Neue Metallschweißverbindungen verbessern Mittelohrimplantate

Pressemitteilung der Universität Kassel vom 01.08.2023

Schweißverbindungen zwischen Titan beziehungsweise nichtrostenden Stählen und sogenannten Nickel-Titan-Formgedächtnislegierungen sind bislang noch anfällig für die Entstehung von Rissen. Die Werkstoffkombinationen weisen daher häufig geringe Festigkeiten auf. Wissenschaftlerinnen und Wissenschaftlern der Universität Kassel ist mit den biokompatiblen Zusatzwerkstoffen Niob, Tantal und Hafnium hier nun ein neues Verfahren gelungen – das eröffnet Möglichkeiten beispielsweise in der Medizintechnik. In einem ersten Projekt verbesserten sie die Materialfestigkeit eines Mittelohrimplantats um den Faktor 3.

Titanlegierungen, Nickel-Titan-Formgedächtnislegierungen (kurz: NiTi) sowie nichtrostende Stähle zeichnen sich unter anderem durch hervorragende Korrosions- und Medienbeständigkeit aus und zählen deshalb zu den am häufigsten genutzten Metallen in der Medizintechnik. Wegen der spezifischen Materialeigenschaften ist es jedoch aus funktionellen, fertigungstechnischen sowie aus wirtschaftlichen Gründen gewünscht, sogenannte artfremde Verbindungen zu anderen Werkstoffen herzustellen und somit deren Vorteile in Bauteilen mit maßgeschneiderten Eigenschaften zu vereinen. Eine beispielhafte Anwendung aus dem Bereich der Medizintechnik sind Stapesprothesen, die als Ersatz für Steigbügel, die kleinsten Knochen im menschlichen Körper, eingesetzt werden. Mit einer Länge von 5 mm ist ein Steigbügel dreimal kleiner als der Durchmesser einer 1-Cent-Münze.

Im Rahmen des von Januar 2021 bis Dezember 2022 durchgeführten Forschungsprojekts „MeTiWeld – Artfremdes Mikro-Strahlschweißen von Titan mit Nitinol und nichtrostenden Stählen zur Herstellung eines biokompatiblen Materialverbunds und Verwendung von Zusatzwerkstoffen“ untersuchten die Forscherinnen und Forscher um Prof. Dr.-Ing. Prof. h.c. Stefan Böhm (Leiter Fachgebiet Trennende und Fügende Fertigungsverfahren) artfremde Strahlschweißverbindungen bei Titanlegierungen, nichtrostenden Stählen und NiTi unter Nutzung biokompatibler Zusatzwerkstoffe wie Niob, Tantal und Hafnium. Zum Einsatz kamen sowohl das Mikro-Elektronenstrahlschweißen als auch das Laserstrahlschweißen. „Bei der Verwendung der Zusatzwerkstoffe konnten wir herausragende Zug- und Biegefestigkeiten erzielen, welche die Ergebnisse bisheriger Studien zum artfremden Strahlschweißen der Grundwerkstoffe deutlich übertreffen“, erklärt Michael Wiegand, Wissenschaftlicher Mitarbeiter des Fachgebiets und Leiter des Projekts.

Auch ein zweites Medizinprodukt verbesserte das Forschungsteam: Am Beispiel eines Führungsdrahtes, der bei einer Herzkatheter-Untersuchung benötigt wird, zeigt das Forschungsteam, dass etwa die Zusatzwerkstoffe Niob oder Tantal zwischen nichtrostendem Stahl und NiTi-Draht zu einer fast doppelt so hohen Zugfestigkeit der Materialverbindungen gegenüber der des Strahlschweißens ohne Zusatzwerkstoffe führt. Im Falle der Stapesprothese, deren Schaft aus reinem Titan und das Ankopplungselement aus superelastischem NiTi besteht, konnte die Zugfestigkeit durch das Einschweißen einer dünnen Niob-Folie um mehr als das Dreifache gesteigert werden. „Unsere Forschungsergebnisse bestätigen auch im Hinblick auf die Biokompatibilität, dass mit dem Forschungsvorhaben eine essentielle Basis für die Übertragung auf medizintechnische Bauteile geschaffen wurde“, erläutert Prof. Böhm.

