Neuer Sensor kann immer kleinere Nanoteilchen erkennen

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 04.11.2021

Neuartiger optischer Resonator bietet erstmals die Möglichkeit, die Bewegung von Nanoteilchen im Raum zu verfolgen

Nanoteilchen sind in unserer Umgebung allgegenwärtig: Viren in der Raumluft, Proteine im Körper, als Bausteine neuer Materialien etwa für die Elektronik oder in Oberflächenbeschichtungen. Wer die winzigen Partikel sichtbar machen will, hat ein Problem: Sie sind so klein, dass man sie unter einem optischen Mikroskop meist nicht sieht. Forschende am Karlsruher Institut für Technologie (KIT) haben einen Sensor entwickelt, mit dem sie Nanoteilchen nicht nur aufspüren, sondern auch ihre Beschaffenheit bestimmen und ihre räumliche Bewegung nachverfolgen können. Ihren extrem empfindlichen und sehr kompakten Detektor, einen neuartigen Fabry-Pérot Resonator, präsentieren sie jetzt in der Fachzeitschrift Nature Communications (DOI: 10.1038/s41467-021-26719-5).

Gängige Mikroskope erzeugen stark vergrößerte Bilder von kleinen Strukturen oder Objekten mit Hilfe von Licht. Weil die Nanoteilchen aufgrund ihrer Winzigkeit aber kaum Licht absorbieren oder streuen, bleiben sie unsichtbar. Optische Resonatoren hingegen verstärken die Wechselwirkung zwischen Licht und Nanoteilchen: Sie halten Licht auf kleinem Raum gefangen, indem es tausende Male zwischen zwei Spiegeln reflektiert wird. Befindet sich ein Nanoteilchen in dem gefangenen Lichtfeld, dann wechselwirkt das Nanoteilchen tausende Male mit dem Licht, so dass die Änderung der Lichtintensität messbar wird. „Weil das Lichtfeld an verschiedenen Stellen im Raum unterschiedliche Intensitäten hat, können wir Rückschlüsse auf die Position des Nanoteilchens im dreidimensionalen Raum ziehen“, sagt Dr. Larissa Kohler vom Physikalischen Institut am KIT.

Resonator macht Bewegungen der Nanoteilchen sichtbar

Und nicht nur das: „Wenn sich ein Nanoteilchen in Wasser befindet, stößt es mit den Wassermolekülen zusammen, welche sich aufgrund von thermischer Energie in willkürliche Richtungen bewegen. Durch die Stöße führt das Nanoteilchen eine Art Zitterbewegung aus. Auch diese Brownsche Bewegung können wir nun nachvollziehen“, so die Expertin. „Bislang konnte mit einem optischen Resonator nicht die räumliche Bewegung eines Nanoteilchens nachverfolgt werden, sondern man konnte nur sagen, dass sich das Teilchen im Lichtfeld befindet oder nicht“, erläutert Kohler. Obendrein eröffne der neuartige faserbasierte Fabry-Pérot Resonator, bei dem sich die hochreflektierenden Spiegel auf den Endflächen von Glasfasern befinden, die Möglichkeit, aus der dreidimensionalen Bewegung den hydrodynamischen Radius des Teilchens, also die Dicke der es umgebenden Hülle aus Wasser, abzuleiten. Das ist entscheidend, weil diese die Eigenschaften des Nanoteilchens verändert. „Zum Beispiel können aufgrund der Hydrathülle noch Nanoteilchen detektiert werden, die ohne diese Hülle zu klein wären“, sagt Kohler. Ebenso könnte die Hydrathülle um Proteine oder andere biologische Nanoteilchen einen Einfluss bei biologischen Vorgängen haben.

Sensor ermöglicht Einblicke in biologische Vorgänge

Einsatzmöglichkeiten für ihren Resonator sehen die Forschenden bei der zukünftigen Detektion der dreidimensionalen Bewegung mit hoher zeitlicher Auflösung und der Charakterisierung der optischen Eigenschaften von biologischen Nanoteilchen, wie zum Beispielen Proteinen, DNA-Origami oder Viren. Der Sensor könnte damit Einblicke in noch nicht verstandene biologische Vorgänge ermöglichen. (mex)

Originalpublikation:
Larissa Kohler, Matthias Mader, Christian Kern, Martin Wegener, David Hunger: Tracking Brownian motion in three dimensions and characterization of individual nanoparticles using a fiber-based high-finesse microcavity. Nature Communications, 2021. DOI: 10.1038/s41467-021-26719-5

