Künstliche Intelligenz: Erfolge auf dem Weg zur vollautomatisierten Baustelle

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 22.09.2023

Forschende des KIT haben eine Plattform entwickelt, die mittelständischen Unternehmen hilft, Dokumente zu digitalisieren und zu strukturieren

Künstliche Intelligenz ermöglicht ein digitales und vernetztes Datenmanagement in der Bauwirtschaft. Wie nützlich dies vor allem für kleinere und mittlere Unternehmen ist, zeigt das vom Karlsruher Institut für Technologie (KIT) koordinierte Projekt „SDaC – Smart Design and Construction“. Das auf eine verlustfreie Informationsweitergabe zwischen Organisationen und Softwaresystemen gerichtete Projekt bildet einen wichtigen Forschungsbeitrag zur Mensch-Maschine-Kollaboration. Bei einem Abschlussevent stellten die Forschenden die Ergebnisse vor.

Wie kann Künstliche Intelligenz (KI) Menschen in der Bauwirtschaft unterstützen? Welche Aufgaben können Maschinen lernen? Diesen Fragen widmete sich das vom KIT koordinierte Projekt „SDaC – Smart Design and Construction“. „Wir haben eine Plattform entwickelt, auf der sich unter anderem Dokumente aus Projekten, beispielsweise PDF-Lieferscheine, digitalisieren und strukturieren lassen“, sagt der wissenschaftliche Leiter von SDaC, Professor Shervin Haghsheno vom Institut für Technologie und Management im Baubetrieb (TMB) des KIT. Außerdem entstanden gemeinsam mit den Projektpartnern neun KI-Demonstratoren, die Organisationen der Bauwirtschaft bei der Bauplanung und -realisierung unterstützen sollen. „Dabei haben wir vor allem Wert auf Transparenz und Erklärbarkeit gelegt“, so Haghsheno weiter. Die Demonstratoren sind auf der Plattform für Interessierte einsehbar und lassen sich testen, um die Mehrwerte von KI für die Bauwirtschaft zu erleben. Das TMB betreibt die aufgebaute Plattform und die entwickelten Demonstratoren über den Projektabschluss hinaus in einem Netzwerk weiter, um den Wissens- und Praxisaustausch zum Thema KI in der Bauwirtschaft zu unterstützen.

„Die Ergebnisse des Projekts bilden einen wichtigen Baustein in unserer Forschung zur Digitalisierung in der Bauwirtschaft, besonders zur Mensch-Maschine-Kollaboration“, sagt Shervin Haghsheno. Bei der Bauwirtschaft handele es sich um ein stark fragmentiertes Ökosystem mit vielen Schnittstellen, erklärt Projektleiterin Svenja Lauble vom TMB. „Daher ist eine verlustfreie Informationsweitergabe zwischen Organisationen und Softwaresystemen häufig nur schwer möglich. Mit SDaC haben wir die Mehrwerte von KI gezeigt, vor allem für kleine und mittlere Unternehmen. Gerade diese haben mit vielen Datenformaten zu tun, die häufig nicht digital und strukturiert vorliegen.“

Plattform ermöglicht Digitalisierung von Dokumenten

Zusätzlich haben die Projektbeteiligten in SDaC eine Übersicht von 230 Softwareunternehmen erstellt, die sich mit KI für die Bauwirtschaft befassen. Auf einer Seite können KI-Expertinnen und Experten ihre Leistungen für Bau- oder Bausoftwareunternehmen anbieten. Schulungen und Netzwerkveranstaltungen werden ebenfalls organisiert. Auf der Basis des Demonstrators „Lieferscheine digitalisieren“ haben die Forschenden zudem eine App realisiert, die ab Herbst 2023 in den App-Stores zum Download bereitsteht. Jede Baustelle erhält Lieferscheine im Papierformat, die zur Rechnungsprüfung und Dokumentation manuell aufbereitet werden müssen – die App bietet eine einfache Möglichkeit, sie zu digitalisieren.

Folgeprojekt befasst sich mit intelligenten Sanierungsmaßnahmen

Einzelne in SDaC entstandene Demonstratoren werden im Folgeprojekt „NaiS – Nachhaltige intelligente Sanierungsmaßnahmen“ weiterentwickelt, das ebenfalls vom KIT koordiniert wird. Das vom Bundesministerium für Wirtschaft und Klimaschutz (BMWK) geförderte Projekt verknüpft Daten aus verschiedenen Quellen mithilfe von KI-Technologien auf einer digitalen Plattform, um Sanierungsmaßnahmen objektiv zu bewerten und zu optimieren.

