JKU entwickelt in Kooperationsprojekt Knochenschrauben bei Kreuzbandrissen

Pressemeldung der JKU Linz vom 08.11.2023

Egal ob beim Sport oder einfach bei einer unglücklichen Bewegung: Kreuzbandrisse kommen extrem häufig vor.

In einem Kooperationsprojekt mit der Firma surgebright und dem Bezirkskrankenhaus Schwaz in Tirol wurden an der Johannes Kepler Universität Linz neuartige Knochenschrauben entwickelt, die bald die bisher verwendeten Schrauben ersetzen sollen.

Die Kreuzbandrekonstruktion mit Interferenzschrauben ist eine weit verbreitete Operationsmethode. Normalerweise bestehen diese Schrauben aus Metall (vor allem Titan) oder bioresorbierbaren Materialien wie Kunststoff oder Keramik. In beiden Fällen handelt es sich um Fremdkörper, die Probleme bereiten können.

„Wir versorgen allein in unserem Krankenhaus jedes Jahr hunderte Patient*innen mit Kreuzbandrissen. Sehr weit verbreitet sind Schrauben aus Kunststoffen, die sich später auflösen sollen. Durch diesen Auflöseprozess bleiben oft große Defekte im Knochen, sogenannte Osteolysen, zurück. Reißt das Kreuzband dann erneut, stehen Patient*innen und Chirurg*innen vor schwer zu lösenden Problemen. Durch diese Knochendefekte hält das neue Kreuzband nicht mehr“, so Prim. Dr. Markus Reichkendler vom Bezirkskrankenhaus Schwaz. Eine Alternative: Schrauben aus Knochen, wie sie die Firma surgebright aus Lichtenberg (OÖ) anbietet.

Knochenmaterial wird in den Körper eingebaut

„Schrauben aus menschlichen Knochen werden von körpereigenen Knochenzellen besiedelt und in körpereigenen Knochen umgewandelt. Osteolysen sind damit Geschichte. Dieser Vorgang bei der sogenannten Shark-Screw konnte bereits in einigen Publikationen in internationalen Topp-Fachzeitschriften nachgewiesen werden“, erklärt Surgebright-Geschäftsführer Thomas Pastl. Um maximale Patient*innensicherheit gewährleisten zu können, werden die Knochenschrauben sterilisiert. „Diese österreichische Entwicklung ist ein großer Meilenstein für Chirurg*innen und Patient*innen und nicht zuletzt für das weltweite Gesundheitswesen“, so Pastl.

Dass Schrauben aus Knochen hervorragend funktionieren, ist längst bekannt und wird im klinischen Alltag jährlich tausendfach verwendet – allerdings gab es bislang keine Knochenschrauben, die technisch für Kreuzbandrisse geeignet waren. Sie waren entweder zu klein und hielten dem Drehmoment nicht stand oder waren so groß, dass der Schraubenkopf im Körper abgesägt werden musste.

Hier kam das Institut für Medizin- und Biomechatronik der JKU ins Spiel. „Wir haben das Problem gemeinsam erörtert und dann Schrauben mit einer speziellen Konstruktion entwickelt. Die Schrauben- und Gewindeform erlaubt es endlich, diese Schrauben auch zur Befestigung von Kreuzbandplastiken nach einem Kreuzbandriss zu verwenden“, so Institutsleiter Univ.-Prof. Dr. Werner Baumgartner. Notwendig waren dazu sowohl umfangreiche Berechnungen als auch zahlreiche praktische Experimente.

„Am Ende haben wir es geschafft – in den Tests hat sich die neue Schraube bestens bewährt“, freut sich DI Sebastian Lifka (Institut für Medizin- und Biomechatronik der JKU).

Klinische Studie geplant

Die neuen Schrauben sind somit speziell für die Behandlung von Kreuzbandrissen geeignet, sind für den Körper verträglicher und heilen schneller. Das neue Verfahren für die speziellen Schrauben wurde bereits im renommierten Fachmagazin „Bioengineering“ publiziert. Die bessere Wirksamkeit der Schrauben soll demnächst in einer klinischen Studie wissenschaftlich analysiert werden, um schon bald Patient*innen mit Kreuzbandriss zur Verfügung zu stehen.

