Verschränkte Atome im Innsbrucker Quantennetzwerk

Medieninformation der Universität Innsbruck vom 03.02.2023

Gefangene Ionen wurden bisher nur über kurze Distanz im Labor miteinander verschränkt. Nun haben die Teams um Tracy Northup und Ben Lanyon an der Universität Innsbruck zwei Ionen über eine Distanz von 230 Metern Luftlinie miteinander verschränkt. Die Knoten des Netzwerks waren in zwei Labors am Campus Technik untergebracht. Das Experiment zeigt, dass Ionen eine vielversprechende Plattform für Quantennetzwerke sind, die sich in Zukunft über Städte und schließlich ganze Kontinente erstrecken werden.

Gefangene Ionen sind eines der führenden Systeme für den Bau von Quantencomputern und anderen Quantentechnologien. Um mehrere solcher Quantensysteme miteinander zu verbinden, braucht es Schnittstellen, über die die Quanteninformation übertragen werden kann. Dazu haben Forscher um Tracy Northup und Ben Lanyon am Institut für Experimentalphysik der Universität Innsbruck in den letzten Jahren ein Verfahren entwickelt, bei dem die Atome in optischen Resonatoren gefangen werden, so dass die Quanteninformation effizient auf Lichtteilchen übertragen werden kann. Die Lichtteilchen können dann durch Lichtleiter geschickt werden, um Atome an verschiedenen Orten miteinander zu verbinden. Nun haben deren Forschungsgruppen, gemeinsam mit Theoretikern um Nicolas Sangouard von der Université Paris-Saclay, erstmals zwei Ionen über eine Distanz von mehr als nur wenigen Metern miteinander verschränkt.

Plattform für den Bau von Quantennetzwerken

Die beiden Quantensysteme waren in zwei Laboren aufgebaut, eines im Gebäude des Instituts für Experimentalphysik und eines am Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften. „Bisher wurden gefangene Ionen nur im gleichen Labor über wenige Meter miteinander verschränkt. Dies wurde auch mit gemeinsamen Kontrollsystemen und Photonen (Lichtteilchen) realisiert, die auf Grund ihrer Wellenlänge nicht dafür geeignet sind, größere Entfernungen zurückzulegen.“, erklärt Ben Lanyon. Nach Jahren der Forschung und Entwicklung haben die Innsbrucker Physiker*innen es nun geschafft, zwei Ionen über den Campus hinweg miteinander zu verschränken. „Wir haben dazu einzelne mit den Ionen verschränkte Photonen über einen 500 Meter langen Lichtleiter geschickt und miteinander überlagert. Dies überträgt die Verschränkung auf die beiden Ionen.“, schildert Tracy Northup das Experiment. „Unsere Ergebnisse zeigen, dass gefangene Ionen eine vielversprechende Plattform für die Realisierung zukünftiger großflächiger Netzwerke von Quantencomputern, Quantensensoren und Atomuhren sind.“

Die Teams von Ben Lanyon und Tracy Northup sind Teil der Quantum Internet Alliance, einem internationalen Projekt im Rahmen des Quantum Flagship der Europäischen Union. Die aktuellen Ergebnisse wurden im Fachmagazin Physical Review Letters veröffentlicht. Finanziell unterstützt wurden die Forschungen unter anderem durch den österreichischen Wissenschaftsfonds FWF und die Europäische Union.

Originalpublikation:
Entanglement of trapped-ion qubits separated by 230 meters. V. Krutyanskiy, M. Galli, V. Krcmarsky, S. Baier, D. A. Fioretto, Y. Pu, A. Mazloom, P. Sekatski, M. Canteri, M. Teller, J. Schupp, J. Bate, M. Meraner, N. Sangouard, B. P. Lanyon, T. E. Northup . Phys. Rev. Lett. 130, 050803

