um das Simultankonzept auf den industriellen Maßstab zu übertragen. Dazu testet sie die rein konvektive Trocknung mit Hochleistungsdüsen sowie Lasertrocknungsmodule.

Das Bundesministerium für Bildung und Forschung (BMBF) fördert die Untersuchungen im Rahmen verschiedener Forschungsclusterprojekte mit über fünf Millionen Euro. „Unsere Forschungen zeigen, dass es in Zukunft grundsätzlich möglich sein könnte, das Tempo der Batterieproduktion um 200 bis 300 Prozent zu steigern“, erklärt Schabel. Die Ergebnisse werden derzeit auch auf andere Materialien übertragen und auch zur Optimierung von Elektroden für Natrium-Ionen Batterien im Rahmen der Forschung im Exzellenzcluster POLiS – Post Lithium Storage eingesetzt. (or)

Originalpublikation:
Jana Kumberg, Werner Bauer, Joyce Schmatz, Ralf Diehm, Max Tönsmann, Marcus Müller, Kevin Ly, Philip Scharfer, and Wilhelm Schabel: Reduced Drying Time of Anodes for Lithium-Ion Batteries through Simultaneous Multilayer Coating. Energy Technology, 2021. DOI: 10.1002/ente.202100367 (Open Access)

Externer Link: www.kit.edu

Es werde Licht: Photoinitiatoren für Zahnfüllungen, Kontaktlinsen, Prothesen und Co.

Presseaussendung der TU Graz vom 14.10.2021

Photoinitiatoren sorgen dafür, dass flüssiger Kunststoff – etwa für Zahnfüllungen – mittels Lichts schnell aushärtet. Dank einer neuen Synthesemethode der TU Graz lassen sich diese Initiatoren günstig herstellen, was der Technologie weitere Türen öffnet.

Wer schon einmal mit einem Loch im Zahn am Zahnarztstuhl gelegen ist, kennt das Prozedere womöglich: Nach dem Ausbohren des Zahns folgt eine Füllung aus flüssigem Kunststoff, die im Mund modelliert und durch UV-Licht zur fixen Plombe ausgehärtet wird. Möglich machen das sogenannte Photoinitiatoren. Das sind chemische Verbindungen, die der Füllpaste beigemengt werden. Sie zerfallen unter Lichteinwirkung und bilden Radikale, durch die diese Paste aushärtet.

Seit einigen Jahren werden dafür germaniumbasierte Photoinitiatoren eingesetzt. Ihr Plus: Sie absorbieren längerwelliges Licht und benötigen für die Aushärtung somit kein gesundheitlich bedenkliches UV-Licht. Im Dentalbereich hat sich dieser nicht toxische Photoinitiator bereits etabliert, obwohl seine Herstellung kostspielig ist: Die Produktionskosten von einem Kilogramm dieses Initiators liegen derzeit in der Größenordnung eines neuen Kleinwagens. „Angesichts der geringen Mengen, die für Zahnfüllungen benötigt werden, fällt der Preis des Photoinitiators in der Dentalbranche kaum ins Gewicht. Für andere Anwendungen war die teure Produktion aber ein Hemmschuh – bis jetzt“, erklärt der Chemiker Michael Haas von der TU Graz.

Neue, simple Synthesemethode

Gemeinsam mit seinem Team am Institut für Anorganische Chemie entwickelte Haas eine völlig neue Synthesemethode für germaniumbasierte Photoinitiatoren. Diese Herstellungsmethode kommt im Gegensatz zur konventionellen Synthese nicht nur ohne Schwefel aus („ein Geruch, den man nicht unbedingt im Mund wahrnehmen möchte“), sondern ist deutlich einfacher, effizienter und kostengünstiger. Es ist uns gelungen, einen alternativen Zugang zu dieser Verbindungsklasse zu etablieren, der einstufig ist und die Isolierung des Produkts geradezu simpel macht.“ Dabei werden simultan mehrere siliziumbasierte Schutzgruppen abgespalten. Die gewünschte Verbindung wird anschließend durch simples Auskristallisieren isoliert. Damit eröffnen sich für diese Klasse von Photoinitiatoren weitere biomedizinische Anwendungen, etwa in der Herstellung von Kontaktlinsen, Prothesen, neuartigen Implantaten oder künstlichem menschlichen Gewebe.

