Massivbauteile perfekt umgeformt

Mediendienst der Fraunhofer-Gesellschaft vom Februar 2010

Sollen Metalle umgeformt werden, entstehen häufig Schäden an den Werkstoffen. Eine mögliche Ursache: Der Pressdruck ist zu groß, das Material bekommt Risse und Löcher. Per Simulation am PC berechnen Forscher nun, wie sich Defekte in den Bauteilen vermeiden lassen.

Auf der Autoshow glänzt und glitzert es in allen Ecken. Links steht ein mit Blattgold überzogener Porsche, auf der anderen Seite wird ein bordeauxfarbener Mercedes präsentiert. Doch bis die Luxusschlitten als ausgereifte Produkte zum Verkauf stehen, haben sie einen langen Weg vor sich: Die Eigenschaften der verwendeten Werkstoffe sind komplex, beim Herstellen der Karrossen können daher eine Reihe von Komplikationen auftreten. Eine erste Hürde müssen die Stahlhersteller nehmen, die am Beginn der Fertigungskette stehen. Sie verformen massive Teile aus Metall zu Blechen, Rohren, Drähten und Stangen, welche die Autobauer dann verarbeiten. Bei diesem Umformungsprozess können die Werkstoffe Schaden nehmen. Sie werden zu stark deformiert, etwa weil die Reibung zu groß oder die Temperatur des Umformwerkzeugs nicht optimal ist.

Um ein einwandfreies Bauteil zu produzieren, müssen die Hersteller nicht nur zahlreiche Prototypen mit den richtigen Materialeigenschaften anfertigen, sondern auch im Trial-and-error-Verfahren ausloten, wie das Umformwerkzeug eingestellt sein muss – ein zeitaufwändiger und teurer Vorgang. Den Forschern des Fraunhofer-Instituts für Werkstoffmechanik IWM in Freiburg ist es gelungen, diesen Prozess mit Hilfe von computergestützten Modellen kostengünstiger zu gestalten. »Mit unserer numerischen Simulation berechnen wir, wie stark sich ein Bauteil deformieren lässt, bevor ein Riss entsteht. Und wir analysieren, welchen Einfluss Faktoren wie Pressdruck oder das verwendete Schmiermittel auf die Eigenschaften des Werkstoffs haben«, sagt Dr. Dirk Helm, Projektleiter am IWM. Derzeit erhältliche kommerzielle Software könne das Umformverhalten von Massivbauteilen aus Metall nicht so detailgenau voraussagen wie seine Simulationsroutinen. »Wir konnten feststellen, dass durch eine spezielle Geometrieänderung eines Umformwerkzeugs Löcher vermieden wurden, da in diesem Fall die Porendichte nicht stark, sondern nur geringfügig gestiegen ist«, erklärt Helm. »Mit unserer Simulation können wir die optimalen Eigenschaften der Bauteile und der Umformwerkzeuge wesentlich schneller identifizieren als durch Versuch und Irrtum.« Der Forscher ist überzeugt, dass sich der Ausschuss mit Simulationen deutlich reduzieren lässt.

Die Software hat sich in der Praxis bereits bewährt: Bislang verwenden die Experten ihre numerische Simulation bei Kaltumformungsprozessen, bei denen der Einfluss der Temperatur eines Werkzeugs keine Rolle spielt. In Zukunft soll die Computersimulation auch bei Warmumformungsprozessen eingesetzt werden.

Externer Link: www.fraunhofer.de

Virtueller Museumsführer

Mediendienst der Fraunhofer-Gesellschaft vom Februar 2010

Eine Fraunhofer-Software kann archäologische Schätze zum Leben erwecken. Beim virtuellen Rundgang durch antike Bauwerke werden echte Bilder mit digitalen Informationen angereichert und dem Museumsbesucher nahegebracht.