Externer Link: www.uibk.ac.at

Formänderung auf Knopfdruck

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 02.01.2023

Programmierbare Materialien sind wahre Formwandler. Auf Knopfdruck ändern sie kontrolliert und reversibel ihre Eigenschaften und passen sich selbstständig an neue Gegebenheiten an. Einsatzbereiche sind beispielsweise bequemes Sitzen oder Matratzen, die das Wundliegen verhindern. Dabei verformt sich die Unterlage so, dass die Auflagefläche groß ist und sich der Druck auf die Körperteile dadurch verringert. Forscherinnen und Forscher des Fraunhofer Cluster of Excellence Programmierbare Materialien CPM entwickeln solche programmierbaren Materialien und bringen sie gemeinsam mit Industriepartnern zur Marktreife. Ziel ist es unter anderem, den Einsatz von Ressourcen zu reduzieren.

Zahlreiche Menschen weltweit sind von Bettlägerigkeit betroffen – sei es durch Krankheit, Unfall oder Alter. Da sie sich oftmals nicht von allein bewegen oder drehen können, kann es zu einem sehr schmerzhaften Wundliegen kommen. Mit Materialien, deren Form und mechanische Eigenschaften sich an jeder Stelle programmierbar ändern lassen, soll das Wundliegen künftig vermieden werden. Beispielsweise könnte die Härte und Steifigkeit von Matratzen, die aus programmierbaren Materialien hergestellt wurden, in jedem beliebigen Bereich per Knopfdruck eingestellt werden. Darüber hinaus verformt sich die Unterlage selbstständig so, dass ein hoher Druck an einer Stelle auf eine größere Fläche verteilt wird. Das Bett wird dort, wo es drückt, automatisch weicher und elastischer. Zusätzlich können Pflegekräfte gezielt ein ergonomisches Liegen patientenspezifisch einstellen.

Material plus Mikrostrukturierung

Materialien für Anwendungen, die eine gezielte Änderung der Steifigkeit oder Form benötigen, entwickeln Forscherinnen und Forscher des Fraunhofer CPM, das durch sechs Kerninstitute geprägt wird und zum Ziel hat Programmierbare Materialien zu konzipieren und produzieren. Doch wie lassen sich Materialien überhaupt programmieren? »Wir haben grundsätzlich zwei Stellschrauben: Das Grundmaterial – im Falle der Matratzen thermoplastische Kunststoffe, für andere Anwendungen metallische Legierungen, auch Formgedächtnislegierungen – und insbesondere die Mikrostruktur«, erläutert Dr. Heiko Andrä, Themenfokussprecher am Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM, einem der Kerninstitute des Fraunhofer CPM. »Die Mikrostruktur der sogenannten Metamaterialien setzt sich aus einzelnen Zellen zusammen, die wiederum aus Strukturelementen wie kleinen Balken und dünnen Schalen bestehen.« Während die Größe der einzelnen Zellen und ihrer Strukturelemente bei herkömmlichen zellulären Materialien wie Schäumen zufällig variiert, ist sie bei den programmierbaren Materialien zwar auch variabel, jedoch genau festgelegt – sprich programmiert. Diese Programmierung erfolgt beispielsweise so, dass Druck an einer bestimmten Position zu gewünschten Formänderungen an anderen Stellen der Matratze führt, um etwa die Auflagefläche zu vergrößern und die Körperzonen optimal zu stützen.

Materialien können auch auf Wärme oder Feuchte reagieren

Welche Formänderung das Material aufweisen soll und auf welche Reize es reagiert – mechanische Belastung, Wärme, Feuchte oder auch ein elektrisches oder magnetisches Feld – lässt sich ebenfalls über die Wahl des Materials sowie seine Mikrostruktur bestimmen. »Die Programmierbaren Materialien ermöglichen es, Gegenstände an die jeweilige Anwendung oder Person anzupassen und die Dinge somit multifunktionaler zu nutzen als bisher. Sie müssen also nicht so oft ausgetauscht werden. Insbesondere vor dem Hintergrund des Ressourcenverbrauchs ist das interessant«, sagt Franziska Wenz, stellvertretende Themenfokussprecherin am Fraunhofer-Institut für Werkstoffmechanik IWM, ebenfalls eines der Kerninstitute des Fraunhofer CPM. Zudem lässt sich ein Mehrwert schaffen, in dem man Gegenstände an die individuellen Bedürfnisse der Nutzerinnen und Nutzer anpasst.