Externer Link: www.kit.edu

Biosignale präzise messen: Informatiker erleichtern die Positionierung von Elektroden am Körper

Pressemitteilung der Universität des Saarlandes vom 04.11.2021

Vielen ist es aus der Medizin bekannt: Um Biosignale wie den Herzschlag oder Muskelkontraktionen zu messen, müssen Sensorelektroden auf der Haut platziert werden. Bisher war das eine Aufgabe für Experten, denn die Qualität der erhaltenen Messungen hängt maßgeblich von der korrekten Positionierung dieser Elektroden ab. Informatiker der Universität des Saarlandes haben ein Verfahren entwickelt, das diesen Prozess für eine bestimmte Körperzone mit nur wenigen Mausklicks automatisiert.

Ihre Ergebnisse veröffentlichen sie nun in dem international renommierten Fachmagazin Nature Communications.

Ob im Sport, der Rehabilitation oder für neuartige IT-Anwendungen: Genau erfasste Biosignale wie Herzschlag oder Muskelaktivität sind wichtig um Leistung zu messen, gesundheitlichen Fortschritt sicherzustellen und können sogar genutzt werden, um Computer zu steuern. Elektrophysiologische Sensorelektroden, die auf der Haut angebracht werden, erfassen diese Signale. „Die manuelle Platzierung dieser Elektroden erfordert anatomische Kenntnisse und beruht auf einer Reihe medizinischer Leitfäden, die beschreiben, an welchen Stellen die besten Signale abgegriffen werden können“, erklärt Aditya Shekhar Nittala, Doktorand in der Forschungsgruppe zur Mensch-Maschine-Interaktion von Professor Jürgen Steimle am Saarland Informatics Campus.

Manche Anwendungsfälle stellen besondere Anforderungen an die Positionierung der Sensorelektroden: So kann es im Leistungssport für die Kontrolle von Trainingserfolgen nötig sein, dass gleichzeitig mehrere Biosignale erfasst werden, ohne dabei die Bewegungsfreiheit des Trägers einzuschränken. „In so einem Fall greifen viele verschiedene Variablen ineinander, sodass es auch für Experten eine große Herausforderung ist, mit vertretbarem Zeitaufwand gute Messergebnisse zu erzielen“, ergänzt Aditya Nittala. Als Teil seiner Doktorarbeit über computerbasiertes Design hat er nun ein Verfahren entwickelt, das mit nur wenigen Mausklicks in Sekundenschnelle ein Elektroden-Layout errechnen kann, um am Unterarm gleichzeitig Muskelaktivitäten (EMG), die Leitfähigkeit der Haut (EDA), und die Herzspannungskurve (EKG) zu messen.

Jürgen Steimle, Informatik-Professor der Universität des Saarlandes und Experte für Mensch-Maschine-Interaktion, erklärt dazu: „Wir zeigen, dass ein Optimierungsansatz verwendet werden kann, um kompakte, tragbare Geräte zu entwickeln, die mehrere Biosignal-Modalitäten messen können. Der Hauptbeitrag liegt hier nicht nur in der Anwendung geometrischer Optimierung zur Lösung des Problems der Elektrodenplatzierung, sondern auch in der Identifizierung, Formalisierung und Integration der Regeln, die der Elektrodenplatzierung für die Messung mehrerer Modalitäten innewohnen“, so der Informatiker. Bisher errechnet das Design-Programm ausschließlich Elektroden-Layouts für den Unterarm, da die Forscher hier auf eine ausgeprägte Datengrundlage zurückgreifen konnten. Mit den passenden Daten ließe sich die Methode aber auch auf andere Körperregionen erweitern.

Die Arbeit unter dem Titel „Computational Design and Optimization of Electro-Physiological Sensors“ wurde nun im international renommierten Fachmagazin Nature Communications veröffentlicht. Neben Aditya Shekhar Nittala und Professor Jürgen Steimle waren Dr. Andreas Karrenbauer vom Saarbrücker Max-Planck-Institut für Informatik sowie Professor Tobias Kraus und Dr. Arshad Khan vom Leibniz Institut für neue Materialien (INM) in Saarbrücken beteiligt. In die Entwicklung der neuen Methode ist zudem der Input unabhängiger Sportexperten eingeflossen.