Auf eine virtuelle Zeitreise in die Vergangenheit würde sich wohl jeder Besucher eines Archäologiemuseums gern begeben. Forscher machen dies heute schon möglich. Beispielsweise konnte man bis vor kurzem im Allard Pierson Museum in Amsterdam durch historische Stätten spazieren. Neben einer Fülle von Kunstwerken stand dort auf einer drehbaren Säule ein Flachbildschirm. Auf den ersten Blick zeigte er einen Ausschnitt dessen, was an der Wand hing: ein riesiges Schwarzweißfoto mit den Ruinen des Forum Romanum. Doch sobald ein Besucher den Schirm zur Seite schwenkte, zeigte der Monitor nicht mehr die Mitte der Fotografie, sondern ihren linken Teil. An der Rückseite des schwenkbaren Displays war eine Kamera angeschlossen. Auf dem Monitor erschienen Informationen zum Gesehenen. Ein Text klärte darüber auf, dass die Kamera gerade auf die Ruine des Saturn-Tempels gerichtet ist. Gleichzeitig zeigte eine digitale Animation, wie der intakte Tempel einst ausgesehen haben mag. Schwenkte der Besucher den Schirm weiter, so stieß er auf Informationen, Bilder und Videos zu anderen antiken Bauwerken, etwa des Kolosseums.

Hinter der raffinierten Animation steckt eine Software, die am Fraunhofer-Institut für Graphische Datenverarbeitung IGD in Darmstadt entwickelt wurde. »Wir haben dem Rechner beigebracht, das Bild zu erkennen«, erläutert Fraunhofer-IGD-Forscher Michael Zöllner. »Dadurch weiß das Programm, welche Stelle des Bilds sich gerade im Zentrum der Kamera befindet und kann die passende Überlagerung einblenden – einen Text, ein Video oder eine Animation.« Unter den Überblendungen ist das Originalbild immer deutlich zu erkennen. Dadurch ist der Besucher stets informiert, wo er gerade virtuell spazieren geht. Experten bezeichnen diese Technik als Augmented Reality, erweiterte Realität.

Im Museum läuft die IGD-Software derzeit noch auf einem Mini-Rechner, gesteuert über einen Touchscreen. Das handliche Gerät lässt ahnen, wohin der Trend geht – zum mobilen, virtuellen Reiseführer. Die Vision: Der Tourist hält das Gerät vor ein barockes Fürstenschloss, und schon erscheinen auf dem Schirm die passenden Informationen – auf die Wünsche des Benutzers zugeschnitten. Wie so etwas in der Praxis aussehen könnte, haben die Forscher im Projekt »iTACITUS« erprobt. Zöllners Team programmierte einen portablen Computer so, dass er als elektronischer Touristenführer für das Königsschloss Reggia di Venaria Reale nahe Turin fungierte. Die neue Handy-Technik könnte der erweiterten Realität schon bald zum Durchbruch verhelfen. »Durch das Smartphone wird Augmented Reality massenmarkttauglich«, freut sich Zöllner.

Externer Link: www.fraunhofer.de

Weltrekord auf dem Gebiet der Primfaktorzerlegung

Pressemitteilung der Universität Bonn vom 07.01.2010

Internationales Forscherteam knackt 232-stellige Zahl

Ein internationales Team von Wissenschaftlern unter Beteiligung der Universität Bonn hat eine 232-stellige Zahl in ihre Primfaktoren zerlegt. Für ihre Berechnung nutzten sie vernetzte Computer – ein einzelner handelsüblicher Rechner wäre knapp 2.000 Jahre beschäftigt gewesen. Viele Verfahren zur Verschlüsselung sensibler Daten beruhen auf der Schwierigkeit, große Zahlen zu zerlegen. Die Forscher gehen davon aus, dass viele heute noch gebräuchliche Schlüssel schon in einigen Jahren „knackbar“ sein dürften.

Die US-Forscher Ron Rivest, Adi Shamir und Leonard Adleman hatten 1977 das so genannte RSA-Verfahren zur Verschlüsselung von Daten entwickelt und später die Firma RSA Security gegründet. Ihre Technik steckt inzwischen in jedem Internet-Browser: Ein kleines Programm verschlüsselt dort beispielsweise Kreditkarten-Nummern so, dass ein böswilliger Lauscher mit ihnen nichts anfangen kann.

Der Code beruht auf der Schwierigkeit, Zahlen in ihre Primfaktoren zu zerlegen. Denn was bei „21 = 7 mal 3“ noch jeder Drittklässler problemlos schafft, wird bei genügend großen Zahlen fast unmöglich. Sichere Schlüssel sollten heute mindestens 1024 Bit groß sein. Anders gesagt: Als Binärzahl aus Nullen und Einsen geschrieben, hätten sie eine Länge von 1024 Ziffern.
 
Die jetzt geknackte Zahl trägt die nüchterne Bezeichnung RSA-768, das heißt, sie hat 768 Bit. In Dezimalschreibweise entspricht das 232 Stellen – das wären in dieser Pressemitteilung mehr als drei Zeilen. Damit handelt es sich um das größte Zahlenungetüm von allgemeiner Form, das bislang in seine Primfaktoren zerlegt wurde.