Externer Link: www.jku.at

Wechselwirkende Polaronen

Medienmitteilung der Universität Innsbruck vom 27.10.2023

Physiker simulieren Wechselwirkung von Quasiteilchen in ultrakaltem Quantengas

Die komplexen Vorgänge in Festkörpern werden in der Physik oft mit Quasiteilchen beschrieben. In ultrakalten Quantengasen können diese Quasiteilchen nachgebaut und untersucht werden. Nun haben Innsbrucker Wissenschaftler um Rudolf Grimm erstmals im Experiment beobachten können, wie Fermi-Polaronen – eine spezielle Art von Quasiteilchen – untereinander wechselwirken können. Sie berichten darüber in der Fachzeitschrift Nature Physics.

Bewegt sich ein Elektron durch einen Festkörper, erzeugt es aufgrund seiner elektrischen Ladung in seiner Umgebung eine Polarisation. Der russische Physiker Lew Landau hat in seinen theoretischen Überlegungen die Beschreibung solcher Teilchen um deren Wechselwirkung mit der Umgebung erweitert und von Quasiteilchen gesprochen. Vor über zehn Jahren war es dem Team um Rudolf Grimm vom Institut für Quantenoptik und Quanteninformation (IQQOI) der Österreichischen Akademie der Wissenschaften (ÖAW) und dem Institut für Experimentalphysik der Universität Innsbruck erstmals gelungen, solche Quasiteilchen in einem Quantengas sowohl bei attraktiver als auch repulsiver Wechselwirkung mit der Umgebung zu erzeugen. Dazu nutzen die Wissenschaftler ein ultrakaltes Quantengas aus Lithium- und Kaliumatomen in einer Vakuumkammer. Mit Hilfe von magnetischen Feldern kontrollieren sie die Wechselwirkungen zwischen den Teilchen und mit Hochfrequenzpulsen drängen sie die Kaliumatome in einen Zustand, in dem diese die sie umgebenden Lithiumatome anziehen oder abstoßen. So simulieren die Forscher einen komplexen Zustand, wie er im Festkörper durch ein freies Elektron erzeugt wird.

Einblicke in die Materie

Nun konnten die Wissenschaftler um Rudolf Grimm in dem Quantengas mehrere solche Quasiteilchen gleichzeitig erzeugen und deren Wechselwirkung untereinander beobachten. „In einer naiven Vorstellung würde man davon ausgehen, dass sich Polaronen immer anziehen, egal ob ihre Wechselwirkung mit der Umgebung attraktiv oder repulsiv ist“, sagt der Experimentalphysiker. „Dem ist aber nicht so. Attraktive Wechselwirkung sehen wir immer bei bosonischen Polaronen, repulsive Wechselwirkung bei fermionischen Polaronen. Hier spielt die Quantenstatistik eine entscheidende Rolle.“ Die Forscher konnten diese Verhaltensweise, die sich im Prinzip schon als Konsequenz aus Landaus Theorie ergibt, nun erstmals in einem Experiment nachweisen. Die theoretischen Berechnungen dafür haben Kollegen aus Mexiko, Spanien und Dänemark geleistet. „Für die Umsetzung im Labor war hohe Experimentierkunst gefordert“, erläutert Cosetta Baroni, die Erstautorin der Studie, „denn kleinste Abweichungen hätten die Messungen bereits verfälschen können.“

„Solche Untersuchungen liefern uns Einblicke in ganz grundsätzliche Mechanismen der Natur und bieten uns sehr gute Möglichkeiten, diese im Detail zu untersuchen“, zeigt sich ERC- und Wittgenstein-Preisträger Rudolf Grimm begeistert. Die Ergebnisse wurden nun in der Fachzeitschrift Nature Physics veröffentlicht. Finanziell gefördert wurde die Forschung von der Europäischen Union.

Originalpublikation:
Mediated interactions between Fermi polarons and the role of impurity quantum statistics. Cosetta Baroni, Bo Huang, Isabella Fritsche, Erich Dobler, Gregor Anich, Emil Kirilov, Rudolf Grimm, Miguel A. Bastarrachea-Magnani, Pietro Massignan, Georg Bruun. Nature Physics 2023

Externer Link: www.uibk.ac.at

Grüner Wasserstoff aus Solarenergie

Pressemitteilung der Universität Tübingen vom 04.10.2023

Forschungsteam der Universität Tübingen entwickelt neuartige Solarzelle, die dezentrale Herstellung von Grünem Wasserstoff mit sehr hohem Wirkungsgrad ermöglicht

Weltweit arbeiten Forschende an effizienteren Methoden zur Wasserstoffproduktion. Wasserstoff könnte entscheidend dazu beitragen, den Verbrauch fossiler Rohstoffe zu reduzieren, vor allem, wenn er mit erneuerbaren Energien hergestellt wird. Bereits existierende Technologien zur Herstellung von klimaneutralem Wasserstoff sind für eine breitere Anwendung noch zu ineffizient oder zu teuer. Ein Forschungsteam der Universität Tübingen präsentiert nun die Entwicklung einer neuartigen Solarzelle mit bemerkenswert hohem Wirkungsgrad. Sie ermöglicht eine dezentrale Herstellung von grünem Wasserstoff und hat das Potenzial für Anwendungen im industriellen Maßstab. Die Ergebnisse wurden kürzlich im Fachmagazin Cell Reports Physical Science veröffentlicht.