Der Weg in die Anwendung

Ein einzelnes Material kann komplette Systeme aus Sensoren, Reglern und Aktuatoren ersetzen. Das Ziel des Fraunhofer CPM ist durch Integration der Funktionen in das Material die Komplexität von Systemen zu senken und den Einsatz von Ressourcen zu reduzieren. »Wir haben bei der Entwicklung der programmierbaren Materialien stets das industrielle Produkt mit im Blick, so berücksichtigen wir unter anderem die Serienfertigung und die Materialermüdung«, sagt Wenz. Auch laufen bereits erste konkrete Pilotprojekte mit Industriepartnern. Das Forscherteam erwartet, dass die programmierbaren Materialien zunächst einzelne Komponenten in bereits bestehenden Systemen ersetzen werden oder in speziellen Anwendungen genutzt werden – etwa bei medizinischen Matratzen, Sitzen, Schuhsohlen und Schutzbekleidung. »Schrittweise könnte sich dann der Anteil an programmierbaren Materialien erhöhen«, schätzt Andrä. Schließlich lassen sich diese überall einsetzen – sowohl in Medizin- und Sportartikeln, in der Softrobotik wie auch in der Weltraumforschung.

Externer Link: www.fraunhofer.de

Wie das Chaos der Quantenwelt eine Temperatur verleiht

Presseaussendung der TU Wien vom 12.12.2022

Zwei scheinbar völlig unterschiedliche Bereiche der Physik hängen auf subtile Art zusammen: Quantentheorie und Thermodynamik. Wie die Chaostheorie dazwischen vermittelt, wurde nun an der TU Wien untersucht.

Ein einzelnes Teilchen hat keine Temperatur. Es hat eine bestimmte Energie oder auch eine bestimmte Geschwindigkeit – aber in eine Temperatur kann man das nicht übersetzen. Nur wenn man es mit zufälligen Geschwindigkeitsverteilungen vieler Teilchen zu tun hat, kann man überhaupt von einer Temperatur sprechen.

Wie sich aus den Gesetzen der Quantenphysik die Gesetze der Thermodynamik ergeben können, ist ein Thema, das in den letzten Jahren wachsende Aufmerksamkeit auf sich gezogen hat. An der TU Wien ging man dieser Frage nun mit Computersimulationen nach und konnte dadurch zeigen, welche zentrale Rolle Chaos dabei spielt: Nur da, wo Chaos herrscht, folgen auch aus der Quantenphysik die wohlbekannten Regeln der Thermodynamik.

Boltzmann: Alles ist möglich, vieles ist unwahrscheinlich

Wenn in einem Raum die Luftmoleküle scheinbar regellos durcheinanderfliegen, dann können diese Moleküle unvorstellbar viele verschiedene Zustände einnehmen: Für jedes einzelne Teilchen sind unterschiedliche Aufenthaltsorte und unterschiedliche Geschwindigkeiten erlaubt. Doch nicht alle diese Zustände sind gleich wahrscheinlich. „Physikalisch wäre es möglich, dass zufällig die gesamte Energie in diesem Raum auf ein einziges Teilchen übertragen wird, das dann mit extrem hoher Geschwindigkeit herumfliegt, während alle anderen Teilchen stillstehen“, sagt Prof. Iva Brezinova vom Institut für Theoretische Physik der TU Wien. „Aber das ist so unwahrscheinlich, dass man es praktisch nie beobachten wird.“

Die Wahrscheinlichkeiten unterschiedlicher erlaubter Zustände lassen sich berechnen – nach einer Formel, die der österreichische Physiker Ludwig Boltzmann nach den Regeln der klassischen Physik aufstellte. Und aus dieser Wahrscheinlichkeitsverteilung lässt sich dann auch die Temperatur ablesen, die in diesem Raum herrscht: Sie ist nur bei einer großen Zahl von Teilchen bestimmt.

