Nano-Ringe: Neuartige Bausteine für die Chemie

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 03.08.2023

Neue Verbindungen erweitern das Spektrum der metallorganischen Chemie – Sandwich-Komplexe in Ringform halten durch eigene Energie zusammen

In der metallorganischen Chemie gehören Sandwich-Komplexe, spezielle chemische Verbindungen, zu den grundlegenden Bausteinen. Ihre Struktur war bisher immer geradlinig. Nun haben Forschende des Karlsruher Instituts für Technologie (KIT) und der Philipps-Universität Marburg erstmals mehrstöckige Sandwich-Komplexe zu einem nanoskaligen Ring geformt. Was genau diese neuen „Cyclocen“ genannten Strukturen auszeichnet, etwa ihre physikalischen Eigenschaften, werden die Forschenden nun weiter untersuchen. Aktuell berichten sie in der Zeitschrift Nature.

Ihren Namen haben die vor etwa 70 Jahren entwickelten Sandwich-Komplexe aufgrund ihres Aufbaus erhalten, der an eine Stulle erinnert: In der Molekülstruktur umschließen zwei flache aromatische organische Ringe (die „Brotscheiben“) ein einzelnes, zentrales Metallatom (die „Füllung“). Dabei sind beide Ringe – wie die Brotscheiben auch – parallel angeordnet. Durch das Hinzufügen weiterer Schichten von „Füllung“ und „Brot“ lassen sich Tripledecker- oder Mehrfachdecker-Sandwiches zusammenstellen. „Diese Verbindungen gehören zu den wichtigsten Verbindungsklassen der modernen metallorganischen Chemie“, erklärt Professor Peter Roesky vom Institut für Anorganische Chemie am KIT. Dazu zählt zum Beispiel das besonders stabile Ferrocen, dem seine „Väter“, Ernst Otto Fischer und Geoffrey Wilkinson, sogar den Nobelpreis für Chemie im Jahr 1973 verdanken. Es besteht aus einem Eisenion und zwei fünfgliedrigen aromatischen organischen Ringen und wird in zahlreichen Anwendungen der Synthese, Katalyse, Elektrochemie und Polymerchemie genutzt.

Erstmals nanoskalige Ringe

Sandwich-Komplexe zu einem Ring zu formen haben die Forschenden des KIT und der Universität Marburg schon seit einiger Zeit versucht. Das Problem dabei: „Wir konnten zwar Ketten formen, aber eben keine Ringe“, so Roesky, der die Arbeit der drei Teams an den zwei Universitäten koordiniert hat. „Dass es uns nun dank der Wahl des richtigen organischen Zwischendecks, der ‚Brotscheibe‘, gelungen ist, nanoskalige Ringe zu formen, ist eine Weltpremiere“, sagen Professor Manfred Kappes, Leitung der Abteilung Physikalische Chemie II am KIT und Professor Florian Weigend, Leiter der Abteilung für Angewandte Quantenchemie an der Universität Marburg. Der neuartige Nano-Ring besteht aus 18 Bausteinen, hat einen Außendurchmesser von 3,8 Nanometern und zeigt in Abhängigkeit vom verwendeten Metall in der „Füllung“ des Sandwich-Komplexes eine orangefarbige Photolumineszenz. Die Forschenden haben die neue chemische Verbindung „Cyclocen“ getauft.

Der Nano-Ring hält aus eigener Kraft zusammen

Warum die Moleküle sich nun zu einem richtigen Ring formen ließen und nicht mehr nur eine Kette aus aneinandergereihten Sandwich-Komplexen bildeten, klärten die drei Arbeitsgruppen mithilfe aufwendiger quantenchemischer Berechnungen. Diese zeigten, dass der Ringschluss selbst die Energie erzeugt, die den Ring in der Folge auch zusammenhält. „Die Challenge war zunächst, den Ring zu schaffen. Lassen sich andere Ringgrößen erstellen? Hat diese Nanostruktur ungewöhnliche physikalische Eigenschaften? Daran werden wir nun weiter forschen. Sicher ist nur, dass wir jetzt einen neuen Baustein im Werkzeugkasten der metallorganischen Chemie haben. Und das ist schon großartig“, sagt Roesky. (ih)

Originalpublikation:
Luca Münzfeld, Sebastian Gillhuber, Adrian Hauser, Sergei Lebedkin, Pauline Hädinger, Nicolai D. Knöfel, Christina Zovko, Michael T. Gamer, Florian Weigend, Manfred M. Kappes, Peter W. Roesky: Synthesis and properties of cyclic sandwich compounds. Nature, 2023. DOI: 10.1038/s41586-023-06192-4

Externer Link: www.kit.edu

Die Quanten-Lawine

Presseaussendung der TU Wien vom 07.08.2023

An der TU Wien gelang es, ein eigentlich sehr instabiles System aus vielen Quantenteilchen stabil zu halten und dann seine Energie gezielt auf einmal freizusetzen.