Eine Solarzelle auf Tauchgang

Wird Wasserstoff über die sogenannte Elektrolyse mit erneuerbaren Energien aus Wasser hergestellt, bezeichnet man ihn wegen der klimafreundlichen Herstellung als grünen Wasserstoff. Bei der solaren Wasserspaltung, häufig auch als künstliche Photosynthese bezeichnet, wird Wasserstoff mit Energie aus der Sonne hergestellt. Ein Forschungsteam um Dr. Matthias May vom Institut für Physikalische und Theoretische Chemie der Universität Tübingen hat eine Solarzelle entwickelt, die integraler Bestandteil der photoelektrochemischen Apparatur ist und direkt mit den Katalysatoren für die Wasserspaltung zusammenarbeitet. Das Besondere der Tübinger Entwicklung: Ein zusätzlicher externer Stromkreis, wie etwa bei einem Photovoltaik-Solarpanel, ist nicht mehr nötig.

Dieser innovative Ansatz macht die Technologie kompakter, flexibler und potenziell kosteneffizienter. Aber mit diesem Aufbau werden auch die Anforderungen an die Solarzelle größer. „Unter Forschenden auf dem Gebiet ist die Realisierung von stabiler und effizienter photoelektrochemischer oder direkter Wasserspaltung so etwas wie der ‚heilige Gral`“, sagt May.

Das Besondere am Aufbau der Solarzelle ist die hohe Kontrolle der Grenzflächen zwischen den verschiedenen Materialien. Die Oberflächenstrukturen werden hier auf einer Skala von wenigen Nanometern, also millionstel Millimetern, hergestellt und überprüft. Besonders schwierig sind kleine Kristalldefekte, die beispielsweise beim Wachstum der Solarzellenschichten entstehen. Diese verändern auch die elektronische Struktur und können damit einerseits die Effizienz und andererseits die Stabilität des Systems senken.

May ergänzt: „Insgesamt bleibt die Korrosion und somit die Langzeitstabilität der sich im Wasser befindenden Solarzelle aber die größte Herausforderung. Hier haben wir nun große Fortschritte im Vergleich zu unseren früheren Arbeiten gemacht.“

Der technische Aufbau der neuen Zelle ist innovativ und besonders wirkungsvoll zugleich. Die Effizienz der solaren Wasserspaltung wird in Form des Wirkungsgrades gemessen. Der Wirkungsgrad zeigt dabei an, wie viel Prozent der Energie des Sonnenlichts in nutzbare Energie des Wasserstoffs (Heizwert) umgewandelt werden kann. Mit einem Wirkungsgrad von 18% präsentiert das Forschungsteam den zweithöchsten je gemessenen Wert für die direkte solare Wasserspaltung und sogar einen Weltrekord, wenn man die Fläche der Solarzelle berücksichtigt. Die ersten etwas höheren Wirkungsgrade für die Solare Wasserspaltung wurden 1998 mit 12% vom NREL in den USA präsentiert. Erst 2015 folgte der Sprung auf 14% (May et al.) und 2018 auf 19% (Cheng et al.).

Anwendung in großem Maßstab denkbar

Dass die Technologie kommerzialisierbar ist, zeigen inzwischen mehrere Ausgründungen an anderen Universitäten mit deutlich geringeren Effizienzen. Erica Schmitt, Erstautorin der Studie, erklärt: „Was wir hier entwickelt haben, ist eine Technologie der solaren Wasserstofferzeugung, die keine leistungsstarke Anbindung an das Elektrizitätsnetz erfordert. Dadurch sind auch dauerhafte kleinere Insellösungen zur Energieversorgung denkbar.“

Die Tübinger Arbeiten sind eingebettet in das vom BMBF geförderte Verbundprojekt H2Demo, an dem unter anderem das Fraunhofer Institut für Solare Energiesystem (ISE) beteiligt ist. Die nächsten Schritte umfassen die Verbesserung der Langzeitstabilität, den Transfer auf ein kostengünstigeres Materialsystem auf Siliziumbasis und die Skalierung auf größere Flächen. Die Forschungsergebnisse könnten einen bedeutenden Beitrag zur Energieversorgung und zur Reduzierung von CO2-Emissionen leisten.