Ergänzt wird der neue Ansatz durch das Projekt „PhysioSkin“, das ebenfalls in Jürgen Steimles Gruppe entwickelt wird. „PhysioSkin“ ist eine Methode, anhand derer mit handelsüblichen Tintenstrahl-Druckern ultradünne, leitfähige Tattoos hergestellt werden können. Indem man mit dem neuen Tool am Computer ein Elektroden-Layout errechnet und dieses dann anschließend mit „PhysioSkin“ ausdruckt, können schnell und einfach Prototypen für tragbare elektronische Geräte hergestellt werden. So haben die Forscher eine Steuerung entwickelt, die Muskelkontraktionen als Eingabesignale erkennt und so beispielsweise nachvollzieht, wie der Nutzer Liegestütze macht.

Originalpublikation:
Nittala, A.S., Karrenbauer, A., Khan, A. et al. Computational design and optimization of electro-physiological sensors. Nat Commun 12, 6351 (2021).

Externer Link: www.uni-saarland.de

Allzeit saubere Luft

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.10.2021

Durch die Metallbearbeitung mit Laser und Plasma gelangen viele verschiedene Schadstoffe in die Umgebungsluft. Das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS hat jetzt zusammen mit Partnern eine Filteranlage entwickelt, die sehr effizient die verschiedenen Substanzen aus der Luft entfernt. Sie kann individuell an die verschiedenen Materialien und die jeweils freigesetzten Stoffe angepasst werden. Künftig soll die Technik in weiteren Anwendungen wie der additiven Fertigung zum Einsatz kommen.

Bei der Bearbeitung von Metallen mit Lasern oder Plasma werden Mikropartikel und gesundheitsschädliche Gase und Stoffe freigesetzt. In metallverarbeitenden Betrieben entfernt man die Substanzen in der Regel mit Absaug- und Lüftungsanlagen vom Arbeitsplatz. Wo das nicht möglich ist, tragen Mitarbeiter Schutzmasken. Mit der zunehmenden Automatisierung der Produktion beispielsweise durch Fertigungsroboter rückt der Emissionsschutz heute aber immer wieder einmal in den Hintergrund, wenn Menschen nicht permanent anwesend sind. »Das ist problematisch, weil Mitarbeiter hin und wieder die Räume betreten müssen, um Schäden zu beheben, die Anlage zu warten oder die Qualität der Produkte zu überprüfen«, sagt Jens Friedrich, Gruppenleiter Gas- und Partikelfiltration am Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS in Dresden. »Die Mitarbeiter werden dann im Unklaren darüber gelassen, wie stark die Luft tatsächlich belastet ist.«

Eine Filteranlage für alles

Das Fraunhofer IWS in Dresden hat daher in einem öffentlich geförderten Projekt zusammen mit Unternehmen aus Sachsen eine Filteranlage entwickelt, die die Luft in Produktionsräumen reinigt und dabei eine Vielzahl von Schadstoffen gleichzeitig effektiv bindet. Standard sind heute Aktivkohle-Filteranlagen, die zum Beispiel flüchtige organische Substanzen, die sogenannten VOC, zurückhalten. In metallverarbeitenden Betrieben und Werkstätten kommen aber häufig Substanzen wie Formaldehyd, Stickoxide oder problematische Schwefelverbindungen hinzu. Beim Laserschweißen werden außerdem Mikropartikel aus Metall oder Schweißmaterial frei. Eine Anlage, die alle Substanzen gleichermaßen gut aus der Raumluft entfernt, gab es bislang nicht. Im Projekt MultiFUN haben die Partner erstmals ein solches flexibles Filtersystem entwickelt. Es besteht aus mehreren, einzeln austauschbaren Modulen. Jede Filterebene enthält ein bestimmtes Filtermedium, das spezifisch bestimmte Substanzen aus der Raumluft entfernt. Neben Aktivkohle kommen beispielsweise Zeolithe oder poröse Polymere zum Einsatz, aber auch sogenannte metallorganische Gerüstverbindungen.