Die Kasseler Wissenschaftlerinnen und Wissenschaftler arbeiten im Projekt MeTiWeld mit dem Naturwissenschaftlichen und Medizinischen Institut an der Universität Tübingen/ Reutlingen zusammen. Das Forschungsprojekt wurde vom Bundesministerium für Wirtschaft und Energie und der Arbeitsgemeinschaft industrieller Fördervereinigungen „Otto von Guericke“ e.V. mit rund 400.000 Euro gefördert.

Die Universität Kassel legt einen ihrer Forschungsschwerpunkte auf Molekulare Komponenten und Multifunktionale Materialien. Das Institut für Werkstofftechnik wiederum beschäftigt sich intensiv mit metallischen Werkstoffen. Hierzu werden regelmäßig zukunftsweisende und mit hohen Fördersummen bedachte Projekte als Teil des Forschungsclusters „BiTWerk – Biologische Transformation technischer Werkstoffe“ gestartet.

Externer Link: www.uni-kassel.de

Materialforschung: Biokatalytische Schäume mit enormer Haltbarkeit und Aktivität

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 27.07.2023

Forschende des KIT entwickeln aus Enzymen eine neue Material-Klasse für Biokatalyse-Prozesse

Die industrielle Biokatalyse mit Enzymen gilt als „Gamechanger“ bei der Entwicklung einer nachhaltigen chemischen Industrie. Mithilfe von Enzymen kann eine eindrucksvolle Bandbreite an komplexen Molekülen wie pharmazeutische Wirkstoffe unter umweltfreundlichen Bedingungen synthetisiert werden. Forschende des Karlsruher Instituts für Technologie (KIT) haben nun eine neue Klasse von Materialien entwickelt, indem sie Enzyme als Schäume hergestellt haben, die eine enorme Haltbarkeit und Aktivität besitzen. Über ihre Ergebnisse berichten die Forschenden in der Fachzeitschrift Advanced Materials. Das neuartige Herstellungsverfahren der Enzym-Schäume wurde bereits zum Patent angemeldet.

Um das Gebiet der industriellen Biokatalyse, die vor allem bei der Herstellung von Pharmazeutika und Spezialchemikalien zum Einsatz kommt, weiterzuentwickeln, arbeiten Forschende intensiv an neuen Prozesstechnologien. Bei der Biokatalyse beschleunigen Enzyme statt chemischer Katalysatoren die Reaktionen, damit lassen sich Rohstoffe und Energie einsparen. Ziel ist es nun, Enzym-Biokatalysatoren unter möglichst schonenden Bedingungen kontinuierlich und in großen Mengen bereitzustellen. Damit effiziente Stoffumwandlungen realisierbar sind, werden die Enzyme in mikrostrukturierten Durchflussreaktoren immobilisiert. Sie sind dabei räumlich fixiert und an ein reaktionsträges Material gebunden und somit eingeschränkt mobil, was zu einer höheren Konzentrierung der Enzyme und damit verbunden zu einer höheren Produktivität führt.

Aufgeschäumte Mikrotröpfchen aus selbstorganisierenden Enzymen

Normalerweise verändern Enzyme beim Verschäumen ihre Struktur und verlieren damit ihre biokatalytische Aktivität. Die neuen Proteinschäume haben aber eine enorme Haltbarkeit und Aktivität. Die Aktivität ist ein Maß für die Wirksamkeit des Enzyms, das dafür sorgt, dass Ausgangsstoffe möglichst schnell miteinander reagieren. Für die Herstellung der Proteinschäume werden zwei Dehydrogenase-Enzyme gemischt, die zueinander passende Verknüpfungsstellen tragen, sodass sie spontan ein stabiles Proteinnetzwerk ausbilden können. „Dieses Gemisch wird dann in einem mikrofluidischen Chip mit einem Gasstrom versetzt, damit sich kontrolliert mikroskopische Blasen einheitlicher Größe bilden“, erklärt Professor Christof Niemeyer vom Institut für Biologische Grenzflächen-1 den Prozess. Der so hergestellte Schaum mit einheitlicher Blasengröße wird direkt auf Kunststoffchips aufgebracht und getrocknet, wodurch die Proteine polymerisieren und ein stabiles, hexagonales Gitter ausbilden.

