Die große Kunst der kleinen Löcher

Presseaussendung der TU Wien vom 03.08.2020

Wie kann man eine atomare Materialschicht perforieren und die darunterliegende unversehrt lassen? An der TU Wien entwickelte man eine Technik zur Bearbeitung von Oberflächen auf atomarer Skala.

Niemand kann eine Pistolenkugel so durch eine Banane schießen, dass die Schale durchlöchert wird, die Banane aber heil bleibt. Auf der Ebene einzelner atomarer Schichten ist ein solches Kunststück nun allerdings gelungen – an der TU Wien wurde eine Nano-Strukturierungs-Methode entwickelt, mit der man bestimmte Materialschichten extrem präzise perforieren und andere völlig unangetastet lassen kann, obwohl das Projektil alle Schichten durchdringt.

Möglich wird das mit Hilfe hochgeladener Ionen. Mit ihnen kann man die Oberflächen neuartiger 2D Materialsysteme gezielt bearbeiten, etwa um bestimmte Metalle auf ihnen zu verankern, die dann als Katalysatoren dienen können. Die neue Methode wurde nun im Fachjournal „ACS Nano“ publiziert.

Neue Materialien aus ultradünnen Schichten

Materialien, die aus mehreren ultradünnen Schichten zusammengesetzt sind, gelten als großes Hoffnungsgebiet der Materialforschung. Seit das Hochleistungsmaterial Graphen erstmals hergestellt wurde, das nur aus einer einzigen Lage von Kohlenstoffatomen besteht, werden immer wieder neue Dünnschicht-Materialien entwickelt, oft mit vielversprechenden neuen Eigenschaften.

„Wir untersuchten eine Kombination aus Graphen und Molybdän-Disulfid. Die beiden Materialschichten werden in Kontakt gebracht und haften dann durch schwache van der Waals-Kräfte aneinander“, sagt Dr. Janine Schwestka vom Institut für Angewandte Physik der TU Wien und Erstautorin der aktuellen Publikation. „Graphen ist ein sehr guter Leiter, Molybdän-Disulfid ist ein Halbleiter, die Kombination könnte etwa zur Herstellung neuartiger Datenspeicher interessant sein.“

Für bestimmte Anwendungen möchte man allerdings die Geometrie des Materials auf einer Skala von Nanometern gezielt bearbeiten – etwa um danach durch zusätzlich aufgebrachte Atomsorten die chemischen Eigenschaften zu verändern, oder auch um die optischen Eigenschaften der Oberfläche zu kontrollieren. „Dafür gibt es unterschiedliche Methoden“, erklärt Janine Schwestka. „Man kann die Oberflächen mit einem Elektronenstrahl verändern oder auch mit einem herkömmlichen Ionenstrahl. Bei einem Zweischicht-System hat man jedoch immer das Problem, dass der Strahl beide Schichten gleichzeitig verändert, auch wenn man eigentlich nur eine davon bearbeiten möchte.“

Zwei Sorten Energie

Wenn man mit einem Ionenstrahl eine Oberfläche bearbeitet, ist es normalerweise die Wucht des Aufpralls der Ionen, die das Material verändert. An der TU Wien hingegen verwendete man relativ langsame Ionen, die dafür aber gleich mehrfach elektrisch geladen sind. „Man muss hier zwei unterschiedliche Formen von Energie unterscheiden“, erklärt Prof. Richard Wilhelm. „Einerseits die kinetische Energie, die von der Geschwindigkeit abhängt, mit der die Ionen auf der Oberfläche einschlagen. Andererseits aber auch die potentielle Energie, die durch die elektrische Ladung der Ionen bestimmt wird. Bei herkömmlichen Methoden war die kinetische Energie entscheidend, uns hingegen ist die potentielle Energie besonders wichtig.“