Die ganze Welt als ein einziger Quantenzustand

Das bringt nun aber Probleme mit sich, wenn man sich mit Quantenphysik befasst. Wenn eine größere Zahl von Quantenteilchen gleichzeitig im Spiel ist, dann werden die Gleichungen der Quantentheorie nämlich so kompliziert, dass selbst die besten Supercomputer der Welt keine Chance haben, sie zu lösen.

Man kann in der Quantenphysik die einzelnen Teilchen auch nicht unabhängig voneinander betrachten, wie man das etwa bei klassischen Billardkugeln machen kann. Jede Billardkugel hat ihre eigene individuelle Bahn und zu jedem Zeitpunkt ihren individuellen Aufenthaltsort. Quantenteilchen hingegen haben keine Individualität – man kann sie nur gemeinsam beschreiben, in einer einzigen großen Quanten-Wellenfunktion.

„Quantenphysikalisch wird das gesamte System von einem einzigen großen Vielteilchen-Quantenzustand beschrieben“, sagt Prof. Joachim Burgdörfer (TU Wien). „Wie daraus eine zufällige Verteilung und damit eine Temperatur folgen sollte, blieb lange ungeklärt.“

Die Chaostheorie als Vermittler

Ein Team an der TU Wien konnte nun zeigen, dass Chaos in der Quantenphysik dabei eine zentrale Rolle spielt. Dazu simulierte das Team am Computer Zustände eines Quantensystems, das aus einer großen Zahl von Teilchen besteht – aus vielen einzelnen ununterscheidbaren Teilchen einer Teilchensorte (dem „Wärmebad“) und einem einzelnen „Probeteilchen“, das als Thermometer fungiert. Jede einzelne Quanten-Wellenfunktion des großen Systems hat eine bestimmte Energie, aber keine definierbare Temperatur – ganz wie ein einzelnes klassisches Teilchen. Wenn man aber nun aus dem einzelnen Quantenzustand das Probeteilchen herausgreift und seine Geschwindigkeit misst, dann kann man überraschenderweise eine Geschwindigkeitsverteilung finden, die einer Temperatur entspricht, die zu den längst bekannten Gesetzen der Thermodynamik passt.

„Ob sie passt, entscheidet das Chaos – das konnten wir mit unseren Berechnungen zeigen“, sagt Iva Brezinova. „Wir können nämlich die Wechselwirkungen zwischen den Teilchen am Computer gezielt verändern und so entweder ein völlig chaotisches System erzeugen, oder eines, das überhaupt kein Chaos zeigt – oder auch irgendetwas dazwischen.“ Und dabei stellte man fest: Die Anwesenheit von Chaos entscheidet darüber, ob ein Quantenzustand des Probeteilchens einer Boltzmann-Temperaturverteilung folgt oder nicht.

„Ohne dass man zu Beginn irgendwelche Annahmen über zufällige Verteilungen oder thermodynamische Regeln hineinsteckt, ergibt sich aus der Quantentheorie thermodynamisches Verhalten ganz von selbst – wenn das kombinierte System von Probeteilchen und Wärmebad sich quanten-chaotisch verhält. Und wie genau dieses Verhalten zu den bekannten Boltzmann-Formeln passt, wird von der Stärke des Chaos bestimmt“, erklärt Joachim Burgdörfer.

Damit wurde nun erstmal auf rigorose Weise mit Vielteilchen-Computersimulationen das Zusammenspiel von drei wichtigen Theorien gezeigt: Quantentheorie, Thermodynamik und Chaostheorie. (Florian Aigner)

Originalpublikation:
M. Kourehpaz et al., Canonical Density Matrices from Eigenstates of Mixed Systems, Entropy 2022, 24(12), 1740.