„Es handelt sich dabei um monodisperse „Voll-Enzym-Schäume“, also dreidimensionale, poröse Netzwerke, die ausschließlich aus biokatalytisch aktiven Proteinen bestehen“, charakterisiert Niemeyer die Zusammensetzung der neuen Materialien. Die stabile hexagonale Wabenstruktur der Schäume besitzt einen mittleren Porendurchmesser von 160 µm und einer Lamellendicke von 8 µm und wird aus den frisch hergestellten, etwa gleich großen kugelförmigen Blasen nach wenigen Minuten gebildet.

Aktive und stabile Voll-Enzym-Schäume effizient einsetzen

Um Enzyme effizient für Stoffumwandlungen nutzen zu können, müssen sie in großen Mengen unter möglichst schonenden Bedingungen immobilisiert werden, um ihre Aktivität zu erhalten. Bisher wurden Enzyme auf Polymeren oder Trägerpartikeln immobilisiert, allerdings wird hierfür wertvoller Reaktorraum benötigt und die Aktivität kann beeinträchtigt werden. „Im Vergleich zu unseren bereits entwickelten „Voll-Enzym-Hydrogelen“ entsteht bei den neuen Materialien auf Schaumbasis eine deutlich größere Oberfläche, an der die gewünschte Reaktion stattfinden kann“, beschreibt Niemeyer die wesentliche Verbesserung. Im Gegensatz zu theoretisch erwarteten Ergebnissen zeigen die neuen Schäume überraschenderweise eine auffallend hohe Haltbarkeit, mechanische Widerstandsfähigkeit und katalytische Aktivität der Enzyme, was bisher beim Schäumen von Proteinen nicht gelungen war.

Die Stabilität kommt, so vermuten die Forschenden, durch die zueinander passenden Verknüpfungsstellen zustande, mit der die Enzyme ausgestattet sind. Hierdurch können sie sich von selbst zusammenfügen und so während des Trocknens ein hochvernetztes Gitter bilden, das dem neuen Material eine einzigartige Stabilität verleiht. „Erstaunlicherweise sind die neu entwickelten Enzymschäume nach der Trocknung für vier Wochen deutlich stabiler als die gleichen Enzyme ohne Schäume“, erläutert Niemeyer die Vorteile, „dies ist für die Vermarktung von großem Interesse, da hierdurch Vorratsproduktion und Versand erheblich vereinfacht werden.“

Die neuen Biomaterialien eröffnen vielseitige Wege für Innovationen in der industriellen Biotechnologie, den Materialwissenschaften oder auch für die Lebensmitteltechnologie. So könnten die Proteinschäume in biotechnologischen Prozessen eingesetzt werden, um wertvolle Verbindungen effizienter und nachhaltiger herzustellen. Das Forschungsteam konnte zeigen, dass mithilfe der Schäume der industriell wertvolle Zucker Tagatose hergestellt werden kann, der eine vielversprechende Alternative zu raffiniertem Zucker als Süßungsmittel darstellt. (sfo)

Originalpublikation:
Julian S. Hertel, Patrick Bitterwolf, Sandra Kröll, Astrid Winterhalter, Annika J. Weber, Maximilian Grösche, Laurenz B. Walkowsky, Stefan Heißler, Matthias Schwotzer, Christof Wöll, Thomas van de Kamp, Marcus Zuber, Tilo Baumbach, Kersten S. Rabe, Christof M. Niemeyer: Biocatalytic Foams from Microdroplet-Formulated Self-Assembling Enzymes. Advanced Materials, 2023. DOI: 10.1002/adma.202303952

Externer Link: www.kit.edu

Weltweit erster Chip mit österreichischer Quantenarchitektur im Einsatz

Medieninformation der Universität Innsbruck vom 06.07.2023

Der japanische IT-Konzern NEC hat den ersten Quantenprozessor basierend auf der ParityQC Architektur gebaut. Die Parity-Technologie wurde an der Universität Innsbruck erfunden und wird vom Spin-off ParityQC weiterentwickelt und vermarktet. NEC macht den auf Optimierungsprobleme spezialisierten Quantencomputer nun über die Cloud für die Wissenschaft zugänglich.