Zwischen diesen beiden Energieformen gibt es einen wichtigen Unterschied: Während die kinetische Energie beim Durchdringen des Schichtsystems in beiden Materialschichten abgegeben wird, kann die potenzielle Energie sehr ungleich auf die Schichten verteilt werden: „Das Molybdän-Disulfid reagiert sehr stark auf die hochgeladenen Ionen“, sagt Richard Wilhelm. „Ein einzelnes Ion, das auf dieser Schicht eintrifft, kann dutzende oder hunderte Atome aus der Schicht entfernen. Zurück bleibt ein Loch, das man unter dem Elektronenmikroskop sehr gut sehen kann.“ Die Graphenschicht hingegen, auf die das Projektil unmittelbar danach trifft, bleibt unversehrt: Der Großteil der Potentialenergie ist dann bereits abgeben worden.

Dasselbe Experiment kann man auch umkehren, sodass das hochgeladene Ion zuerst auf das Graphen und dann erst auf die Molybdän-Disulfid-Schicht trifft. In diesem Fall bleiben beide Schichten unversehrt: Das Graphen liefert dem Ion in winzigen Sekundenbruchteilen die nötigen Elektronen um es elektrisch zu neutralisieren. Die Beweglichkeit der Elektronen im Graphen ist dabei derart hoch, dass auch der Einschlagsort sofort „abkühlt“. Das Ion durchquert die Graphenschicht ohne eine bleibende Spur zu hinterlassen. Danach kann es auch in der Molybdän-Disulfid-Schicht keinen großen Schaden mehr anrichten.

„Das liefert uns nun eine wunderbare neue Methode, Oberflächen gezielt zu manipulieren“, sagt Richard Wilhelm. „Wir können die Oberfläche mit Nano-Poren in die Oberflächen versehen, ohne das Trägermaterial darunter zu verletzen. Somit können wir geometrische Strukturen erzeugen, die bisher unmöglich waren.“ Man könnte auf diese Weise „Masken“ aus genau nach Wunsch perforiertem Molybdän-Disulfid herstellen, auf dem sich dann genau in den Löchern bestimmte Metallatome einlagern. Für die Kontrolle der chemischen, elektronischen und optischen Eigenschaften der Oberfläche ergeben sich dadurch völlig neue Möglichkeiten.

„Wir freuen uns sehr, dass unsere gute Vernetzung über das TU Doktoratskolleg TU-D wesentlich zu diesen Ergebnissen beitragen konnte“, sagt Janine Schwestka, die als Kollegiatin über 3 Jahre Mitglied im TU-D war. „Darüber hinaus zeichnet es den Wissenschaftsstandort Wien aus, dass wir mit kurzen Wegen Kontakte zur Universität Wien knüpfen konnten, um unsere gemeinsame Expertise zu vertiefen und uns methodisch zu ergänzen.“

Für den Aufbau der ersten ultraschnellen Ionenquelle der Welt wurde Richard Wilhelm 2019 mit dem START-Preis des FWF ausgezeichnet. (Florian Aigner)

Originalpublikation:
J. Schwestka et al., Atomic-Scale Carving of Nanopores into a van der Waals Heterostructure with Slow Highly Charged Ions, ACS Nano 2020

Externer Link: www.tuwien.at

Saarbrücker Bioinformatiker tragen zum Verständnis des Alterns bei

Pressemitteilung der Universität des Saarlandes vom 16.07.2020

Wie altern Organismen, Organe und Zellen auf molekularer Ebene? Forscher der Universität Stanford und des Chan-Zuckerberg Biohubs haben einen einzigartigen Datensatz generiert, der es ermöglicht, diese Fragen besser zu beantworten. In dem Forscherteam haben auch Saarbrücker Bioinformatiker mitgewirkt, die maßgeblich zur Datenanalyse beigetragen haben. Die Resultate wurden jetzt in gleich zwei Artikeln im renommierten Journal „Nature“ veröffentlicht.

