Turbo für das Quanteninternet

Medienmitteilung der Universität Innsbruck vom 23.05.2023

Erster Langstrecken-Quantenrepeater-Knoten für Telekommunikationsnetz realisiert

Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes. Nun hat eine neue Generation von Forschern an der Universität Innsbruck einen Quantenrepeater-Knoten für die Standardfrequenz von Telekommunikationsnetzen gebaut und damit Quanteninformation über Dutzende von Kilometern übertragen.

Quantennetzwerke verbinden Quantenprozessoren oder Quantensensoren miteinander. Dies ermöglicht absolut abhörsichere Kommunikation und leistungsstarke verteilte Sensornetzwerke. Dabei wird die Quanteninformation mittels Lichtteilchen (Photonen) über Glasfaserleitungen zwischen den Knotenpunkten des Netzwerkes ausgetauscht. Über große Distanzen steigt aber die Wahrscheinlichkeit, dass Photonen verloren gehen. Weil Quanteninformation nicht einfach kopiert und verstärkt werden kann, haben Hans-Jürgen Briegel, Wolfgang Dür, Juan Ignacio Cirac und Peter Zoller vor 25 Jahren an der Universität Innsbruck dafür Quantenrepeater (Quanten-Umsetzer) vorgeschlagen. Diese verfügen über Licht-Materie-Verschränkungsquellen und Speicher zur Erzeugung von Verschränkung auf unabhängigen Netzwerkverbindungen. Diese werden durch einen sogenannten Verschränkungstausch miteinander verbunden. Auf diese Weise wird die Verschränkung über große Entfernungen verteilt.

Auch Übertragung über 800 Kilometer möglich

Quantenphysikern um Ben Lanyon am Institut für Experimentalphysik der Universität Innsbruck ist es nun gelungen, den grundlegenden Baustein von Quantenrepeatern zu bauen: ein voll funktionsfähiger Netzknoten, der die Verschränkungserzeugung mit einem Photon der Standardfrequenz des Telekommunikationsnetzes und Operationen für den Verschränkungstausch ermöglicht. Die Repeater-Knoten bestehen aus zwei in einer Ionenfalle gefangenen Kalzium-Ionen in einem optischen Resonator sowie einem Umwandler für einzelne Photonen in die Telekomfrequenz. Die Wissenschaftler demonstrierten damit die Übertragung von Quanteninformation über eine 50 Kilometer lange Glasfaser, wobei der Quantenrepeater genau in der Mitte zwischen Anfangs- und Endpunkt angebracht war. Mit Berechnungen konnten die Forscher auch zeigen, welche Systemverbesserungen noch notwendig sind, um mit dem gleichen Konzept eine Übertragung über 800 Kilometer möglich zu machen, was es erlauben würde, Innsbruck mit Wien zu verbinden.

Die aktuellen Ergebnisse wurden im Fachmagazin Physical Review Letters veröffentlicht. Finanziell unterstützt wurden die Forschungen unter anderem durch einen START-Preis des österreichischen Wissenschaftsfonds FWF, die Österreichische Akademie der Wissenschaften und die Europäischen Union. Lanyons Team ist Teil der Quantum Internet Alliance, einem internationalen Projekt im Rahmen des EU-Quantum-Flagship.

Externer Link: www.uibk.ac.at

KI unterstützt Analyse metallischer Werkstoffe

Pressemitteilung der Universität Kassel vom 17.05.2023

Bisher ist die Analyse kristalliner Mikrostrukturen in metallischen Werkstoffen technisch herausfordernd und besonders zeitaufwändig. Forschende aus Werkstofftechnik und Informatik haben hierfür jetzt einen Algorithmus entwickelt und in der Fachzeitschrift „Scientific Reports“ veröffentlicht: Aus nur wenigen Messdaten einer Röntgenstrukturanalyse rekonstruiert er die Ausrichtung der Kristallstrukturen im Werkstoff vollständig und genau.