Diesen alternativen Zugang haben die Forschenden nun mit dem Projektpartner Ivoclar Vivadent AG in die Anwendung übersetzt. Das Dentalunternehmen hatte schon bisher einen toxikologisch unbedenklichen Photoinitiator (Ivocerin®) auf Germaniumbasis in seinem Produktportfolio. Dieser birgt aber auch gravierende Nachteile in der Herstellung, wie Haas erklärt: „Bei Ivocerin® ist die Synthese aufwendig und mehrstufig, außerdem ist die Entfernung der Reaktionspartner teuer und führt zu enormen Ausbeuteverlusten“. Durch die absehbare Markteinführung des neuen Initiators werden Zahnfüllungen künftig signifikant günstiger sein.

Geeignet für Kontaktlinsen und Co.

Michael Haas sieht auch Potenzial für weitere biomedizinische Anwendungen wie etwa Kontaktlinsen: Für die meisten dieser Anwendungen werden bislang phosphorbasierte und damit toxikologisch bedenkliche Photoinitatoren eingesetzt. Die gesundheitlich unbedenklichen Initiatoren auf Germaniumbasis waren für diese Anwendungen bislang zu teuer. Auch die Herstellung von neuartigen Implantaten, von Prothesen oder künstlichem menschlichen Gewebe sind mögliche Einsatzgebiete des neuartig synthetisierten Initiators. „Interessant wird es überall dort, wo die Verwendung von nicht toxischen Materialien von zentraler Bedeutung ist“, sagt Haas. Die Forschung an Photoinitiatoren ist mit rund zwölf Jahren ein relativ junges Gebiet. Michael Haas und seine Forschungsgruppe haben auf dem Gebiet der germaniumbasierten Photoinitiatoren in den vergangenen vier Jahren bereits zwei voneinander unabhängige Patente erfolgreich eingereicht. „Da radikalische Photoinitiatoren in vielen industriellen Prozessen eine Anwendung finden, ist die absolute Relevanz unserer Ergebnisse noch nicht abschätzbar“, meint Haas.

Publikation im Fachjournal Angewandte Chemie

Bei aller Anwendungsorientierung fährt die Arbeitsgruppe von Michael Haas auch eine reiche Ernte in der Grundlagenforschung ein: In den vergangenen Jahren haben sie alleine auf diesem Gebiet mehr als 15 Publikationen in anerkannten wissenschaftlichen Fachjournalen publiziert. Unlängst veröffentlichte Haas gemeinsam mit seinem Doktoranden Manfred Drusgala sowie mit weiteren Kolleginnen und Kollegen im Fachjournal Angewandte Chemie neue Ergebnisse. Darin beschreiben die Forschenden eine neue Methode zur gezielten Synthese sogenannter Bisenolate, einer speziellen Verbindungsklasse aus der Enolatchemie. Diese Verbindungsklasse zeichnet sich durch die Möglichkeit einer Doppelreaktion am zentralen und aktiven Germaniumatom aus – es sind also simultan zwei Reaktionen gleichzeitig durchführbar. Das erlaubt die Einführung neuer Funktionalitäten, wodurch diese neue Verbindungsklasse für die weitere Forschung am Gebiet der Photoinitiatoren von großem Interesse ist. „Das ist auch für die gesamte metallorganische Chemie ein Meilenstein“, so Haas. Er und sein Team entwickeln zurzeit ausgehend von diesen Molekülen völlig neuartige wasserlösliche Photoinitiatoren, was einen bislang unbetretenen Boden in diesem Forschungsgebiet darstellt. (Susanne Filzwieser)

Externer Link: www.tugraz.at

Das verborgene Talent der Pilze

Presseaussendung der TU Wien vom 04.10.2021

An der TU Wien wurde eine Methode entwickelt, um die Genome von Pilzen zu interpretieren. Das Ziel: Vorhersagen, welche Gene für die Herstellung wertvoller Substanzen wichtig sind und bei welchen es sich um Lückengene handelt.

Neben uns Menschen existieren mehrere Millionen Pilze-Stämme auf der Erde, wobei die meisten von ihnen in der Lage sind, sogenannte Sekundärmetaboliten herzustellen. Sekundärmetaboliten sind Stoffe, die für das Überleben nicht primär notwendig sind, aber zum Beispiel der chemischen Verteidigung dienen. Manche Sekundärmetaboliten, wie etwa Penicillin, sind auch für den Menschen von großem Nutzen, weshalb Forschende gezielt nach solchen Substanzen suchen. Ein vielversprechender Ansatz dazu ist, innerhalb der Genome von Pilzen nach zuständigen Genen zu suchen und diese zu aktivieren.

Ein Team unter der Leitung von Christian Derntl, TU Wien, entwickelte daher eine bioinformatische Methode, um die dafür notwendigen Gene und sogenannte Gap Genes (dt. Lückengene) auseinanderzuhalten. Dazu werden die genomischen Daten von Pilzen auf einen ähnlichen evolutionären Hintergrund hin untersucht. Die Methode mit dem Namen „FunOrder“ publizierte das Forschungsteam in der Fachzeitschrift PLOS Computational Biology.