Professor Andreas Keller vom Zentrum für Bioinformatik der Saar-Universität forscht bereits seit mehr als einem Jahr als Gastprofessor an der kalifornischen Eliteuniversität Stanford. Sein Ziel ist es, auf Einzelzell-Ebene besser zu verstehen, wie Krankheiten wie Alzheimer und Parkinson im menschlichen Körper entstehen. Dazu setzt er gemeinsam mit seinem Team Methoden des statistischen Lernens und der Künstlichen Intelligenz ein. Seinem Ziel ist er nun ein Stück nähergekommen. Über sechs Jahre hinweg hat ein Team insgesamt 23 Gewebe- und Mausorgane in verschiedenen Altersstufen molekular untersucht. Die Komplexität der Forschung zeigt sich unter anderem darin, dass über 160 Wissenschaftlerinnen und Wissenschaftler daran mitgewirkt haben, die Daten zu generieren und zu verstehen.

„Dieser Datensatz ist sicher einer der spannendsten und interessantesten, an dem ich in meiner Karriere gearbeitet habe“, stellt Bioinformatiker Keller fest. Und obwohl die Daten jetzt bereits in zwei Nature-Artikeln veröffentlicht wurden, sind sie bei weitem noch nicht vollständig verstanden. Momentan arbeiten die Forscher am Zentrum für Bioinformatik daran, molekulare Signalkaskaden auf Einzelzell-Ebene zu interpretieren. Dadurch versprechen sie sich weitere Erkenntnisse über molekulare Alterungsprozesse und darüber, welche Rolle diese bei der Entstehung von Krankheiten spielen.

Publikationen:

Ageing hallmarks exhibit organ-specific temporal signatures, Nature, 2020

A single-cell transcriptomic atlas characterizes ageing tissues in the mouse, Nature, 2020

Externer Link: www.uni-saarland.de

THI-Studierende entwickeln Transportmittel für Personen mit Handicap

Pressemitteilung der TH Ingolstadt vom 21.07.2020

Patiententransport und Transport bei Evakuierung in Notfällen – Projekt mit südafrikanischer Stiftung Shonaquip

Die Zusammenarbeit von THI-Studierenden mit der südafrikanischen Charity-Stiftung Shonaquip geht in die nächste Runde: Nachdem die Studierenden im vergangenen Semester unter Leitung von Prof. Dr. Marco Di Maio, Professor für Systems Engineering und Ingenieurinformatik, Stehhilfen für südafrikanische Kinder mit Handicap weiterentwickelt hatten, stellte sich eine neue Studierendengruppe nun der Herausforderung, Transportmittel für Personen mit Handicap u.a. zur schnelleren Evakuierung in Notfallsituationen zu konzipieren.

Ziel war es, Transportmittel zu entwerfen, die in Situationen eingesetzt werden können, für die Rollstühle ungeeignet sind. Neben der medizinisch korrekten Positionierung der Person im Transportmittel kam es dabei vor allem darauf an, dass sich der „Transporter“ einfach herstellen, reparieren und vielseitig verwenden lässt. Hierzu muss er sich auch auf schwierigem Untergrund kontrolliert bewegen und platzsparend zusammenklappen lassen, damit die Person beispielsweise von einem Sammeltaxi mitgenommen werden kann.

So entwarfen die Studierenden unter anderem Konzepte für Transportmittel, bei der die Person stabil in einem Stoff-Vollkörpergurt hängt, der mit gefederten Karabinern sicher an einem transportierbaren Rahmen befestigt werden kann. Der Vorteil: Stöße, die beim Transport leicht entstehen können, werden nicht auf den Körper der Person übertragen, die typischerweise sehr empfindlich auf Belastung reagiert. Ein anderes Konzept erlaubt es, die Person zu ziehen, was sich vor allem in unwegsamem Gelände als großer Vorteil erweist.

Die Charity-Stiftung Shonaquip, die die Konzepte nun für eine mögliche Umsetzung prüft, hat den Studierenden bereits Praktika in Südafrika angeboten, in denen sie ihre Konzepte realisieren können.