Für die Eigenschaften metallischer Werkstoffe ist die innere Struktur aus kristallinen Einzelbereichen, sogenannten „Körnern“, entscheidend. Ihre Anordnung beeinflusst maßgeblich die Festigkeit und das Verhalten beim Verformen der Metalle. Sogenannte Formgedächtnislegierungen zum Beispiel verändern ihre Form durch temperaturbedingte Änderungen des inneren Kristallaufbaus. „Eine geeignete Mikrostruktur in diesen speziellen Werkstoffen zu schaffen ist eine große technische Herausforderung. Das im Detail mithilfe von Röntgenanalysen zu überprüfen ist besonders aufwändig“, erklärt Prof. Dr.-Ing. Thomas Niendorf, Leiter des Fachgebiets Metallische Werkstoffe.

Hierfür nutzen die Forschenden häufig die Methoden der Röntgendiffraktometrie. Dabei richten sie einen gebündelten Röntgenstrahl auf die Werkstoffproben. An dessen Kristallgitter wird der Strahl abgelenkt – physikalisch betrachtet gebeugt. Ein Detektor empfängt die gebeugten Röntgenstrahlen und eine Software stellt ihre Intensität in einer sogenannten Polfigur dar. Sie drehen und kippen die Werkstoffprobe, bis aus den Messdaten eine Polfigur entsteht. Diese Messreihen dauern oft mehrere Tage lang an. Anhand der Polfiguren können die Forschenden rechnerisch ermitteln, in welcher Anordnung und Ausrichtung sich die Kristalle im Metall befinden.

„Mit unserem speziell entwickelten Algorithmus sind wir drei Mal schneller“, berichtet David Meier, Informationswissenschaftler vom Helmholtz-Zentrum Berlin und dem Fachgebiet Intelligente Eingebettete Systeme der Universität Kassel (Leitung: Prof. Bernhard Sick). „Mit maschinellem Lernen ist er so trainiert, dass er aus nur einem kleinen Ausschnitt der realen Messdaten von wenigen Stunden eine vollständige Rekonstruktion der Polfigur erstellt. Sie unterscheidet sich nur minimal vom Original.“ Dafür erstellte Meier gemeinsam mit den Werkstofftechnikern Polfiguren von zufälligen Anordnungen von Körnern im Metall mit einer Simulation. An diesen simulierten Abbildern erlernt eine individuell angepasste Deep-Learning-Architektur, aus einem Ausschnitt die vollständige Polfigur zu erzeugen. Dieses „Rekonstruktionsnetzwerk“ kann zu einem kleinen Ausschnitt einer real gemessenen Polfigur die übrigen Bereiche rekonstruieren. Der anschließende Vergleich von Rekonstruktion und realen, vollständigen Messergebnissen der Probe zeigt: Das Rekonstruktionsnetzwerk kann mit ausreichender Genauigkeit für das angewandte Beispiel die Probe analysieren. Aber: Um statistisch zu beweisen, dass die entwickelte Methode in anderen realen Szenarien funktioniert, muss sie in Folgestudien mit weiteren Proben aus unterschiedlichen Materialien evaluiert werden, so David Meier.

Die Forschenden im Fachgebiet Metallische Werkstoffe sind von der Zusammenarbeit mit der Informatik begeistert: „Für die Analyse der Mikro-Kristallstruktur benötigen wir nur noch wenige Stunden und können sogar Bereiche sicher rekonstruieren, an die wir technisch mit unserem experimentellen Aufbau gar nicht herangekommen wären“, so Dr.-Ing. Alexander Liehr, Leiter der Arbeitsgruppe Röntgenfeinstrukturanalyse. Auch in Zukunft könne die Kombination aus moderner Messtechnik und künstlicher Intelligenz die Forschung und Entwicklung hochleistungsfähiger und langlebiger Werkstoffe unterstützen.

Originalpublikation:
Meier, D., Ragunathan, R., Degener, S., Liehr, A., Vollmer, M., Niendorf, T., Sick, B.: Reconstruction of incomplete X-ray diffraction pole figures of oligocrystalline materials using deep learning. Scientific Reports. 13, 5410 (2023).

Externer Link: www.uni-kassel.de

Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren

Presseaussendung der TU Wien vom 08.05.2023

In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren. An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.

Mit elektromagnetischen Feldern lassen sich winzige Teilchen manipulieren: Man kann sie einfangen, festhalten, oder an einen bestimmten Ort bewegen. Welche Form diese elektromagnetischen Felder aber genau haben sollen, und wie man sie während des Experiments dann konkret steuern muss, ist schwer herauszufinden. Oft sind dafür langwierige Versuchsreihen mit zahlreichen Messungen notwendig.