Aus dem Projekt SDaC heraus hat sich außerdem das Start-up Valoon in Dortmund gegründet. Sein Ziel ist, Informationen aus bestehenden Kommunikationskanälen wie WhatsApp intelligent aufzubereiten und zu strukturieren.

Mehr als 40 Projektpartner aus Wissenschaft und Wirtschaft waren an SDaC beteiligt. Das Projekt wurde in einem bundesweiten Innovationswettbewerb zur Anwendung von Künstlicher Intelligenz ausgezeichnet und vom BMWK über 3,5 Jahre mit rund 9 Millionen Euro gefördert. (or)

Externer Link: www.kit.edu

In 0,956 Sekunden von Null auf Hundert

Medienmitteilung der ETH Zürich vom 12.09.2023

Mit ihrem selbstgebauten Elektro-​Rennwagen «mythen» haben Studierende der ETH Zürich und der Hochschule Luzern den bisherigen Beschleunigungsweltrekord gebrochen. Innerhalb von nur 0,956 Sekunden und 12,3 Metern beschleunigte der Bolide von 0 auf 100 km/h.

Die Freude im Akademischen Motorsportverein Zürich (AMZ) ist enorm: Fast ein Jahr lang haben die Studierenden der ETH Zürich und der Hochschule Luzern in jeder freien Minute an ihrem Elektrofahrzeug «mythen» gearbeitet; sie haben Rückschläge überwunden und mussten bei der Entwicklung einzelner Komponenten immer wieder von vorne beginnen. Nun haben sie die offizielle Bestätigung von Guinness World Records erhalten: «mythen» hat den bisherigen Beschleunigungsweltrekord für Elektrofahrzeuge gebrochen. Der Bolide beschleunigte auf dem Innovationspark in Dübendorf, direkt vor ihrer Werkstatt, in nur 0,956 Sekunden von 0 auf 100 km/h. Dazu reichte dem Fahrzeug eine Strecke von lediglich 12,3 Metern. Am Steuer sass Kate Maggetti. Der vorherige Weltrekord von 1,461 Sekunden, aufgestellt im September 2022 von einem Team der Universität Stuttgart, wurde damit um mehr als ein Drittel unterboten.

«Die Arbeit am Projekt parallel zum Studium war sehr intensiv. Trotzdem hat es sehr viel Spass gemacht, mit den Kolleginnen und Kollegen immer wieder neue Lösungen zu finden und das im Studium theoretisch Gelernte in die Praxis umzusetzen. Und natürlich ist es eine absolut einmalige Erfahrung, an einem Weltrekord beteiligt zu sein», sagt Yann Bernard, verantwortlich für die Motoren.

Leichter, stärker, mehr Traktion

Alle Komponenten von «mythen», angefangen von den Leiterplatten (PCB) bis hin zum Chassis und dem Akku, wurden von den Studierenden selbst entwickelt und auf ihre Funktion hin optimiert. Dank des Einsatzes von leichtem Carbon und Aluminium-​Waben wiegt das Rennauto gerade mal rund 140 Kilo. Vier selbst entwickelte Radnabenmotoren sowie ein spezieller Antriebsstrang verleihen dem Fahrzeug eine eindrucksvolle Leistung von 240 Kilowatt (326 PS).

«Bei einem Beschleunigungsrekord spielt aber nicht nur die Leistung eine wichtige Rolle, sondern auch, wie man die Kraft effektiv auf den Boden übertragen kann», erklärt Dario Messerli, verantwortlich für die Aerodynamik. Bei herkömmlichen Formel-​1-Fahrzeugen wird dies über die Aerodynamik gelöst: ein Heck-​ oder Frontflügel sorgt dafür, dass der Wagen auf den Boden gedrückt wird. Dieser Effekt kommt aber erst zum Tragen, wenn das Auto eine gewisse Geschwindigkeit erreicht hat. Um von Anfang an eine starke Bodenhaftung zu gewährleisten, haben die Studierenden des AMZ-​Teams deshalb eine Art Staubsauger entwickelt, der das Fahrzeug an den Boden saugt.

Hart umkämpfter Weltrekord

Bereits zweimal hat das AMZ-​Team zuvor den Beschleunigungsweltrekord für Elektroautos aufgestellt – einmal 2014 und erneut 2016. In den folgenden Jahren wurde ihr Rekord von einem Team der Universität Stuttgart gebrochen. Jetzt ist der Weltrekord wieder in der Schweiz und die ETH-​Studierenden sind zuversichtlich, dass sie ihn so schnell nicht wieder abgeben werden.