Es sind ganz besondere Diamanten, mit denen an der TU Wien gearbeitet wird: Ihr Kristallgitter ist nicht perfekt regelmäßig, es enthält zahlreiche Defekte. An Stellen, an denen sich in einem perfekten Diamanten zwei benachbarte Kohlenstoff-Atome befinden würden, sitzt ein Stickstoffatom, der zweite Platz bleibt frei. Mit Hilfe von Mikrowellen kann man diese Defekte zwischen zwei verschiedenen Zuständen hin und her schalten – einem Zustand höherer Energie und einem Zustand niedrigerer Energie. Das macht sie zu einem interessanten Werkzeug für verschiedene Quantentechnologien, etwa für neuartige Quantensensoren oder Bauteile für Quantencomputer.

Nun gelang es, diese Defekte so präzise zu kontrollieren, dass man damit einen spektakulären Effekt auslösen kann: Alle Defekte werden in den Zustand hoher Energie gebracht, in dem sie einige Zeit lang verharren, bis man dann mit einem winzig kleinen Mikrowellen-Puls die gesamte Energie freisetzt und alle Defekte gleichzeitig in den Zustand niedriger Energie wechseln – ähnlich wie bei einem Schneefeld, auf dem ein winzig kleiner Schneeball eine Lawine auslöst und die gesamte Schneemasse gleichzeitig ins Tal donnert.

Atom-Spins und Mikrowellen

„Die Defekte im Diamant haben einen Spin – einen Drehimpuls, der entweder nach oben oder nach unten zeigt. Das sind die zwei möglichen Zustände, in denen sie sich befinden können“, sagt Wenzel Kersten, Erstautor der aktuellen Publikation, der in der Forschungsgruppe von Prof. Jörg Schmiedmayer (Atominstitut, TU Wien) derzeit an seiner Dissertation arbeitet.

Mit Hilfe eines Magnetfelds kann man erreichen, dass zum Beispiel der Zustand „Spin nach oben“ einer höheren Energie entspricht als „Spin nach unten“. In diesem Fall werden sich die meisten Atome im Zustand „Spin nach unten“ befinden – sie streben normalerweise in den Zustand niedriger Energie, wie eine Kugel in einer Schüssel, die normalerweise nach unten rollt.

Mit ausgeklügelten technischen Tricks kann man aber eine sognannte „Inversion“ erzeugen – man bringt die Defekte dazu, sich alle im Zustand höherer Energie einzufinden. „Man verwendet dafür Mikrowellenstrahlung, durch die man die Spins zunächst in den gewünschten Zustand bringt, dann verändert man das äußere Magnetfeld so, dass die Spins gewissermaßen in diesem Zustand eingefroren werden“, erklärt Prof. Stefan Rotter (Institut für Theoretische Physik, TU Wien), der den theoretischen Teil der Forschungsarbeit leitete.

Eine solche „Inversion“ ist instabil. Die Atome könnten prinzipiell spontan ihren Zustand wechseln – ähnlich als würde man einen Besenstiel balancieren, der prinzipiell spontan in irgendeine Richtung umkippen kann. Aber das Forschungsteam konnte zeigen: Durch die extrem präzise Kontrolle, die durch an der TU Wien entwickelte Chiptechnologie möglich wurde, kann man die Spins der Atome für etwa 20 Millisekunden stabil halten. „Für quantenphysikalische Verhältnisse ist das eine gewaltige Zeitspanne. Das ist ungefähr hunderttausendmal so lange wie es dauert, diesen energiereichen Zustand zu erzeugen oder ihn wieder zu entladen. Das ist, als hätte man einen Handyakku, der in einer Stunde aufgeladen wird und dann zehn Jahre lang seine Energie vollständig hält“, sagt Jörg Schmiedmayer.