An der TU Wien konnte man nun aber zeigen, dass sich diese Aufgabe mit Hilfe von lernenden Algorithmen viel schneller erledigen lässt als bisher – und zwar mit derselben Präzision. Dafür entwickelte ein Team der TU Wien zusammen mit Kollegen vom FZ Jülich ein maßgeschneidertes neuronales Netz, das genau für diese Anwendung eine möglichst schnelle Lernkurve hat. Das Resultat wurde im Fachjournal „Physical Review Applied“ publiziert und soll nun in ganz unterschiedlichen Quanten-Experimenten zum Einsatz kommen.

Magnetfelder und Licht

„Um Quantenteilchen zu kontrollieren, verwenden wir eine Kombination aus mehreren elektromagnetischen Feldern“, sagt Maximilian Prüfer, Postdoktorand in der Gruppe von Jörg Schmiedmayer am Vienna Center for Quantum Science and Technology (VCQ), Atominstitut, TU Wien. „Durch winzige Strukturen wird elektrischer Strom geschickt, dadurch entsteht ein Magnetfeld. Zusätzlich verwenden wir Lichtstrahlen, die durch Linsen, Spiegel und Filter gezielt manipuliert werden können.“

Ähnlich wie der Strahl eines Beamers, der ein Bild auf eine Leinwand projiziert, ist der Lichtstrahl an manchen Stellen heller und an manchen dunkler. Die Form des Lichtstrahls bestimmt, welche Kräfte die Teilchen an welcher Stelle spüren. Indem man die Intensitätsverteilung des Lichts anpasst, kann man die Teilchen gezielt beeinflussen.

„Prinzipiell gibt es zwei unterschiedliche Methoden, dieses Lichtfeld zu steuern“, erklärt Maximilian Prüfer. „Man kann vorab berechnen, welche Form das Feld haben muss – das gelingt aber nur dann, wenn man alle Details des Experiments, inklusive aller Störeffekte, wirklich ganz genau kennt. Das Ergebnis kann immer nur höchstens so präzise sein, wie das Rechenmodell, das man verwendet.“

Die Alternative dazu sind sogenannte iterative Steuerungsalgorithmen: Sie können das Lichtfeld sukzessive verbessern, indem man nach jedem Änderungsschritt ein neues Experiment durchführt und aus dem Ergebnis abliest, auf welche Weise man im nächsten Schritt das Lichtfeld weiterverbessern muss, um dem Ziel möglichst nahe zu kommen. Ein detailliertes Verständnis der zugrundeliegenden Effekte ist dabei gar nicht nötig.

„Solche Algorithmen sind im Prinzip nur durch die experimentelle Messgenauigkeit beschränkt. Diese wunderbare Eigenschaft hat jedoch einen Preis: jeder Verbesserungsschritt benötigt einen eigenen Versuch am Experiment.“ erklärt Andreas Deutschmann-Olek, welcher als Postdoktorand im Team von Prof. Andreas Kugi vom Institut für Automatisierungs- und Regelungstechnik an der Arbeit beteiligt ist. Die notwendigen Messungen solcher Versuchsreihen können Wochen dauern, und eine geringfügige Änderung am gewünschten Lichtfeld bedeutet, dass man von vorne beginnen muss. Durch eine digitale Kopie des Experiments auf Basis aller bisherigen Versuchsdaten könnte die Anzahl der benötigten Messungen jedoch dramatisch reduziert werden.

Ein neuronales Netz, maßgeschneidert für Teilchenphysik

Genau für diese Aufgabe wurde nun künstliche Intelligenz (AI) eingesetzt. „Wichtig war es, unser Wissen über die physikalischen Eigenschaften des Systems zu nutzen, und von vornherein in die künstliche Intelligenz einzubauen“, erklärt Maximilian Prüfer. „Wir haben ein neuronales Netz entwickelt, dessen Struktur genau an die physikalische Aufgabe angepasst ist, die es hier zu lösen gilt. Wir nennen das ein Physik-inspiriertes neuronales Netz. Erst damit war es möglich, bei experimentell handhabbaren Datenmengen hervorragende Prognosen durch das neuronale Netz zu erhalten.“ Das neuronale Netz wurde in enger Zusammenarbeit mit Forschern von FZ Jülich um Tomaso Calarco entwickelt.