Externer Link: www.tuwien.at

Dem elektrischen Kontaktwiderstand auf der Spur

Pressemitteilung der Universität Kassel vom 09.12.2022

Mit Kohlenstofffasern verstärkte Kunststoffe (CFKs) sind besonders in der Automobilindustrie und Luftfahrt gefragt. Forschende der Universität Kassel haben eine Methode entwickelt, mit der sie innere Struktur und elektrische Eigenschaften von CFKs genau vermessen können – insbesondere an Kontaktflächen mit metallischen Bauteilen.

Als beliebter Verbundwerkstoff sind mit Kohlenstofffasern verstärkte Kunststoffe bereits gut erforscht. Sie sind leicht, dennoch fest und leiten elektrischen Strom. Im Rahmen der Grundlagenforschung an der Universität Kassel wird der Kontakt zwischen CFKs und Metall charakterisiert. „Je mehr wir über die elektrische Verbindung der beiden Werkstoffe wissen, desto gezielter können wir sie zum Beispiel im Fahrzeugbau nutzen“, beschreibt Elisabeth Eckel, wissenschaftliche Mitarbeiterin am Fachgebiet Fahrzeugsysteme und Grundlagen der Elektrotechnik (Prof. Ludwig Brabetz). Bisher sind die Kontaktstellen jedoch mit normalen Messmethoden schwer zu charakterisieren. Deshalb entwickelten die Forschenden in einem Kooperationsprojekt mit dem Anwendungszentrum UNIfipp des Fachgebiets Kunststofftechnik (Prof. Hans-Peter Heim) eine neuartige Herangehensweise.

Sie entwarfen dafür eigens Probekörper, welche im so genannten Montagespritzgießverfahren hergestellt wurden. Das mit Kohlenstofffasern gefüllte Kunststoffgranulat wird im schmelzeförmigen Zustand in eine Form eingespritzt. Das Besondere: An definierten Stellen dieser Form umfließt der Kunststoff metallische Einlegeteile, die Kontaktstifte. So werden sie fester Bestandteil des CFK-Bauteil. „Die Anordnung der Kohlenstofffasern beeinflusst die lokale Widerstandsverteilung und letztendlich den Stromfluss zwischen Kontaktstift und Kunststoff. Für zukünftige Anwendungen beider Werkstoffe ist die Qualität dieses Kontakts ausschlaggebend“, erläutert André Schlink, wissenschaftlicher Mitarbeiter im Fachgebiet Kunststofftechnik.

Hier setzten die Forschenden der beiden Fachgebiete an. „Wir haben eine Methode entwickelt, die erstmals diese lokale innere Struktur des CFK – also die Orientierung der Kohlenstofffasern vor allem um den Kontaktstift herum – elektrisch erfasst und somit direkte Rückschlüsse über den Kontaktwiderstand erlaubt.“, erklärt Klara Wiegel, wissenschaftliche Mitarbeiterin am Fachgebiet Fahrzeugsysteme und Grundlagen der Elektrotechnik (Prof. Ludwig Brabetz). Die Forschenden charakterisierten den Probekörper mittels Röntgenmikrotomographie und machten mit einem Algorithmus einzelne Fasern sichtbar. Zusätzlich bestimmten sie elektrische Potentiale an der gesamten Oberfläche. Rund um den Kontaktstift identifizierten die Forschenden Bereiche, die sich durch die Orientierung der Fasern in Relation zu dem Kontaktstift unterscheiden.

Originalpublikation:
Eckel, Elisabeth et al. “Determination of Local Electrical Properties Using a Potential Field Measurement for Electrically Conductive Carbon Fiber Reinforced Plastics with Metal Contact Pins Joined via Injection Molding.”
Polymers vol. 14,14 2805. 9 Jul. 2022, doi:10.3390/polym14142805

Externer Link: www.uni-kassel.de

Neue Prüfanlage: Wie kalt darf Kraftstoff für Dieselmotoren werden?

Presseaussendung der TU Wien vom 22.11.2022

Bei extremer Kälte können Kraftstoffe nicht mehr verwendet werden – aber wie misst man die mögliche Minimaltemperatur? An der TU Wien wurde dafür nun eine Prüfanlage entwickelt.