Winzige Ursache – großer Effekt

Man kann während dieser Zeit die Zustandsänderung aber gezielt herbeiführen – und zwar durch eine sehr kleine, schwache Ursache, etwa einen Mikrowellenpuls von minimaler Intensität. „Er bringt ein Atom dazu, seinen Spin zu wechseln, woraufhin benachbarte Atome ebenfalls ihren Spin wechseln – so entsteht ein Lawineneffekt. Die gesamte Energie wird freigesetzt, und zwar in Form eines Mikrowellenpulses, der rund hundert Milliarden mal stärker ist als jener, mit dem man den Effekt ursprünglich ausgelöst hat“, erklärt Stefan Rotter. „Das ist im Verhältnis so, als würde eine einzige Schneeflocke ein Schneebrett mit einigen hundert Tonnen Gewicht auslösen.“

Das bietet viele interessante Möglichkeiten: Man kann auf diese Weise etwa schwache elektromagnetische Pulse verstärken, man könnte das für spezielle Sensoren nutzen, man kann damit eine Art „Quanten-Batterie“ herstellen, mit der sich auf Quantenebene eine gewisse Energiemenge aufbewahren und gezielt freisetzen lässt. (Florian Aigner)

Originalpublikation:
W. Kersten et al., Triggered Superradiance and Spin Inversion Storage in a Hybrid Quantum System, Phys. Rev. Lett. 131, 043601

Externer Link: www.tuwien.at

Neue Metallschweißverbindungen verbessern Mittelohrimplantate

Pressemitteilung der Universität Kassel vom 01.08.2023

Schweißverbindungen zwischen Titan beziehungsweise nichtrostenden Stählen und sogenannten Nickel-Titan-Formgedächtnislegierungen sind bislang noch anfällig für die Entstehung von Rissen. Die Werkstoffkombinationen weisen daher häufig geringe Festigkeiten auf. Wissenschaftlerinnen und Wissenschaftlern der Universität Kassel ist mit den biokompatiblen Zusatzwerkstoffen Niob, Tantal und Hafnium hier nun ein neues Verfahren gelungen – das eröffnet Möglichkeiten beispielsweise in der Medizintechnik. In einem ersten Projekt verbesserten sie die Materialfestigkeit eines Mittelohrimplantats um den Faktor 3.

Titanlegierungen, Nickel-Titan-Formgedächtnislegierungen (kurz: NiTi) sowie nichtrostende Stähle zeichnen sich unter anderem durch hervorragende Korrosions- und Medienbeständigkeit aus und zählen deshalb zu den am häufigsten genutzten Metallen in der Medizintechnik. Wegen der spezifischen Materialeigenschaften ist es jedoch aus funktionellen, fertigungstechnischen sowie aus wirtschaftlichen Gründen gewünscht, sogenannte artfremde Verbindungen zu anderen Werkstoffen herzustellen und somit deren Vorteile in Bauteilen mit maßgeschneiderten Eigenschaften zu vereinen. Eine beispielhafte Anwendung aus dem Bereich der Medizintechnik sind Stapesprothesen, die als Ersatz für Steigbügel, die kleinsten Knochen im menschlichen Körper, eingesetzt werden. Mit einer Länge von 5 mm ist ein Steigbügel dreimal kleiner als der Durchmesser einer 1-Cent-Münze.

Im Rahmen des von Januar 2021 bis Dezember 2022 durchgeführten Forschungsprojekts „MeTiWeld – Artfremdes Mikro-Strahlschweißen von Titan mit Nitinol und nichtrostenden Stählen zur Herstellung eines biokompatiblen Materialverbunds und Verwendung von Zusatzwerkstoffen“ untersuchten die Forscherinnen und Forscher um Prof. Dr.-Ing. Prof. h.c. Stefan Böhm (Leiter Fachgebiet Trennende und Fügende Fertigungsverfahren) artfremde Strahlschweißverbindungen bei Titanlegierungen, nichtrostenden Stählen und NiTi unter Nutzung biokompatibler Zusatzwerkstoffe wie Niob, Tantal und Hafnium. Zum Einsatz kamen sowohl das Mikro-Elektronenstrahlschweißen als auch das Laserstrahlschweißen. „Bei der Verwendung der Zusatzwerkstoffe konnten wir herausragende Zug- und Biegefestigkeiten erzielen, welche die Ergebnisse bisheriger Studien zum artfremden Strahlschweißen der Grundwerkstoffe deutlich übertreffen“, erklärt Michael Wiegand, Wissenschaftlicher Mitarbeiter des Fachgebiets und Leiter des Projekts.