Externer Link: www.thi.de

Fahrerkabine 4.0: Automatisiertes Belastungsmanagement

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 08.07.2020

Agrarsysteme der Zukunft: Forscherinnen und Forscher des KIT entwickeln anpassungsfähige Mensch-Maschine-Schnittstelle für Mähdrescher

Getreide – zur Herstellung von Nahrungsmitteln und Tierfutter – ist neben Fleisch und Gemüse die Haupteinnahmequelle in der Landwirtschaft. Bedeutendste Getreideart im deutschen Ackerbau ist Weizen mit einer Anbaufläche von rund 3,1 Millionen Hektar im Jahr 2019. Trotz modernster Maschinen gibt es bei der Ernte Phasen einerseits sehr hoher und andererseits relativ geringer Arbeitsbelastung. Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) entwickeln nun ein automatisiertes Assistenzsystem, das – orientiert am aktuellen Beanspruchungsniveau – Handlungsempfehlungen ausgeben, damit beim Ausgleich unterstützen und so insgesamt das Wohlbefinden steigern kann.

Bei der Ernte kombiniert ein Mähdrescher mehrere Arbeitsschritte: Über das Schneidwerk nimmt er das Getreide auf und befördert es in das Dreschwerk, in dem es gedroschen wird. Danach wird das Dreschgut gereinigt und gelangt in den Korntank, von dem aus es abtransportiert wird. Intelligente und vernetzte Systeme prägen bereits heute den landwirtschaftlichen Alltag: Knapp 82 Prozent der deutschen Landwirtinnen und Landwirte setzen digitale Technologien ein. „Landwirtschaftliche Erntemaschinen mit einem hohen Automatisierungsgrad können mit GPS-Lenksystemen, Sensoren oder Farm- und Managementsystemen bereits viele Arbeitsschritte eigenständig ausführen“, sagt Patrick Lehr vom Institutsteil Mobile Arbeitsmaschinen (Mobima) am Institut für Fahrzeugsystemtechnik (FAST) des KIT. „Dank solcher Systeme lässt sich die Zeit auf dem Mähdrescher auch nutzen, sich um andere Dinge zu kümmern, beispielsweise Managementaufgaben.“

Über den Erntetag verteilt – der häufig mindestens zehn Stunden lang ist – fallen sowohl Zeiten mit hoher als auch mit vergleichsweise niedriger Arbeitsbelastung an: „Verschiedene Studien haben gezeigt, dass es für den Menschen am angenehmsten ist, sich in einem mittleren Beanspruchungsniveau zu bewegen“, erläutert Lehr. Hier setzen die Wissenschaftlerinnen und Wissenschaftler des Mobima und des Instituts für Arbeitswissenschaft und Betriebsorganisation (ifab) an und entwickeln ein Assistenzsystem, das Fahrerinnen und Fahrern abhängig vom aktuellen Beanspruchungsniveau Aufgaben zur Bearbeitung empfiehlt. „Sinnvolle Zusatzaufgaben für Phasen geringer Belastung kommen aus der Buchhaltung, dem Personal- oder Materialmanagement sowie dem privaten Aufgabenfeld. Diese könnten sonst erst nach der Feldarbeit erledigt werden“, erklärt Lehr. „Andererseits ist gerade beim Andreschen – also wenn der Fahrer die Arbeit auf einem neuen Feld beginnt – höchste Aufmerksamkeit gefragt. Da ist dann ein Ausblenden aller irrelevanten Informationen wichtig“. So wirke das System einer Unter- und Überforderung entgegen und halte die Daueraufmerksamkeit kontinuierlich aufrecht.