An dem Weltrekord waren neben der Uni Bonn das Bundesamt für Sicherheit in der Informationstechnologie, das Centrum Wiskunde & Informatica in den Niederlanden, die schweizerische École polytechnique fédérale de Lausanne, das französische Institut national de recherche en informatique et en automatique sowie das japanische Nippon Telegraph and Telephone beteiligt. Die Berechnung lief verteilt auf zahlreichen Rechnern und beanspruchte insgesamt knapp 2000 Prozessor-Jahre. Die für den Rekord benutzte Software wurde zu erheblichen Teilen am Institut für Mathematik der Universität Bonn entwickelt. Das Bonner Institut für numerische Simulation stellte Hardware für diese Entwicklungsarbeiten sowie einen Teil der Rechenzeit für den aktuellen Rekord zur Verfügung.

„Die Zerlegung eines 1024-Bit-Schlüssels wäre um drei Größenordnungen schwieriger als das jetzt abgeschlossene Projekt und würde teilweise nichttriviale Modifikationen der vorhandenen Software erfordern“, erklärt Professor Dr. Jens Franke vom Institut für Mathematik der Uni Bonn. Dennoch werde der erste 1024-Bit-Schlüssel vermutlich noch vor Ende des Jahrzehnts geknackt. Gestützt wird diese Einschätzung durch die bisherigen Rekorde: 1999 fiel RSA-512, 2005 RSA-663 und nun RSA-768. Gängige Standards empfehlen übrigens, zur Gewährleistung eines langfristigen Sicherheitsniveaus nach Ende dieses Jahres keine 1024-Bit-Schlüssel mehr zu verwenden, sondern zu 2048-Bit-Schlüsseln überzugehen. (Frank Luerweg)

Externer Link: www.uni-bonn.de

Altes Handwerk mit Zukunft

Mediendienst der Fraunhofer-Gesellschaft vom Dezember 2009

Maria und Josef, Engel und die Krippe – zu Weihnachten schmücken traditionell viele Menschen ihre Wohnung mit hochwertigen Holzfiguren. In Südtirol setzen jetzt die Holzschnitzer, die berühmt sind für ihre jahrhundertealte Handwerkskunst, auf Hightech.

Ein südtiroler Handwerker führt langsam einen Werkzeugarm über eine Masterfigur. An der Schnitzmaschine neben ihm entstehen vierzig oder mehr Mini-Kopien des Originals. In vielen Tälern Südtirols werden Holzfiguren traditionell mit einem solchen Pantografen produziert. »In Kinderzeitschriften oder Comics liegen oft Pantografen bei. Damit können Kinder ihre Lieblingsfigur mithilfe eines Stifts stufenlos vergrößern und dann als Poster an die Wand hängen. Dasselbe haben wir hier – nur mit hochwertigen Schnitzfiguren«, erläutert Gruppenleiter Jürgen Goetz vom Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA in Stuttgart. »Ein Künstler stellt Maria oder Josef in Handarbeit her, vorzugsweise in Bronze oder Messing. Der Mitarbeiter am Pantografen tastet die Figur ab und die Schnitzmaschine liefert dann die Kopien.«

Die traditionelle Arbeitsweise hat allerdings Nachteile: Sie ist laut, es staubt und offene Werkzeuge gefährden die Mitarbeiter. Bis eine Kleinserie zum Kunden kommt, vergehen oft mehrere Monate. Der Künstler muss zunächst einen Entwurf machen, diesen anschließend als Masterfigur herstellen und erst dann beginnt die Vervielfältigung.

Die Wissenschaftler in Goetz` Team haben im Auftrag der Firma 3D Wood einen neuen Workflow für diese traditionelle Holzbearbeitung generiert. Ein 3-D-Scanner tastet das Original ab oder die Daten stammen aus einem CAD-Programm. Eine Software bereitet bis zu 50 000 Scanner-Datensätze des Modells auf und liefert die Grundlage für ein CNC-Programm, das die Fräsmaschine steuert. »Die drei mal drei mal acht Meter große Maschine arbeitet vollautomatisch, hat fünf simultane Achsen, läuft mit bis zu 40 000 Umdrehungen pro Minute, wechselt automatisch die Werkzeuge und stoppt sofort, wenn Fehler auftreten. Es entstehen parallel 42 qualitativ sehr hochwertige Kopien, die Größe der Werkstücke kann zwischen 10 und 600 Millimeter variieren«, fasst Goetz die technischen Daten zusammen. Die Bearbeitungszeit der Figuren wird durch den automatischen Ablauf um mehr als die Hälfte verkürzt – bei gesteigerter Qualität.