Die Strategie war erfolgreich: Mit einer Kamera wird gemessen, wo sich die Teilchen befinden, und mit diesen Bildern wird das neuronale Netz trainiert. Im Lauf der Zeit lernt es dadurch, welche Änderungen am Experiment sich auf welche Weise auf die Quantenteilchen auswirken – und zwar ohne die physikalischen Formeln, die diesen Zusammenhang beschreiben, einprogrammiert zu haben. Die künstliche Intelligenz entwickelt in gewissem Sinn eine Art „Verständnis“ des Systems.

Die künstliche Intelligenz imitiert das Experiment

„Wir konnten zeigen: Die künstliche Intelligenz lernt tatsächlich, das Verhalten des physikalischen Systems korrekt zu imitieren“, sagt Maximilian Prüfer. Somit können die Algorithmen blitzschnell ausprobieren, wie sich verschiedene Änderungen am Experiment in der aktuellen Situation auswirken, ohne dass dafür lange, aufwendige experimentelle Versuchsreihen nötig wären. „Die gesammelte Information aus vergangenen Versuchen wird im neuronalen Netz strukturiert abgelegt und kann so auf neue Situationen übertragen werden“, ergänzt Andreas Deutschmann-Olek.

Wo man früher vielleicht hundert Experimente gebraucht hätte, bis man die richtigen Einstellungen gefunden hat, reicht heute ein kleiner Bruchteil davon. Ähnlich wie ein Mensch vielleicht nur ein paar gezeichnete Linien sehen muss, um zu erkennen, welches Tier hier abgebildet ist, braucht auch die künstliche Intelligenz, wenn sie gut trainiert ist, nur ein relativ geringes Maß an Information, um recht genau zu wissen, wie das Experiment gesteuert werden muss. Nur wenn besonders hohe Präzision benötigt wird oder bei besonders ungewöhnlichen Gegebenheiten muss das „echte“ Experiment anstelle des neuronalen Netzes befragt werden.

Damit kann man nun eine Vielzahl von Experimenten durchführen, die bisher nur mit viel größerem Aufwand oder gar nicht möglich gewesen wären. „Der Einsatz von maschinellem Lernen in der quantenphysikalischen Forschung ist gerade groß im Kommen“, meint Maximilian Prüfer. „Wir hoffen, dass unsere Arbeit auch Einsichten liefert wie ein physikalisches Verständnis zusammen mit den weit entwickelten AI Methoden Experimente verbessern kann.“ (Florian Aigner)

Originalpublikation:
M. Calzavara et al., Optimizing Optical Potentials With Physics-Inspired Learning Algorithms; Phys. Rev. Applied 19, 044090 (2023).

Externer Link: www.tuwien.at

Studierende bauten Prototyp einer Passagierdrohne

Pressemitteilung der TH Ingolstadt vom 07.03.2023

Wie fühlt sich der Flug mit einer Passagierdrohne an? Diese Frage wollten Forschende und Studierende der Technischen Hochschule Ingolstadt beantworten. Zu diesem Zweck konstruierten sie einen Prototyp, der bald auch von der Öffentlichkeit in Augenschein genommen werden kann.

Von München nach Ingolstadt mit dem Flugtaxi fliegen und dafür per App das Ticket kaufen und bequem einchecken. Was nach einer Zukunftsvision klingt, wollten Studierende des Master-Studiengangs „User Experience Design“ (UXD) der Technischen Hochschule Ingolstadt (THI) so praxisnah wie möglich umsetzen. Sie bauten dazu den Prototyp einer Passagierdrohne, womit der gesamte Prozess von der Buchung eines Sitzplatzes bis zur Durchführung des Flugs dargestellt werden kann. Der Prototyp verfügt über vier Sitzplätze und wurde im Maßstab 1:1 konstruiert. Ziel ist aber nicht, dass die „AirDrone“ eines Tages abhebt, sondern die Erfahrungen eines Anwenders beim simulierten Flug einzuordnen. Damit die Ergebnisse auch langfristigen Nutzen haben, legte Professor Andreas Riener, Leiter des Studiengangs „User Experience Design“ (UXD), großen Wert darauf, dass alle Schritte so realitätsnah wie möglich umgesetzt wurden.