Originalpublikation:
Schmitt EA, Guidat M, Nusshör M, Renz A-L, Möller K, Flieg M, Lörch D, Kölbach M & May, MM. (2023). Photoelectrochemical Schlenk cell functionalization of multi-junction water-splitting photoe-lectrodes. Cell Reports Physical Science 4 (2023), 101606.

Externer Link: www.uni-tuebingen.de

Missbrauchsresistente digitale Überwachung

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 12.10.2023

Sicherheitsprotokolle sollen gesetzlich geforderte Überwachung von digitaler Kommunikation resistenter gegen Missbrauch und Massenüberwachung machen

Die digitale Überwachung von Verdächtigen muss geräuschlos sein, um diese nicht zu alarmieren. Derzeit eingesetzten Systemen fehlt es jedoch an stringenten technischen Mechanismen, um die Rechtmäßigkeit dieser Maßnahmen sicherzustellen. Forschende des Karlsruher Instituts für Technologie (KIT) und der Universität Luxemburg haben nun ein Sicherheitsprotokoll entworfen, welches eine beispielsweise richterlich angeordnete Überwachung von Ende-zu-Ende verschlüsselter oder anonymer Kommunikation ermöglicht, aber zugleich massenhafte und unrechtmäßige Überwachung verhindert oder aufdeckt. Erste Ergebnisse stellte das Team in einer Publikation zur Konferenz Asiacrypt 2023 vor.

Die Privatsphäre wird in unserer digitalen Gesellschaft immer wichtiger. Es gibt eine starke Nachfrage nach Anonymität und Vertraulichkeit von Daten, die durch die Europäische Datenschutzverordnung begründet ist. Andererseits machen es Gesetze und Verordnungen wie die Resolution des Europäischen Rates über die rechtmäßige Überwachung des Fernmeldeverkehrs oder die EU-Richtlinie zur Bekämpfung der Geldwäsche und der Terrorismusfinanzierung erforderlich, die Anonymität Nutzender aufzuheben oder deren verschlüsselte Kommunikation unter bestimmten, genau definierten Umständen offenzulegen, beispielsweise wenn eine Überwachungsmaßnahme gegen Verdächtige richterlich angeordnet wurde. Viele Anwendungen unterliegen daher Anforderungen oder Vorschriften, die eine Garantie für bedingungslose Anonymität verbieten.

Unerlaubte Massenüberwachung durch die Hintertür

Das Problem bei solchen „digitalen Hintertüren“ ist jedoch, dass sie auch eine unbemerkte Massenüberwachung ermöglichen. Um dies zu verhindern, sind unabhängige, vertrauenswürdige Stellen nötig, die sozusagen die Überwachenden überwachen. Es bedarf außerdem eines Systems, das technisch einen nachträglich nicht veränderbaren Gerichtsbeschluss erzwingt, wenn eine Hintertür genutzt werden soll, um somit die Rechtmäßigkeit der Maßnahme sicherzustellen. Den zurzeit verwendeten Systemen fehlt es hierfür an strikten technischen Mechanismen. „In unserer Forschungsarbeit haben wir Sicherheitsprotokolle entworfen, die beides leisten: Sie ermöglichen die Überwachung von verschlüsselter oder anonymer Kommunikation und bieten zugleich auch die Möglichkeit, unrechtmäßige Überwachungsmaßnahmen zu verhindern oder zumindest aufzudecken“, so Dr. Andy Rupp, Leiter der Forschungsgruppe „Kryptographische Protokolle“ der KASTEL Security Research Labs am KIT. „Unser Ziel ist es, das Vertrauen der Öffentlichkeit in das ehrliche Verhalten von Betreibenden und Strafverfolgungsbehörden deutlich zu erhöhen.“

Kontrollierte Nutzung digitaler Hintertüren

In seiner Arbeit entwickelte das Forschungsteam dazu einen Baustein für eine überprüfbare Überwachung. In diesem Sicherheitsprotokoll werden Nutzende auf mehrere Arten geschützt: Digitale Hintertüren öffnen sich nur kurzfristig und benutzerspezifisch, sie werden zwischen vertrauenswürdigen Parteien geteilt, und der Zugang zur digitalen Hintertür wird nur unter bestimmten Bedingungen gewährt. Außerdem wird das Hinterlassen nicht-veränderbarer Dokumente zur Öffnung der Hintertüren technisch erzwungen. Dies ermöglicht eine spätere Überprüfung der Rechtmäßigkeit von Überwachungsmaßnahmen durch einen unabhängigen Auditor sowie öffentlich überprüfbare Statistiken zur Nutzung von Hintertüren.