Wenn es zu kalt wird, springt das Auto nicht mehr an. Bestimmte Bestandteile von Kraftstoffen können bei niedrigen Temperaturen ausfallen, der Kraftstoff wird trüb und lässt sich nicht mehr nutzen. Besonders Paraffine in den Treibstoffen können bei großer Kälte kleine Flocken bilden.

Das ist zwar schon lange bekannt – doch bisher gab es keine einheitliche Untersuchungsmethode, mit der man im realen Betrieb der Kältebeständigkeit von Treibstoffen mit wissenschaftlicher Präzision auf den Grund gehen kann. Die TU Wien hat daher nun zusammen mit Partnerunternehmen aus Forschung und Industrie einen klimatisierten Prüfstand entwickelt, mit der sich nun Kraftstoffe zusammen mit Tank- und Leitungssystem zuverlässig auf Wintertauglichkeit überprüfen lassen. Der Prüfstand ist für unterschiedlichste Arten von Treibstoff geeignet – von gewöhnlichem Diesel, über Diesel aus recyceltem Speiseöl bis zu E-Fuels oder speziellen neuen Flugzeugtreibstoffen auf Basis von Bioabfällen.

Bisher keine einfache, einheitliche Testmethode

Dass ein neuer, zuverlässiger Prüfstand für Kraftstoffe nötig ist, stellte sich bereits im Rahmen eines anderen Projekts heraus: Die Deutsche Wissenschaftliche Gesellschaft für nachhaltige Energieträger, Mobilität und Kohlenstoffkreisläufe (DGMK) untersuchte gemeinsam mit verschiedenen Automobilfirmen und Kraftstoffherstellern den Einfluss des Kraftstoffs und der Fahrzeugtechnologie auf die Winterfestigkeit aktueller Dieselfahrzeuge.

„Dabei zeigte sich, dass die unterschiedlichen Projekt-Teams in ihren Häusern ganz unterschiedliche Testanlagen für die Untersuchung von Kraftstoffen betreiben“, sagt Prof. Bernhard Geringer vom Institut für Fahrzeugantriebe und Automobiltechnik der TU Wien. „Die Tests sind nicht alle gleich realitätsnah und führen somit auch nicht zu denselben Ergebnissen. So wurde die Wichtigkeit erkannt, einen einheitlichen Prüfstand und ein einheitliches Prozedere zu entwickeln.“

An der TU Wien wurde nun ein passendes Testsystem entwickelt und aufgebaut: Es ist klimatisiert und kann auf eine Temperatur von bis zu -45 °C abgekühlt werden. Die Anlage enthält den für die Bewertung der Winterfestigkeit entscheidenden Teil des Fahrzeugs, nämlich das Niederdruck-Kraftstoffsystem. „Wir haben unterschiedlichste Versuchskraftstoffe getestet und die Temperaturen, Drücke und Durchflüsse im Kraftstoffsystem gemessen“, erklärt Bernhard Geringer. Wird der Test bestanden, wird ein weiterer Test bei tieferer Temperatur durchgeführt. Die tiefste Temperatur mit positivem Testergebnis gilt als Betriebsgrenze für den Kraftstoff.

Reproduzierbar und verlässlich

Die Prüfstandmethode wurde umfassend untersucht und mit Prüfergebnissen verglichen, die an echten vollständigen Fahrzeugen gewonnen wurden – die beiden Methoden stimmen gut miteinander überein. „Wir konnten auch zeigen, dass die Ergebnisse gut reproduzierbar sind, und dass unterschiedliche Prüfstände mit dieser Technologie auch gut miteinander vergleichbare Ergebnisse liefern“, sagt Bernhard Geringer.

Damit konnte das Ziel erreicht werden – nämlich eine zeit- und kostensparende Messmethode zu entwickeln, damit man zur Überprüfung der Winterfestigkeit eines Kraftstoffs keinen vollständigen klimatisierten Fahrzeugprüfstand benötigt, sondern der Kraftstoff nur noch an den relevanten Fahrzeugsystemen untersucht werden muss. (Florian Aigner)

Externer Link: www.tuwien.at