Heilmittel durch Stress

Im Labor produzieren Pilze von Natur aus eher selten Sekundärmetaboliten – unter anderem, da sie nicht für lebensnotwendige Prozesse wie Zellwachstum benötigt werden. In ihrem natürlichen Lebensraum dagegen produzieren Pilze Stoffe wie Antibiotika, wenn sie in Stress geraten und sich gegenüber konkurrierenden Organismen verteidigen müssen. Aufgrund der optimalen Wachstumsbedingungen im Labor ist es daher notwendig, die entsprechenden Gene gezielt einzuschalten und den Organismus so zur Synthese des gewünschten Sekundärmetabolits zu bewegen. Das wiederum setzt das Wissen über die dafür kodierenden Gene voraus. „Vor allem bei Pilzen ist das Potenzial groß, neue Sekundärmetaboliten zu finden. Dass diese nicht ohne Weiteres unter Laborbedingungen produziert werden, erschwert jedoch die Suche danach“, schildert Christian Derntl den Weg zu neuen Heilmitteln.

Gezielte Gen-Aktivierung

Gene, die für Sekundärmetaboliten zuständig sind, clustern oft zusammen. Das heißt, sie befinden sich in unmittelbarer Nähe auf der DNA. So gibt es ein Hauptgen, das die chemische Grundstruktur des Sekundärmetaboliten vorgibt und sich aufgrund seiner Größe gut erkennen lässt. Enzyme modifizieren dann dieses chemische Grundgerüst, um so den fertigen Sekundärmetabolit zu erhalten. In den Clustern befinden sich aber auch oft Gap Genes, die nur zufällig in den Gen-Clustern liegen, für die Synthese der Sekundärmetaboliten jedoch nicht notwendig sind. Um nun neue Sekundärmetaboliten zu finden, verfolgt das Team um Christian Derntl einen Bottom-up-Ansatz. „Dazu versuchen wir die Cluster einzuschalten und so neue Substanzen zu finden,“ erklärt Derntl. Logischerweise sollen dafür nur die essentiellen Gene, nicht jedoch die Gap Genes aktiviert werden. Ganz genau dafür wurde die Methode FunOrder entwickelt. „Wir wollen vorhersagen, welche Gene wir im Labor berücksichtigen müssen und welche nicht“ fasst der Erst-Autor der Studie, Gabriel Vignolle, zusammen. Denn bestehende Methoden ermöglichen es zwar, die Cluster zu identifizieren, können aber nicht vorhersagen, welche Gene notwendig sind und welche nicht.

FunOrder bringt mehr als Spaß

Eine zentrale Frage, die sich die Wissenschaftler_innen um Christian Derntl stellten, war, wie sich genetische Daten sinnvoll interpretieren lassen. „Wir leben in einem Zeitalter, in dem sich Genome ganz einfach und kostengünstig sequenzieren lassen“, erklärt Derntl. „Auch im Internet sind unzählige Datensätze vorhanden. Da stehen wir eher vor der Herausforderung, die Daten sinnvoll auszuwerten und zu strukturieren. Die Bioinformatik kann uns dabei helfen.“ So entwickelte das Team das Computerprogramm FunOrder, das als Input verschiedene Gene erhält. Mit Hilfe einer speziell dafür entwickelten Datenbank kann FunOrder Gene mit ähnlichem evolutionären Hintergrund identifizieren. “Wir konnten in Folge zeigen, dass genau diese ko-evoluierten Gene funktionell notwendig sind und sich so von den Gap Genes unterscheiden lassen“, erklärt Gabriel Vignolle.

Dabei eignet sich die Methode nicht nur zur Analyse und Strukturierung vorhandener Daten, auch die Genome neu entdeckter Pilze können so untersucht werden. Der Quellcode für das Programm ist öffentlich zugänglich, die Analysen können also von Wissenschaftler_innen weltweit durchgeführt werden.

Das Projekt ist aus dem Doktoratskolleg „Bioactive – Technologies for Drug Discovery and Production“ heraus entstanden, in dem Vignolle aktiv ist. (Sarah Link)

Originalpublikation:
Gabriel A. Vignolle, Denise Schaffer, Leopold Zehetner, Robert L. Mach, Astrid R. Mach-Aigner, Christian Derntl: FunOrder: A robust and semi-automated method for the identification of essential biosynthetic genes through computational molecular co-evolution, PLOS Computational Biology, 2021.

Externer Link: www.tuwien.at