Die Anwendungsmöglichkeiten für diese Auditable Surveillance Systeme reichen von mobilen Kommunikationssystemen wie etwa 5G und Instant-Messaging-Diensten über elektronische Zahlungen bis hin zur datenschutzkonformen Videoüberwachung. „Unsere Arbeit liefert ein erstes Konzept für Auditable Surveillance. Für einen praktischen Einsatz müssen aber noch weitere technische und rechtliche Herausforderungen angegangen werden. Das wird Gegenstand unserer zukünftigen interdisziplinären Forschung sein“, so Rupp. (rl)

Originalpublikation:
V. Fetzer, M. Klooß, J. Müller-Quade, M. Raiber, and A. Rupp. Universally Composable Auditable Surveillance. Accepted at the 30th International Conference on the Theory and Application of Cryptology and Information Security — ASIACRYPT, 2023.

Externer Link: www.kit.edu

Chemiker aus dem Saarland und San Diego beschreiben neues Kohlenstoff-Molekül in Nature

Pressemitteilung der Universität des Saarlandes vom 21.09.2023

Wissenschaftler der Universitäten San Diego und des Saarlandes haben jüngst ein neues Kohlenstoff-Molekül entdeckt. Dieses Molekül ist eine Weiterentwicklung der so genannten Carbene. Diese Stoffe, deren künstliche Erzeugung vor einigen Jahrzehnten erstmals gelang, haben heute eine überragende Bedeutung in der Industrie, etwa in OLED-Displays oder als Katalysatoren in der chemisch-pharmazeutischen Industrie. Ihre wegweisenden Erkenntnisse haben die Wissenschaftler nun in Nature publiziert.

Die Welt der Stoffe und Moleküle folgt in der Natur festen Regeln. So besagt die sogenannte Oktett-Regel, dass Kohlenstoffmoleküle mit jeweils acht Elektronen pro Atomhülle stabil sind. In jüngster Zeit gelang es der Chemie jedoch, diese Regeln bis zu einem gewissen Grad zu brechen, um Moleküle zu erschaffen, die ganz neuartige und in der modernen Welt gefragte Eigenschaften haben. Dies gelang vor drei Jahrzehnten mit den Carbenen, welche nur noch sechs Valenzelektronen aufweisen.

Anfangs wusste man noch nicht so recht, wozu die neuartigen Verbindungen nützlich sein könnten. „Sehr schnell stellte sich dann heraus, dass Carbene eine überragende Rolle in der organischen Photovoltaik und Mikroelektronik, etwa bei der Entwicklung so genannter organischer LED-Bildschirme, kurz OLEDs, spielen werden“, führt Dominik Munz als Beispiel an. Carbene seien inzwischen auch in der chemisch-pharmazeutischen Industrie als Katalysatoren von chemischen Prozessen nicht mehr wegzudenken, so Munz weiter.

Dem Professor für Koordinationschemie an der Universität des Saarlandes ist es nun gemeinsam mit Kollegen der Universität San Diego gelungen, von diesem Molekül noch zwei weitere Elektronen zu entfernen, so dass eine ganz neue Stoffklasse entstehen kann. Ihre Erkenntnisse sind so bedeutsam, dass sie es nun ins Fachmagazin Nature geschafft haben.

„Die internationale Zusammenarbeit beruht auf meiner Postdoc-Phase in den USA, die ich in der Arbeitsgruppe von Guy Bertrand an der Universität von San Diego verbracht habe“, erklärt der Wissenschaftler. „In dieser Zeit sowie in den letzten Jahren haben wir solche Moleküle quantenchemisch vorhergesagt und uns auch überlegt, wie man diese im Labor herstellen könnte.“ Durch eine elegante Synthesemethode ist es nun Ying Kai Loh, Postdoktorand bei Professor Bertrand an der Universität San Diego, gelungen, solch ein Molekül tatsächlich im Labor zu erschaffen.

Ob damit ebenfalls derart umwälzende Anwendungen wie mit den Carbenen möglich sind, steht in den Sternen. Vor 30 Jahren jedenfalls standen die Wissenschaftlerinnen und Wissenschaftler, die die Oktett-Regel damals brechen konnten, ebenfalls vor der Frage: „Und nun?“

Der Rest ist Geschichte.

Originalpublikation:
Loh, Y.K., Melaimi, M., Gembicky, M. et al. A crystalline doubly oxidized carbene. Nature (2023).

Externer Link: www.uni-saarland.de