Externer Link: www.ethz.ch

Larabicus entwickelt Putzroboter für Schiffsrümpfe

Pressemitteilung der Universität Kassel vom 04.09.2023

Für ihr Projekt „Larabicus“ haben Florian Gerland und Thomas Schomberg von der Universität Kassel mit ihrem Team eine EXIST-Forschungstransfer-Förderung in Höhe von 1,2 Millionen Euro eingeworben. Sie entwickeln einen Putzroboter, der Schiffsrümpfe während der Fahrt von Algen und Muscheln sauber hält.

Handelsschiffe legen riesige Strecken zurück – und tragen dabei bisher stets eine Vielzahl an invasiven Organismen in fremde Ökosysteme. Unter der Wasseroberfläche am Schiffsrumpf bilden sich bereits innerhalb von wenigen Stunden oder Tagen Verschmutzungen und Verkrustungen, bspw. durch Algen oder Muscheln. Eine solche Schleimschicht erhöht den Widerstand im Wasser und verlangsamt dadurch das Schiff. Als Folge wird mehr Treibstoff verbraucht und die CO2-Emissionen steigen.

Benannt nach seinem ökologischen Vorbild – dem Putzer-Lippfisch „Larabicus quadrilineatus“, der größere Fische von Parasiten befreit – setzt das Projekt Larabicus hier an: Kleine Roboter sollen genau diese Aufgabe am Schiffsrumpf übernehmen. Das Ziel ist es, die Schleimschichtbildung soweit es geht zu verhindern und die Oberfläche des Schiffsrumpfs möglichst glatt zu halten. „Wir entwickeln eine Technik, die den Bewuchs langfristig und schonend entfernt, ohne dabei den Lack zu beschädigen“, erklärt Thomas Schomberg. Schiffslacke enthalten aktuell noch Biozide und sind dadurch hochgiftig. „Damit möglichst wenig dieser Lacke im Wasser abgetragen wird, ist eine schonende Reinigung essentiell.“

Mit dieser Innovation trifft das Larabicus-Team genau den Nerv der Zeit. Da nun auch Schiffe Energie-Label erhalten, sind Reedereien immer mehr bereit, in neue, kostensparende Lösungen zu investieren. „GreenTech braucht eben Investitionen“, bekräftigt Dr.-Ing. Florian Gerland. „Selbst wann man den ökologischen Nutzen unserer Putzroboter außen vorlässt – das System bietet vom ersten Einsatztag an auch einen ökonomischen Vorteil.“

Schomberg und Gerland sind als wissenschaftliche Mitarbeiter am Fachgebiet Strömungsmechanik tätig. „Ich freue mich sehr darüber, dieses innovative Projekt unterstützen zu können“, betont Mentor und Fachgebietsleiter Prof. Dr.-Ing. Olaf Wünsch. „Es ist ein perfektes Beispiel dafür, wie Forschung in unserem Bereich zu konkret umsetzbaren, nachhaltigen Lösungen führen kann. Larabicus wird einen wertvollen Beitrag für den Schutz des Klimas und den Erhalt der Biodiversität liefern und macht damit in besonderer Weise die Nachhaltigkeitsstrategie der Universität Kassel sichtbar.“

Die technische Entwicklung der Roboter liegt als Schwerpunkt bei Gerland und Schomberg an der Uni Kassel. Daneben gehören zu Larabicus eine Mitarbeiterin in Kiel, die Reinigungsmethoden vergleicht und optimiert, sowie ein Mitarbeiter in Hamburg, der die Kontakte zu den Netzwerk- und Industriepartnern pflegt und die Markteinführung des Produkts vorbereitet.

Nach ihrem Sieg beim UNIKAT-Ideenwettbewerb 2020 haben die beiden wissenschaftlichen Mitarbeiter nun mit Unterstützung von UniKasselTransfer die Förderung für herausragende forschungsbasierte Gründungsvorhaben eingeworben. UniKasselTransfer ist eine zentrale Einrichtung der Universität Kassel, die unter anderem Gründungsinteressierte bei der Umsetzung ihrer Ideen in ein Geschäftsmodell begleitet und bei der Antragstellung für ein EXIST-Gründungsstipendium oder EXIST-Forschungstransfer unterstützt. Das Förderprogramm EXIST-Forschungstransfer des Bundesministeriums für Wirtschaft und Klimaschutz unterstützt in zwei Förderphasen den Transfer und Übergang von vielversprechenden Forschungsergebnissen in eine Unternehmensgründung. Larabicus wird nun ab September 2023 zwei Jahre lang mit einer Summe von insgesamt 1,2 Millionen Euro gefördert. In dieser Zeit steht auch die Unternehmensgründung an.