Intelligente Systeme erkennen Belastung

Die neuartige Fahrerkabine besteht aus mehreren Teilsystemen. Dabei geht es vor allem darum, zu erkennen, wie sehr die Fahrerin oder der Fahrer aktuell beansprucht ist. In Studien untersuchen die Forscherinnen und Forscher vom ifab den Belastungszustand mittels Blickerfassung (Eye-Tracking). Auch ein Fitnessarmband, das mithilfe von Lichtsignalen den Puls ermittelt und so das Stresslevel messen kann, sei vorstellbar. „Mit diesem Input können wir dann Handlungsempfehlungen erstellen“, erklärt Lehr. Diese sollen dann künftig über eine auf Augmented Reality (AR) basierende Schnittstelle ins Sichtfeld des Fahrers projiziert werden, um die Kabine nicht mit Bedienelementen zu überladen.

Die an das Beanspruchungsniveau anpassungsfähige Mensch-Maschine-Schnittstelle habe ökologische, ökonomische sowie gesellschaftliche Vorteile, so Lehr. Durch die digitale Vernetzung der Fahrerkabine werden für die Ernte hilfreiche Informationen wie Wettervorhersagen oder Daten zur Bodenbelastung eingebunden. „Nicht zuletzt kann das neuartige technische System auch den Arbeitsplatz und das Berufsbild insgesamt attraktiver machen“, erläutert Lehr.

Nachdem die Arbeitsgruppe des Mobima inzwischen alle Anforderungen gesammelt und daraus Konzepte für die einzelnen Teilsysteme erstellt hat, entwickeln sie nun konkrete technische Lösungen, die den Zustand der Fahrerin oder des Fahrers erfassen und Interaktionen ermöglichen. Dafür testen sie das System in einem Demonstrator. In einem separaten Versuch zur Zustandserfassung messen sie die Auslastungsgrenze von Probanden, in dem diese eine Hauptaufgabe auf dem Feld, wie das Dreschen, und wahlweise noch eine Nebenaufgabe im Management erledigen. Um die Wünsche und Bedürfnisse der Landwirtinnen und Landwirte hier direkt einbeziehen zu können, hat das Team bereits im Vorfeld Betriebsleitungen, Fahrende und landwirtschaftliche Dienstleister befragt. „Die Mehrheit konnte sich vorstellen, in Zukunft die Zeit, in der der Mähdrescher automatisch arbeitet, auch anderweitig zu nutzen, insbesondere die immer wichtiger werdende Dokumentationspflicht wurde vermehrt genannt“, sagt Lehr.

Die Untersuchungen der Wissenschaftlerinnen und Wissenschaftler des KIT sind Teil des Verbundprojekts „Fahrerkabine 4.0: Entwicklung einer beanspruchungsadaptiven Nutzerschnittstelle für Landmaschinenbetreiber“. Das Bundesministerium für Bildung und Forschung fördert das Projekt mit insgesamt drei Millionen Euro – davon erhält das KIT etwa 1,4 Millionen Euro. Weitere Projektbeteiligte sind die Universität Hohenheim, das Startup R3DT, die Firma InMach, das Unternehmen Budde Industrie Design sowie der europäische Marktführer von Erntemaschinen CLAAS. (as)

Externer Link: www.kit.edu

TU Graz entwickelt autonom fahrenden Elektro-Kompostwender

Pressemeldung der TU Graz vom 14.07.2020

Die neue Maschine soll die industrielle Kompostierung erleichtern und autonomes Fahren auch für kettengetriebene Arbeitsmaschinen salonfähig machen.

Das Wenden und Durchmischen großer Komposthaufen sind bei der Kompostierung wichtige Arbeitsschritte, um den Verrottungsprozess zu beschleunigen. Kompostieranlagen und landwirtschaftliche Betriebe nutzen dafür mehrheitlich traktorgezogene Wendemaschinen oder einen dieselbetriebenen Kompostwender mit Kettenfahrwerk. Das Bedienpersonal dieser Maschinen ist aufgrund der langsamen Fahrgeschwindigkeiten (von 50 bis 300 m/h), der hohen Umgebungstemperaturen, der freigesetzten Gase und der auftretenden Geruchsbelastung beim Wendevorgang äußerst unangenehmen Bedingungen ausgesetzt.