In aller Welt arbeiten Wissenschaft und Unternehmen fieberhaft am Bau von Quantencomputern. Diese neuen Rechenmaschinen werden viele Probleme rascher und effizienter lösen als bisherige Technologien. Gerade bei der Suche nach optimalen Lösungen für komplexe Fragestellungen versprechen Quantentechnologie sehr bald schon praxistaugliche Anwendungen. Basis dafür sind Quantum-Annealing-Systeme oder adiabatische Quantencomputer, die nicht wie klassische Computer mit Gatteroperationen arbeiten. Sie nutzen die Quanteneigenschaft vielmehr zur Suche eines optimalen Zustands in einem physikalischen System. In entsprechende Algorithmen verpackt, lassen sich diese Systeme nutzen, um optimale Lösungen für viele Fragestellungen zu finden.

Japanischer Quanten-Chip mit österreichischem Know-how

Nun hat der IT-Konzern NEC einen 8-Bit-Quanten-Annealer gebaut, der auf der Architektur des Innsbrucker Spin-offs ParityQC basiert. Der erste Parity-Quantenchip besteht aus supraleitenden Parametron-Qubits und wird von NEC nun über die Cloud der Wissenschaft zugänglich gemacht. „Das ist eine eindrucksvolle Bestätigung der eigentlichen Vorteile, die der ParityQC-Ansatz bietet: Unempfindlichkeit gegen Rauschen und Skalierbarkeit zu einem vollständig verschalteten Quantencomputer unter Beibehaltung langer Kohärenzzeiten“, zeigt sich Hermann Hauser, Mitbegründer von Amadeus Capital und Acorn Computers, begeistert. „Die Übernahme der ParityQC-Architektur durch NEC, einem der weltweit führenden Supercomputer-Unternehmen, ist ein außergewöhnlicher Erfolg für das vier Jahre alte Spin-off der Universität Innsbruck. Es macht ParityQC zum weltweit ersten Unternehmen für QC-Architekturen mit einer erprobten, funktionierenden Anwendung. Die Vorteile dieses Ansatzes werden dazu führen, dass das ParityQC-Design von vielen anderen Hardware-Herstellern übernommen wird. Eine Reihe von kürzlich erfolgten Ankündigungen von QC-Konsortien in Europa belegen dies bereits“, so Hauser weiter. „NEC war das erste Unternehmen, das in den 90er-Jahren ein supraleitendes Qubit vorstellte. Wir sind sehr stolz darauf, dass ihr Quantenprozessor, der nun erstmals für die externe Nutzung verfügbar sein wird, auf unserer Architektur basiert“, freuen sich Wolfgang Lechner und Magdalena Hauser, Co-Geschäftsführer von ParityQC.

Österreichische Erfolgsgeschichte

ParityQC wurde 2020 in Innsbruck gegründet und vermarktet eine Technologie, die auf einer inzwischen patentierten Idee beruht, die Quantenphysiker Wolfgang Lechner in den 2010-er Jahren gemeinsam mit Peter Zoller und Philipp Hauke an der Universität Innsbruck und dem Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften entwickelt hat. Die Ausgründung erfolgte über die Transferstelle Wissenschaft – Wirtschaft – Gesellschaft der Universität Innsbruck. „Es zeigt sich nun immer mehr, dass unsere Ersteinschätzung dieser Technologie im Zuge der Erfindungsmeldung 2015 richtig war und die Basiserfindung das Potential hat, zum Standard in der Quantencomputer-Technologie zu werden. Die Verwertung dieser Forschungsergebnisse über die Gründung eines Spin-offs ermöglicht es, die Technologie in Europa weiterzuentwickeln und somit maximalen Einfluss auf die Entwicklung dieser Branche zu nehmen und dabei gleichzeitig die Wertschöpfung in Europa zu halten. Ein großes Kompliment an die beiden Geschäftsführer dafür, wie vorausschauend und umsichtig sie ihre Entwicklungspartner auswählen“, sagt Transferstellen-Leiterin Sara Matt.