Auch ein zweites Medizinprodukt verbesserte das Forschungsteam: Am Beispiel eines Führungsdrahtes, der bei einer Herzkatheter-Untersuchung benötigt wird, zeigt das Forschungsteam, dass etwa die Zusatzwerkstoffe Niob oder Tantal zwischen nichtrostendem Stahl und NiTi-Draht zu einer fast doppelt so hohen Zugfestigkeit der Materialverbindungen gegenüber der des Strahlschweißens ohne Zusatzwerkstoffe führt. Im Falle der Stapesprothese, deren Schaft aus reinem Titan und das Ankopplungselement aus superelastischem NiTi besteht, konnte die Zugfestigkeit durch das Einschweißen einer dünnen Niob-Folie um mehr als das Dreifache gesteigert werden. „Unsere Forschungsergebnisse bestätigen auch im Hinblick auf die Biokompatibilität, dass mit dem Forschungsvorhaben eine essentielle Basis für die Übertragung auf medizintechnische Bauteile geschaffen wurde“, erläutert Prof. Böhm.

Die Kasseler Wissenschaftlerinnen und Wissenschaftler arbeiten im Projekt MeTiWeld mit dem Naturwissenschaftlichen und Medizinischen Institut an der Universität Tübingen/ Reutlingen zusammen. Das Forschungsprojekt wurde vom Bundesministerium für Wirtschaft und Energie und der Arbeitsgemeinschaft industrieller Fördervereinigungen „Otto von Guericke“ e.V. mit rund 400.000 Euro gefördert.

Die Universität Kassel legt einen ihrer Forschungsschwerpunkte auf Molekulare Komponenten und Multifunktionale Materialien. Das Institut für Werkstofftechnik wiederum beschäftigt sich intensiv mit metallischen Werkstoffen. Hierzu werden regelmäßig zukunftsweisende und mit hohen Fördersummen bedachte Projekte als Teil des Forschungsclusters „BiTWerk – Biologische Transformation technischer Werkstoffe“ gestartet.

Externer Link: www.uni-kassel.de

Materialforschung: Biokatalytische Schäume mit enormer Haltbarkeit und Aktivität

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 27.07.2023

Forschende des KIT entwickeln aus Enzymen eine neue Material-Klasse für Biokatalyse-Prozesse

Die industrielle Biokatalyse mit Enzymen gilt als „Gamechanger“ bei der Entwicklung einer nachhaltigen chemischen Industrie. Mithilfe von Enzymen kann eine eindrucksvolle Bandbreite an komplexen Molekülen wie pharmazeutische Wirkstoffe unter umweltfreundlichen Bedingungen synthetisiert werden. Forschende des Karlsruher Instituts für Technologie (KIT) haben nun eine neue Klasse von Materialien entwickelt, indem sie Enzyme als Schäume hergestellt haben, die eine enorme Haltbarkeit und Aktivität besitzen. Über ihre Ergebnisse berichten die Forschenden in der Fachzeitschrift Advanced Materials. Das neuartige Herstellungsverfahren der Enzym-Schäume wurde bereits zum Patent angemeldet.

Um das Gebiet der industriellen Biokatalyse, die vor allem bei der Herstellung von Pharmazeutika und Spezialchemikalien zum Einsatz kommt, weiterzuentwickeln, arbeiten Forschende intensiv an neuen Prozesstechnologien. Bei der Biokatalyse beschleunigen Enzyme statt chemischer Katalysatoren die Reaktionen, damit lassen sich Rohstoffe und Energie einsparen. Ziel ist es nun, Enzym-Biokatalysatoren unter möglichst schonenden Bedingungen kontinuierlich und in großen Mengen bereitzustellen. Damit effiziente Stoffumwandlungen realisierbar sind, werden die Enzyme in mikrostrukturierten Durchflussreaktoren immobilisiert. Sie sind dabei räumlich fixiert und an ein reaktionsträges Material gebunden und somit eingeschränkt mobil, was zu einer höheren Konzentrierung der Enzyme und damit verbunden zu einer höheren Produktivität führt.