Externer Link: www.uni-kassel.de

Forscher entwickeln fermionischen Quantenprozessor

Medienmitteilung der Universität Innsbruck vom 23.08.2023

Wissenschaftler aus Österreich und den USA haben einen neuartigen Quantencomputer entwickelt, der fermionische Atome zur Simulation komplexer physikalischer Systeme verwendet. Der Prozessor verwendet neutrale Atome in optischen Pinzetten und ist in der Lage, fermionische Modelle auf effiziente Weise mit fermionischen Gattern zu simulieren. Das Team um Peter Zoller zeigt, wie der neue Quantenprozessor fermionische Modelle aus der Quantenchemie und Teilchenphysik effizient simulieren kann.

Fermionische Atome sind Teilchen, die dem Pauli-Prinzip gehorchen; zwei von ihnen können gleichzeitig nie denselben Quantenzustand einnehmen. Das macht sie ideal für die Simulation von Systemen, in denen fermionische Eigenschaften eine entscheidende Rolle spielen, wie etwa Moleküle, Supraleiter und Quark-Gluon-Plasmen. „In Quantencomputern, die auf Qubits basieren, müssen zusätzliche Ressourcen eingesetzt werden, um diese Eigenschaften zu simulieren, in der Regel in Form von weiteren Qubits oder umfangreicheren Quantenschaltkreisen“, erklärt Daniel Gonzalez Cuadra aus der Forschungsgruppe um Peter Zoller am Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften (ÖAW) und am Institut für Theoretische Physik der Universität Innsbruck.

Quanteninformation in Fermionen speichern und verarbeiten

Ein fermionischer Quantenprozessor besteht aus einem fermionischen Register und einer Abfolge von fermionischen Quantengattern. „Das Register besteht aus einer Reihe von fermionischen Zuständen, die entweder leer oder von einem einzelnen Fermion besetzt sein können, und diese beiden Zustände bilden die lokale Einheit der Quanteninformation“, erläutert Daniel Gonzalez Cuadra. „Der Zustand des Systems, das wir simulieren wollen, z. B. ein aus vielen Elektronen bestehendes Molekül, wird im Allgemeinen eine Überlagerung vieler Besetzungsmuster sein, die direkt in dieses Register kodiert werden können.“ Diese Informationen werden dann in einem fermionischen Quantenschaltkreis verarbeitet, der beispielsweise die zeitliche Entwicklung eines Moleküls simulieren soll. Jede solche Operation kann in eine Folge von nur zwei Arten von fermionischen Gattern zerlegt werden, einem Tunnelgatter und einem Wechselwirkungsgatter.

Die Forscher schlagen vor, fermionische Atome in einer Anordnung optischer Pinzetten einzufangen. Das sind hochfokussierte Laserstrahlen, die Atome mit hoher Präzision halten und bewegen können. „Die benötigten fermionischen Quantengatter können auf dieser Plattform einfach implementiert werden: Tunnelgatter durch die Kontrolle des Tunnelns eines Atoms zwischen zwei optischen Pinzetten, Wechselwirkungsgatter, indem die Atome zunächst zu Rydberg-Zuständen angeregt werden, die ein starkes Dipolmoment haben“, sagt Gonzalez Cuadra.

Anwendungen von der Quantenchemie bis zur Teilchenphysik

Ein fermionischer Quantenprozessor ist besonders nützlich, um die Eigenschaften von Systemen zu simulieren, die aus vielen wechselwirkenden Fermionen bestehen, wie z. B. Elektronen in einem Molekül oder in einem Material oder Quarks in einem Proton, und könnte daher in vielen Bereichen Anwendung finden, von der Quantenchemie bis zur Teilchenphysik. Die Forscher zeigen, wie ihr fermionischer Quantenprozessor fermionische Modelle aus der Quantenchemie und der Gittereichtheorie effizient simulieren kann, zwei wichtige Bereiche der Physik, die mit klassischen Computern nur schwer zu lösen sind. „Da die Quanteninformation direkt in Fermionen verarbeitet wird, sind einige Eigenschaften des simulierten Systems auf Hardware-Ebene schon vorhanden, was bei einem Quantencomputer auf Qubit-Basis zusätzliche Ressourcen erfordern würde“, sagt Daniel Gonzalez Cuadra. „Ich bin sehr gespannt auf die Zukunft dieses Gebiets und möchte weiterhin dazu beitragen, indem ich die vielversprechendsten Anwendungen für die fermionische Quantenverarbeitung identifiziere und maßgeschneiderte Algorithmen entwerfe, die in bald verfügbaren Geräten laufen können.“

Die aktuellen Ergebnisse wurden in den Proceedings of the National Academy of Sciences (PNAS) veröffentlicht. Finanziell unterstützt wurde die Forschung unter anderem vom österreichischen Wissenschaftsfonds FWF, der Europäischen Union und der Simons Foundation.