Im Rahmen des Forschungsprojekts ANTON (Autonomous navigation for tracked compost turners) arbeiten Forschende des Instituts für Technische Logistik und des Instituts für Geodäsie der TU Graz derzeit an einem selbstfahrenden Kompostwender, der den Wendeprozess zukünftig ohne Personal erledigen soll – und das außerdem umweltfreundlich: Die neue Maschine wird mit einem Akku-Elektrischen-Antriebskonzept betrieben, das in Vorlaufforschungsprojekten bereits erfolgreich getestet wurde.

Innovatives Navigationssystem

Die erste Innovation liegt im Navigationsmodul, wie Projekt-Gesamtkoordinator Manfred Wieser vom Institut für Geodäsie erklärt: „Auf den Kompostplätzen wird der Kompost für gewöhnlich in zwei Meter hohen trapezförmigen Zeilen aufgeschichtet, die in mehreren Reihen angeordnet sind. Damit die vier Meter breite und zweieinhalb Meter lange Maschine diese Zeilen gezielt ansteuern und den Kompost richtig wenden kann, ist eine präzise Positionsbestimmung notwendig.“

Das Projektteam am Institut für Geodäsie realisierte dafür ein Navigationssystem, das den Standort des Kompostwenders in Echtzeit zentimetergenau erfasst. Die hochgenaue Positionsbestimmung erfolgt mithilfe globaler Satellitennavigationssysteme (GNSS), wie GPS und dem europäischen System GALILEO. Um die Robustheit zu erhöhen und Ausfälle des Satellitensignals überbrücken zu können, werden zusätzlich Beschleunigungs- und Drehratensensoren, Stereokameradaten, Sensoren an den Kettenantriebsrädern und ein hochgenaues 3D-Modell der Kompostieranlage herangezogen. Zwei GNSS-Antennen sowie bildgebende Sensoren an der Maschine selbst sorgen für die eindeutige Bestimmung der Bewegungsrichtung.

Robuste Steuerarchitektur

Um die Funktionssicherheit sicherzustellen und Entwicklungszeit zu sparen, testet das Team vom Institut für Technische Logistik den Kompostwender aktuell nicht aufwendig am Kompostplatz, sondern in einer virtuellen Umgebung. Simuliert werden beispielsweise das Verhalten der Fahrwerkskette auf dem oft und rasch wechselnden Untergrund am Kompostplatz, sowie der Einfluss der verschiedenen Kompost-Reifegrade auf die Wendewalze. Die Ergebnisse fließen in die finale Entwicklung der Steuerungssensorik und der Regelstruktur ein. „Die dynamische Beschreibung autonom fahrender Kettenfahrzeuge in virtuellen Modellen war bislang bei weitem nicht so etabliert wie jene von selbstfahrenden Pkws. Hier leisten wir mit unserer Forschung Pionierarbeit“, so Christian Landschützer vom Institut für Technische Logistik.

Der Logistikexperte unterstreicht die gesellschaftliche Bedeutung des Forschungsprojekts: „In Österreich produzieren wir jährlich über eine Million Tonnen Biomüll, der in über 400 Kompostieranlagen verarbeitet wird. Außerdem spielt die Kompostierung eine große Rolle in jenen Ländern, die einen Engpass bei fruchtbarer Erde haben.“ Das Interesse und die Nachfrage nach einem autonomen Kompostwender sind groß, die Forschenden sind bereits mit mehreren Unternehmen in Kontakt. Das steirische Unternehmen Pusch & Schinnerl ist Projektpartner und plant die industrielle Umsetzung. Wieser und Landschützer hoffen, dass die Neuentwicklung Ende des Jahres abgeschlossen ist und schon 2021 ein Prototyp zur Serienreife gebracht werden kann. (Christoph Pelzl)

Externer Link: www.tugraz.at