Was ist den Fluggästen wichtig?

Der Prototyp soll veranschaulichen, welche Konzepte und Visualisierungen an Bord gebraucht werden, die vielleicht später sogar den Bau beeinflussen könnten. Besonders spannend war das Thema Sitzplatzauswahl: „Aufgrund der Sensitivät des Gewichts werden nicht zwei schwere Personen links und zwei leichte Personen rechts Platz nehmen können“, erklärt Professor Riener. Die Buchungs-App, bei der ursprünglich eine Sitzplatzauswahl möglich war, musste dahingehend wieder angepasst werden. Da Drohnen im Vergleich zu Passagierflugzeugen eine geringere Flughöhe und ein geringeres Eigengewicht aufweisen, ist der Flug ruckeliger, was die Akzeptanz beeinträchtigt.

Weitere wichtige Erkenntnisse umfassen Vorlieben zur Mitnahme von Gepäck: Aufgrund der Gewichtsproblematik wurde geprüft, in wie weit es akzeptiert wäre, schwereres Gepäck am Boden – getrennt vom Passagier – zu transportieren. Das Ergebnis war: Der Großteil der Fluggäste möchte, auch zu einem höheren Preis, sein Gepäck stets mit sich führen. Ein weiteres Akzeptanzthema ist die Fernüberwachung (Teleoperation) der Drohne von einem Leitstand aus, anstatt wie derzeit vorgesehen, einem Piloten an Bord. Aktuell werden dazu Studien durchgeführt, um die Haltung potentieller Fluggäste abzufragen sowie notwendige Informations- und Interaktionskonzepte zu entwickeln.

Selbst in Passagierdrohne Platz nehmen

Während das Studierendenprojekt abgeschlossen ist, läuft das öffentliche Förderprojekt noch weiter. Die wissenschaftliche Mitarbeiterin Patricia Appel wird sich, ausgehend von den Erkenntnissen, im Rahmen ihrer Promotion weiter mit Sicherheitsaspekten bei Passagierdrohnen beschäftigten. Außerdem kann die Öffentlichkeit bald selbst in dem Prototyp Platz nehmen. „Wir machen derzeit noch das Fein-Tuning und werden den Prototyp dann am Hochschulinformationstag der THI am 25. März sowie beim ON Campus-Festival am 16. Juni und auf der IAA im Herbst einsetzen“, sagt Professor Riener.

Er betont abschließend, dass das Projekt verknüpft ist mit dem Modellprojekt „Urban Air Mobility“ in der Region Ingolstadt und den Startup-Programmen des brigkAir. Das Projekt „Prototyp-Bau“ ist zudem angedockt an das Verbundprojekt „AMI-Airshuttle“. Dabei werden Lösungen für den Betrieb von sogenannten Vertiports, also einer neuartigen Infrastruktur, an Flughäfen entwickelt. Die Integration von elektrifizierten Flugtaxis inklusive Betriebskonzepten wird dabei erprobt.

Externer Link: www.thi.de

Taktile Tattoos sollen virtuelle Welten greifbar machen

Pressemitteilung der Universität des Saarlandes vom 02.03.2023

Was bis vor kurzem noch wie Science-Fiction wirkte, kann schon bald Wirklichkeit werden: virtuelle Welten im wahrsten Sinne des Wortes „begreifbar“ zu machen. Jürgen Steimle, Informatik-Professor der Universität des Saarlandes, möchte dies mittels hauchdünner elektronischer Folien erreichen, die wie Abzieh-Tattoos auf den Körper aufgetragen werden können.

Um die Technologie, die er mit seiner Forschungsgruppe im Rahmen des EU-geförderten Projektes „InteractiveSkin“ entwickelt hat, näher zur Marktreife zu bringen, wird Steimle nun erneut durch den Europäischen Forschungsrat (ERC) mit einem so genannten „Proof-of-Concept-Grant“ unterstützt.