Originalpublikation:
Fermionic quantum processing with programmable neutral atom arrays. D. Gonzalez-Cuadra, D. Bluvstein, M. Kalinowski, R. Kaubruegger, N. Maskara, P. Naldesi, T. V. Zache, A. M. Kaufman, M. D. Lukin, H. Pichler, B. Vermersch, Jun Ye, and P. Zoller. PNAS 2023

Externer Link: www.uibk.ac.at

Proof of Concept erfolgreich: THI testet Quantenschlüsselaustausch im Fahrzeug

Pressemitteilung der TH Ingolstadt vom 10.08.2023

Am CARISSMA-Institut C-ECOS der Technischen Hochschule Ingolstadt (THI) ist gemeinsam mit der Firma Quantum Optics Jena ein Quantenschlüsselaustausch mit einem Fahrzeug gelungen.

Was aussieht wie ein herkömmlicher Tesla an der E-Ladesäule, ist für die Wissenschaftler der Technischen Hochschule Ingolstadt wortwörtlich ein Quantensprung. Die Firma Quantum Optics Jena (QOJ) testete an der THI den Austausch von Quantenschlüsseln. „Wir haben in sehr kurzer Zeit schon tausende von geheimen Schlüsseln generiert“, freute sich Dr. Kevin Füchsel, CEO der Firma QOJ während des Versuchs. Das Jenaer Start-up arbeitet seit zwei Jahren an Lösungen, um die IT-Sicherheit durch den Einsatz von Quantentechnologien zu revolutionieren und auf das Fundament von physikalischen Gesetzen zu stellen. 2022 wurde THI-Vizepräsident Prof. Dr. Hans-Joachim Hof bei einer Fachmesse auf die weltweit einzigartige Lösung des Unternehmens aufmerksam und stellte den Kontakt her.

Am CARISSMA-Institut C-ECOS, Institute of Electric, Connected and Secure Mobility, beschäftigen sich die Forscher mit sicheren und nachhaltigen Lösungen für die zukünftige Mobilität. Optimale Voraussetzungen für eine Zusammenarbeit waren somit gegeben. Beim ersten Test wurden nun verschränkte Lichtteilchen über ein 50 Kilometer langes Glasfaserkabel zwischen zwei Empfänger-Modulen ausgetauscht. Eines davon wurde in das Versuchsfahrzeug integriert. Die notwendigen kryptografischen Schlüssel, etwa um ein Softwareupdate mit einem zentralem Server sicher durchführen zu können, werden dabei ganz bequem beim Aufladen der Batterie in das Fahrzeug geladen.

In Zeiten des automatisierten Fahrens und der Entwicklung von Quantencomputern wird es immer wichtiger, Fahrzeuge zu bauen, die nicht gehackt werden können. „Die Schlüssel existieren in unserem Aufbau nur zwischen den beiden Empfangsparteien und können während der Übertragung nicht abgehört werden. Dadurch lassen sich symmetrische Schlüssel für die Kommunikation zum Fahrzeug implementieren und letztendlich für eine Vielzahl von Szenarien nutzen“, erklärt Füchsel. Das Team des jungen Unternehmens ist davon überzeugt, dass sich damit die IT-Sicherheit von Fahrzeugen deutlich verbessern lässt. „Gerade für hochautomatisiertes Fahren und immer komplexere Informationssysteme hat der Schutz vor Hackerangriffen und der Einsatz von neuen Technologien eine immense Bedeutung“, erläutert Prof. Hof.

Ausgehend von diesem Erfolg werde nun ein Projektantrag beim Bundesministerium für Bildung und Forschung gestellt, sagt Marco Michl, wissenschaftlicher Mitarbeiter des CARISSMA-Instituts C-ECOS. „Die zentrale Frage ist: Wie kann ich das praktikabel in ein Fahrzeug einbauen und anwenden?“, erklärt Michl. Denn neben dem Einbau und der Qualifizierung der Empfangsmodule in die Fahrzeuge muss auch die Infrastruktur dementsprechend ausgebaut werden. Die Hürden für Netze, die – wie beispielsweise Regierungs- und Gesundheitsnetze – hochsicher sein sollen, sind hoch. „Die THI macht hier ihre ersten Schritte hinsichtlich Quantenschlüsselaustausch und quantensicherer Verschlüsselung“, so Michl.

Externer Link: www.thi.de