Externer Link: www.uibk.ac.at

Nanoplastik aufspüren – in Sekundenbruchteilen

Presseaussendung der TU Wien vom 18.07.2023

Winzige Plastikpartikel sind ein Umweltproblem. Sie können sogar in lebende Zellen eindringen. An der TU Wien wurde nun eine Methode entwickelt, solche Partikel präzise und schnell zu detektieren.

Dass Mikroplastik ein Problem ist, ist mittlerweile bekannt: Es handelt sich dabei um winzige, kaum sichtbare Plastikpartikel, die in die Umwelt gelangen und Schaden anrichten können, zum Beispiel, wenn sie von Tieren gefressen werden. Schwer abzuschätzen ist bisher aber der Effekt von noch kleineren Partikeln, die mit herkömmlichen Methoden kaum nachgewiesen werden können: Bei Plastikteilchen mit einem Durchmesser von weniger als einem Mikrometer spricht man von „Nanoplastik“. Solche winzigen Partikel können sogar in lebende Zellen eindringen.

An der TU Wien gelang es nun, eine Messmethode zu entwickeln, mit der sogar einzelne Nanoplastik-Partikel nachgewiesen werden können – und das um Größenordnungen schneller als mit bisherigen Techniken. Diese Resultate wurden nun im Fachjournal Scientific Reports publiziert. Die neue Methode soll nun zur Grundlage neuer Messgeräte für die Umweltanalytik werden.

Moleküle an der Wellenlänge erkennen

„Wir verwenden ein physikalisches Prinzip, das auch bisher schon oft in der chemischen Analytik verwendet wurde, nämlich die Raman-Streuung“, erklärt Sarah Skoff, Gruppenleiterin der Forschungsgruppe „Festkörperquantenoptik und Nanophotonik“ vom Atominstitut der TU Wien. Dabei werden Moleküle mit einem Laserstrahl beleuchtet und dadurch zum Vibrieren gebracht. Ein Teil der Energie des Laserlichts wird somit in Vibrationsenergie umgewandelt, der Rest der Energie wird wieder in Form von Licht abgestrahlt.

Wenn man dieses Licht misst und seine Energie mit dem ursprünglich eingestrahlten Laserlicht vergleicht, weiß man, mit welcher Energie das Molekül vibriert – und weil unterschiedliche Moleküle auf unterschiedliche Weise vibrieren, lässt sich auf diese Weise herausfinden, um welches Molekül es sich handelt.

„Gewöhnliche Raman-Spektroskopie wäre aber für den Nachweis von kleinstem Nanoplastik nicht geeignet“, sagt Sarah Skoff. „Das wäre viel zu wenig empfindlich und würde viel zu lange dauern.“ Das Forschungsteam musste sich daher auf die Suche nach komplizierteren physikalischen Effekten machen, mit denen sich diese Technik deutlich verbessern lässt.

Der Trick mit dem Goldgitter

Man adaptierte dafür ein Verfahren, das in ähnlicher Form schon zum Nachweis von Biomolekülen verwendet wurde. Das Laserlicht wird nicht direkt auf die Probe geschickt, sondern auf einem extrem feinen Gitter aus Gold platziert, welches mit einem Laser bestrahlt wird. Die einzelnen Golddrähte sind nur 40 Nanometer dick und rund 60 Nanometer voneinander entfernt. „Dieses Metallgitter wirkt wie eine Antenne“, sagt Sarah Skoff. „Durch das Gitter wird das Laserlicht an bestimmten Stellen verstärkt – dort kommt es daher zu einer viel intensiveren Wechselwirkung mit den gesuchten Molekülen. Außerdem kommt es zu einer Wechselwirkung zwischen dem Molekül und den Elektronen im Metallgitter, die dafür sorgt, dass das Lichtsignal der Moleküle zusätzlich verstärkt wird.“