Mit der neuen Anlage reduziert sich die Zeit von der Vorlage zum Endprodukt von Monaten auf wenige Wochen: Der Künstler kann die Vorlage sogar aus Weichholz oder Wachs machen, das geht wesentlich schneller als eine Figur in Bronze zu gießen. Neue Aufträge lassen sich so zügiger umsetzen. Angenehmer Nebeneffekt: Die Mitarbeiter sind nicht länger Lärm und Staub ausgesetzt.

Externer Link: www.fraunhofer.de

Fräsen und bohren im Cyberspace

Mediendienst der Fraunhofer-Gesellschaft vom Dezember 2009

Zerspannungsmechaniker, NC-Programmierer oder Mechatroniker – Lehrlinge in Ingenieurberufen müssen oft komplexe Anlagen beherrschen. Ob Fräsen, Drehen, Bohren oder Programmieren: Künftig sollen Lehrlinge am virtuellen Modell üben und Routine erlernen.

Vorsichtig spannt der Lehrling das Werkstück in die Drehmaschine. Bevor er das Bauteil bearbeiten kann, muss er die Maschine richtig programmieren. Eine knifflige Aufgabe. Bei seiner Abschlussprüfung wird der Lehrling eine ähnliche Aufgabe lösen müssen. Deshalb lernt er an der Berufsschule, wie man mit so einer Anlage umgeht. Dabei steht er aber nicht vor einer richtigen Maschine – er sitzt vor dem Computer. Auf dem Bildschirm erscheinen die Bedienfelder, dahinter die Drehmaschine. Und der PC leitet den Lehrling Schritt für Schritt an.

Das Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF, das Technologie- und Berufsbildungszentrum TBZ Magdeburg sowie die Schweißtechnische Lehr- und Versuchsanstalt SLV Halle haben das Projekt ViReKon ins Leben gerufen – koordiniert vom Rationalisierungs- und Innovationszentrums RKW Sachsen-Anhalt: Ingenieure sollen mit Hilfe von Virtueller Realität VR ausgebildet werden. Dafür entwickeln die Forscher des IFF virtuelle Modelle verschiedener Maschinen. »Für die praktische Ausbildung nutzt das TBZ derzeit ein einfaches Modell einer realen Sortieranlage. An dieser können die Lehrlinge allerdings nur wenige Aufgaben üben«, sagt André Winge, Gruppenleiter am IFF. »An den virtuellen Anlagen aber können angehende Mechatroniker, Programmierer oder Mechaniker ganz speziell geschult werden und eine ganze Reihe verschiedener Aufgabenstellungen trainieren.« Dazu erarbeiten die Experten des IFF zusammen mit den Berufsausbildern spezielle E-Learning-Methoden. »Der Lehrling soll nicht nur die Maschine und die Steuerungseinheit bedienen können«, sagt Winge. »Ein integriertes, didaktisches Trainingskonzept erläutert dem Schüler die Arbeitsaufgaben. Das System kontrolliert den Erfolg und gibt Feedback, ob er die einzelnen Aufgaben auch richtig gelöst hat.«

Ein weiterer Vorteil: Berufsschulen müssen sich keine teuren Anlagen anschaffen. Im Cyberspace kann gedreht, gebohrt oder gefräst werden – an großen wie an kleinen Maschinen. »Wir können für jede Anlage ein virtuelles Modell entwerfen«, sagt Winge. So haben die Forscher zum Beispiel auch ein VR-Modell einer Biohandlinganlage erstellt: Petrischalen mit Bakterienkulturen laufen über ein Förderband. Ein Greifer packt sie und befördert sie in die Entnahmestation. Dort entnimmt eine Pipettier-Einheit eine Probe und verarbeitet sie weiter. Am Bildschirm verfolgt der Lehrling die Prozedur in der virtuellen Anlage – die Steuerungseinheit, die er dabei benutzt, ist real. An so einem VR-System können künftig auch Fachkräfte oder Wartungsmechaniker in Unternehmen geschult werden.

Externer Link: www.fraunhofer.de