Aufgeschäumte Mikrotröpfchen aus selbstorganisierenden Enzymen

Normalerweise verändern Enzyme beim Verschäumen ihre Struktur und verlieren damit ihre biokatalytische Aktivität. Die neuen Proteinschäume haben aber eine enorme Haltbarkeit und Aktivität. Die Aktivität ist ein Maß für die Wirksamkeit des Enzyms, das dafür sorgt, dass Ausgangsstoffe möglichst schnell miteinander reagieren. Für die Herstellung der Proteinschäume werden zwei Dehydrogenase-Enzyme gemischt, die zueinander passende Verknüpfungsstellen tragen, sodass sie spontan ein stabiles Proteinnetzwerk ausbilden können. „Dieses Gemisch wird dann in einem mikrofluidischen Chip mit einem Gasstrom versetzt, damit sich kontrolliert mikroskopische Blasen einheitlicher Größe bilden“, erklärt Professor Christof Niemeyer vom Institut für Biologische Grenzflächen-1 den Prozess. Der so hergestellte Schaum mit einheitlicher Blasengröße wird direkt auf Kunststoffchips aufgebracht und getrocknet, wodurch die Proteine polymerisieren und ein stabiles, hexagonales Gitter ausbilden.

„Es handelt sich dabei um monodisperse „Voll-Enzym-Schäume“, also dreidimensionale, poröse Netzwerke, die ausschließlich aus biokatalytisch aktiven Proteinen bestehen“, charakterisiert Niemeyer die Zusammensetzung der neuen Materialien. Die stabile hexagonale Wabenstruktur der Schäume besitzt einen mittleren Porendurchmesser von 160 µm und einer Lamellendicke von 8 µm und wird aus den frisch hergestellten, etwa gleich großen kugelförmigen Blasen nach wenigen Minuten gebildet.

Aktive und stabile Voll-Enzym-Schäume effizient einsetzen

Um Enzyme effizient für Stoffumwandlungen nutzen zu können, müssen sie in großen Mengen unter möglichst schonenden Bedingungen immobilisiert werden, um ihre Aktivität zu erhalten. Bisher wurden Enzyme auf Polymeren oder Trägerpartikeln immobilisiert, allerdings wird hierfür wertvoller Reaktorraum benötigt und die Aktivität kann beeinträchtigt werden. „Im Vergleich zu unseren bereits entwickelten „Voll-Enzym-Hydrogelen“ entsteht bei den neuen Materialien auf Schaumbasis eine deutlich größere Oberfläche, an der die gewünschte Reaktion stattfinden kann“, beschreibt Niemeyer die wesentliche Verbesserung. Im Gegensatz zu theoretisch erwarteten Ergebnissen zeigen die neuen Schäume überraschenderweise eine auffallend hohe Haltbarkeit, mechanische Widerstandsfähigkeit und katalytische Aktivität der Enzyme, was bisher beim Schäumen von Proteinen nicht gelungen war.

Die Stabilität kommt, so vermuten die Forschenden, durch die zueinander passenden Verknüpfungsstellen zustande, mit der die Enzyme ausgestattet sind. Hierdurch können sie sich von selbst zusammenfügen und so während des Trocknens ein hochvernetztes Gitter bilden, das dem neuen Material eine einzigartige Stabilität verleiht. „Erstaunlicherweise sind die neu entwickelten Enzymschäume nach der Trocknung für vier Wochen deutlich stabiler als die gleichen Enzyme ohne Schäume“, erläutert Niemeyer die Vorteile, „dies ist für die Vermarktung von großem Interesse, da hierdurch Vorratsproduktion und Versand erheblich vereinfacht werden.“

Die neuen Biomaterialien eröffnen vielseitige Wege für Innovationen in der industriellen Biotechnologie, den Materialwissenschaften oder auch für die Lebensmitteltechnologie. So könnten die Proteinschäume in biotechnologischen Prozessen eingesetzt werden, um wertvolle Verbindungen effizienter und nachhaltiger herzustellen. Das Forschungsteam konnte zeigen, dass mithilfe der Schäume der industriell wertvolle Zucker Tagatose hergestellt werden kann, der eine vielversprechende Alternative zu raffiniertem Zucker als Süßungsmittel darstellt. (sfo)

Originalpublikation:
Julian S. Hertel, Patrick Bitterwolf, Sandra Kröll, Astrid Winterhalter, Annika J. Weber, Maximilian Grösche, Laurenz B. Walkowsky, Stefan Heißler, Matthias Schwotzer, Christof Wöll, Thomas van de Kamp, Marcus Zuber, Tilo Baumbach, Kersten S. Rabe, Christof M. Niemeyer: Biocatalytic Foams from Microdroplet-Formulated Self-Assembling Enzymes. Advanced Materials, 2023. DOI: 10.1002/adma.202303952

Externer Link: www.kit.edu

Weltweit erster Chip mit österreichischer Quantenarchitektur im Einsatz

Medieninformation der Universität Innsbruck vom 06.07.2023

Der japanische IT-Konzern NEC hat den ersten Quantenprozessor basierend auf der ParityQC Architektur gebaut. Die Parity-Technologie wurde an der Universität Innsbruck erfunden und wird vom Spin-off ParityQC weiterentwickelt und vermarktet. NEC macht den auf Optimierungsprobleme spezialisierten Quantencomputer nun über die Cloud für die Wissenschaft zugänglich.