Virtual- und Augmented-Reality (VR und AR), oftmals als „Extended Reality (XR)“ zusammengefasst, bewegen sich immer mehr hinaus aus dem Nischen-Markt hin zum Massenprodukt – man denke nur an das Metaverse, Gaming, oder Anwendungen in der Industrie und innovativen Bereichen der Telemedizin. Die meisten Anwendungen der erweiterten Realität haben eines gemeinsam: Sie sprechen nur oder hauptsächlich den Sehsinn an. „Der Tastsinn bleibt in der Regel außen vor, obwohl er ein ganz entscheidender Faktor dabei ist, wie wir unsere Welt wahrnehmen“, erklärt der Informatik-Professor Jürgen Steimle, der die Forschungsgruppe zu Mensch-Computer-Interaktion an der Universität des Saarlandes am Saarland Informatics Campus leitet. Den Tastsinn zentral in virtuelle Welten zu integrieren, würde erheblich dazu beitragen, dass Nutzer diese immersiv erleben, so der Professor.

Bedingt geht das nämlich schon heute: Eine verbreitete Möglichkeit sind in den Händen gehaltene Controller, die durch bewegliche Teile wie Motoren haptische Eindrücke erzeugen, oder auch Handschuhe, in die ebenfalls vibrierende und anderweitig bewegliche Elemente eingebaut sind. Hier bessere Ansätze zu entwickeln, hat sich Professor Jürgen Steimle zur Aufgabe gemacht.

Herausgekommen ist dabei unter anderem das Projekt „Tacttoo“: Der Name ist ein Kofferwort aus „taktil“, also den Tastsinn betreffend, und „Tattoo“ und beschreibt somit prägnant, was in dem Projekt entwickelt wurde: Eine hauchdünne, nur 35 Mikrometer (= tausendstel Millimeter) dicke elektronische Folie, die wie ein Abzieh-Tattoo auf die Haut aufgetragen werden kann und dort nur durch elektrische Reize, ganz ohne bewegliche Teile, den Tastsinn stimulieren kann. Weil die Folie so dünn ist, können Gegenstände noch wie zuvor wahrgenommen und ertastet werden. Das eröffnet neue Anwendungsmöglichkeiten: Wie auch mit anderen Methoden können durch Tacttoo völlig neue haptische Erfahrungen für rein digitale Objekte erzeugt werden (wenngleich auch wesentlich realistischer dank höherer Auflösung), zusätzlich können aber auch reale Objekte um andere Sinneseindrücke erweitert werden.

So könnte die Technik beispielweise beim Produktdesign zum Einsatz kommen: Mit Hilfe von Augmented Reality und eines physischen Prototyps könnte die Haptik verschiedener Materialien ausprobiert werden, bevor es in die Produktion geht. Oder im Falle eines elektrischen Gerätes könnten verschiedene Positionierungen von Knöpfen und anderen physischen Bedienelementen erprobt werden, indem man diese als künstliche haptische Sinneseindrücke simuliert. Auch in der Ausbildung, beispielsweise von Chirurgen, wäre die Technik denkbar. Denn bereits heute werden hier Virtual-Reality-Umgebungen eingesetzt. Diese könnten mithilfe von Steimles Methode um realistisches haptisches Feedback erweitert werden, ohne die nötige Feinmotorik der auszubildenden Mediziner einzuschränken.

In dem nun vom Europäischen Forschungsrat geförderten Projekt namens „Feel-XR: Feel-through Haptic Feedback for Augmented and Virtual Reality“ geht es Steimle und seinem Team um den Technologie-Transfer, also exakt darum, neue Anwendungsfälle zu identifizieren und bestehende zu verfeinern: „Durch Marktanalysen, Entwicklung von Anwendungen sowie die Zusammenarbeit mit Partnern aus der Wirtschaft wollen wir das kommerzielle Potenzial der Technologie explorieren, um Tacttoo in die Praxis zu bringen“, sagt der Professor. Die Europäische Union hat speziell für diesen Zweck die sogenannten „Proof-of-Concept-Grants“ vorgesehen, die nur an Wissenschaftlerinnen und Wissenschaftler vergeben werden, die bereits eine höher dotierte EU-Förderung erhalten haben und dabei Grundlagentechnologien mit hohem Anwendungspotenzial entwickelt haben. Das Fördervolumen eines solchen Grants beträgt 150.000 Euro über 18 Monate.

Externer Link: www.uni-saarland.de