Das Licht, das dann von den Molekülen ausgesandt wird, muss bei gewöhnlicher Raman-Spektroskopie normalerweise in all seine Wellenlängen zerlegt werden, um daraus ablesen zu können, um welches Molekül es sich handelt. Das Team der TU Wien konnte aber zeigen, dass es auch einfacher geht: „Wir wissen, was die charakteristischen Wellenlängen der Nanoplastik-Partikeln sind und suchen daher ganz gezielt nach Signalen bei genau diesen Wellenlängen“, erklärt Skoff. „Wir konnten zeigen, dass sich die Messgeschwindigkeit dadurch um mehrere Größenordnungen verbessern lässt: Bisher musste man zehn Sekunden messen, um einen einzigen Pixel des gesuchten Bildes zu erhalten – bei uns dauert es bloß einige Millisekunden.“ Versuche mit Polystyrol (Styropor) zeigten, dass auch bei dieser sehr hohen Geschwindigkeit die Nanoplastik-Partikel zuverlässig nachgewiesen werden können – und zwar auch bei extrem niedriger Konzentration. Im Gegensatz zu anderen Methoden erlaubt diese Technik sogar den Nachweis einzelner Partikel.

Die Basis für neue Messgeräte

Das Forschungsteam will nun die Einsatzmöglichkeiten der neuen Technik noch genauer untersuchen – etwa die Frage, wie man damit Nanoplastik in umweltrelevanten oder biologischen Proben nachweisen kann, beispielsweise in Blut. „Dass das physikalische Grundprinzip funktioniert, konnten wir nun jedenfalls zeigen“, sagt Sarah Skoff. „Damit ist prinzipiell das Fundament für die Entwicklung neuer Messgeräte gelegt, mit denen man in Zukunft auch außerhalb des Labors direkt in der Natur Proben untersuchen kann.“

Diese Forschungsarbeit wurde von der Österreichischen Forschungsförderungsgesellschaft (FFG, PhoQus2D) und dem Fonds zur Förderung der wissenschaftlichen Forschung (FWF, Quantoom) unterstützt. (Florian Aigner)

Originalpublikation:
Ambika Shorny, Fritz Steiner, Helmut Hörner and Sarah M. Skoff, Imaging and identification of single nanoplastic particles and agglomerates, Scientific Reports, 13, 10275 (2023)

Externer Link: www.tuwien.at

CuNex: Erfolgreiche Gründung mit THI-Beteiligung

Pressemitteilung der TH Ingolstadt vom 05.07.2023

Die Firma von Doktoranden Sri Krishna Bhogaraju und Prof. Gordon Elger entwickelt neuartige Kupfersinterpasten, die in einem breiten Spektrum von Anwendungen, insbesondere im Bereich der Elektromobilität, eingesetzt werden können.

Das Geschäftsmodell der CuNex GmbH beruht auf dem Verkauf von Kupfersinterpasten und der Beratung bei der Entwicklung von Sinterprozessen. Das Verbindungsmaterial wird in der Opto- und Hochleistungselektronik genutzt und ist unter anderem aufgrund des rasanten Wachstums der E-Mobilität äußerst gefragt. Die Kupfersinterpaste wurde innerhalb von verschiedenen öffentlich geförderten Forschungsprojekten in der Gruppe „Microelectronis Packaging“ am Institut für Innovative Mobilität entwickelt.

Die Idee zur Gründung wurde vor mehr als zwei Jahren geboren, als Industriepartner sehr positive Rückmeldungen bei der Evaluierung der Sinterpaste gaben. Als Sri Krishna Bhogaraju gemeinsam mit Maximilian Schmid 2021 den Rotary Forschungspreis Ingolstadt gewann, wurde die Gründungsidee schließlich Schritt für Schritt realisiert. In enger Abstimmung mit dem Center of Entreprenuership und THI-Präsidenten Prof. Walter Schober wurde der Vertrag zur Übernahme der in öffentlich geförderten Forschungsprojekten erarbeiteten Patente ausgehandelt.

Die THI selbst hält Anteile an der Firma. CuNex hat zudem bereits Kapital von der Schlenk SE eingeworben, einem Familienunternehmen mit einer 150-jährigen Geschichte im Bereich der Forschung und der Produktion von Kupferpartikeln und -folien. Die Zusammenarbeit mit dem in Roth-Barnsdorf ansässigen Unternehmen ermöglicht es, die weltweit erste Kupfersinterpaste „made in Germany“ bzw. „made in Bavaria“ anzubieten.

Das Center of Entrepreneurship unterstützt als erste Anlaufstelle Start-up-Aktivitäten von allen THI-Angehörigen, indem es den gesamten Gründungsprozess beratend begleitet.

Externer Link: www.thi.de