In aller Welt arbeiten Wissenschaft und Unternehmen fieberhaft am Bau von Quantencomputern. Diese neuen Rechenmaschinen werden viele Probleme rascher und effizienter lösen als bisherige Technologien. Gerade bei der Suche nach optimalen Lösungen für komplexe Fragestellungen versprechen Quantentechnologie sehr bald schon praxistaugliche Anwendungen. Basis dafür sind Quantum-Annealing-Systeme oder adiabatische Quantencomputer, die nicht wie klassische Computer mit Gatteroperationen arbeiten. Sie nutzen die Quanteneigenschaft vielmehr zur Suche eines optimalen Zustands in einem physikalischen System. In entsprechende Algorithmen verpackt, lassen sich diese Systeme nutzen, um optimale Lösungen für viele Fragestellungen zu finden.

Japanischer Quanten-Chip mit österreichischem Know-how

Nun hat der IT-Konzern NEC einen 8-Bit-Quanten-Annealer gebaut, der auf der Architektur des Innsbrucker Spin-offs ParityQC basiert. Der erste Parity-Quantenchip besteht aus supraleitenden Parametron-Qubits und wird von NEC nun über die Cloud der Wissenschaft zugänglich gemacht. „Das ist eine eindrucksvolle Bestätigung der eigentlichen Vorteile, die der ParityQC-Ansatz bietet: Unempfindlichkeit gegen Rauschen und Skalierbarkeit zu einem vollständig verschalteten Quantencomputer unter Beibehaltung langer Kohärenzzeiten“, zeigt sich Hermann Hauser, Mitbegründer von Amadeus Capital und Acorn Computers, begeistert. „Die Übernahme der ParityQC-Architektur durch NEC, einem der weltweit führenden Supercomputer-Unternehmen, ist ein außergewöhnlicher Erfolg für das vier Jahre alte Spin-off der Universität Innsbruck. Es macht ParityQC zum weltweit ersten Unternehmen für QC-Architekturen mit einer erprobten, funktionierenden Anwendung. Die Vorteile dieses Ansatzes werden dazu führen, dass das ParityQC-Design von vielen anderen Hardware-Herstellern übernommen wird. Eine Reihe von kürzlich erfolgten Ankündigungen von QC-Konsortien in Europa belegen dies bereits“, so Hauser weiter. „NEC war das erste Unternehmen, das in den 90er-Jahren ein supraleitendes Qubit vorstellte. Wir sind sehr stolz darauf, dass ihr Quantenprozessor, der nun erstmals für die externe Nutzung verfügbar sein wird, auf unserer Architektur basiert“, freuen sich Wolfgang Lechner und Magdalena Hauser, Co-Geschäftsführer von ParityQC.

Österreichische Erfolgsgeschichte

ParityQC wurde 2020 in Innsbruck gegründet und vermarktet eine Technologie, die auf einer inzwischen patentierten Idee beruht, die Quantenphysiker Wolfgang Lechner in den 2010-er Jahren gemeinsam mit Peter Zoller und Philipp Hauke an der Universität Innsbruck und dem Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften entwickelt hat. Die Ausgründung erfolgte über die Transferstelle Wissenschaft – Wirtschaft – Gesellschaft der Universität Innsbruck. „Es zeigt sich nun immer mehr, dass unsere Ersteinschätzung dieser Technologie im Zuge der Erfindungsmeldung 2015 richtig war und die Basiserfindung das Potential hat, zum Standard in der Quantencomputer-Technologie zu werden. Die Verwertung dieser Forschungsergebnisse über die Gründung eines Spin-offs ermöglicht es, die Technologie in Europa weiterzuentwickeln und somit maximalen Einfluss auf die Entwicklung dieser Branche zu nehmen und dabei gleichzeitig die Wertschöpfung in Europa zu halten. Ein großes Kompliment an die beiden Geschäftsführer dafür, wie vorausschauend und umsichtig sie ihre Entwicklungspartner auswählen“, sagt Transferstellen-Leiterin Sara Matt.

Externer Link: www.uibk.ac.at