Tests von vielen verschiedenen Substanzen

Um die richtige Filtersubstanz zu finden, haben die Forscherinnen und Forscher des Fraunhofer IWS im Labor zunächst eine ganze Reihe an Substanzen darauf hin getestet, wie gut diese die verschiedenen Luftschadstoffe adsorbieren. Die besten Kandidaten wurden dann in den Filteranlagen-Prototypen integriert, den das Unternehmen ULT aus Löbau gefertigt hat. Eine Besonderheit im Vergleich zu herkömmlichen Filteranlagen ist die Messsensorik, die automatisch erkennt, wann das Filtermedium mit Substanzen gesättigt ist und ausgetauscht werden muss. Der Zustand wird optisch über farbige LEDs für jede Filterebene und Schadstoffklasse separat angezeigt. Entsprechend muss auch nur die jeweils betreffende Filterebene ausgetauscht werden.

Besser nicht auf Filteranlagen verzichten

Durch die zunehmende Automatisierung steigt derzeit die Zahl an Fabrikräumen, in denen die Luft nur unzureichend gereinigt wird – beispielsweise auch bei 3D-Fertigungsanlagen. »Das wird unweigerlich zu Konflikten führen, weil es nie ganz ohne Menschen geht«, sagt Jens Friedrich. »Es ist absolut sinnvoll, Filteranlagen einzusetzen, um permanent die Gesundheit der Mitarbeiter zu schützen – auch wenn diese die automatisierten Areale nur gelegentlich betreten.« Bei der additiven Fertigung mit 3D-Laserrobotern kommt hinzu, dass in größeren Mengen Mikropartikel frei werden, die auch den Raum und die Werkstücke verschmutzen, wenn sie sich ablagern. Die Partikel können hochwertige Produkte kontaminieren. Außerdem stellen sie eine Unfallgefahr da, weil man auf den Kügelchen ausrutschen kann, wenn sie sich auf dem Fußboden sammeln.

Zusammen mit mehreren Unternehmen arbeitet das Fraunhofer IWS derzeit an der Entwicklung einer Anlage, die speziell auf die Filterung von Schadstoffen und Substanzen abgestimmt ist, die bei der additiven Fertigung frei werden. »Unser Institut verfügt über Kompetenz in der Laserbearbeitung, über Material-Know-how und über Expertise bei der Entwicklung ganzer Systeme«, sagt Friedrich. »Insofern sind wir der richtige Partner für die Entwicklung solcher Filterlösungen.« Auch für die Fertigung und das Recycling von Batterien sieht er einen wachsenden Bedarf an Filteranlagen, die verschiedene Substanzen aus der Luft entfernen. Insbesondere, weil dort Metalle wie Nickel, Mangan und Kobalt zum Einsatz kommen, die Verbindungen bilden können, die schon bei sehr geringen Dosen gesundheitsgefährdend sind.

Das Projekt MultiFUN wurde durch den Europäischen Fonds für regionale Entwicklung (EFRE) gefördert. Zu den Partnern gehören die ULT AG aus Löbau, die Firma SEMPA SYSTEMS GmbH aus Dresden, der Textilhersteller Norafin Industries GmbH aus Mildenau und das Fraunhofer IWS.

Externer Link: www.fraunhofer.de

Aktivitätserkennung im Fahrzeuginnenraum

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.09.2021

Ist der Autofahrer müde oder schläft er gar? Kameras im Innenraum überprüfen dies bereits. Wichtig und vom Gesetzgeber vorgeschrieben werden Innenraumkameras insbesondere beim automatisierten Fahren. Ein neues System des Fraunhofer-Instituts für Optronik, Systemtechnik und Bildauswertung IOSB leitet aus den Bilddaten erstmals Aussagen zu den Aktivitäten des Fahrers ab und analysiert, wie schnell dieser die Steuerung übernehmen könnte.

Beim automatisierten Fahren entscheidet das Fahrzeug, was es tun muss – es lenkt, bremst und beschleunigt. Bis es jedoch so weit ist, dass Fahrzeuge gänzlich auf einen Fahrer verzichten können, werden teilautomatisierte Fahrzeuge den Wagenlenker unterstützen und ihm zunehmend mehr Freiheiten verleihen. Naturgemäß sind bei teilautomatisierten Fahrzeugen Übergaben zwischen Auto und Fahrer nötig, etwa bei einer Baustelle auf der Autobahn oder beim Übergang in den Stadtverkehr nach einer Autobahnfahrt. Das Fahrzeug muss also nicht nur intelligent werden, um den Verkehr zu interpretieren, sondern auch nach innen schauen und mit dem Fahrer in den Dialog treten. Was macht der Fahrer gerade? Wie schnell könnte er die Steuerung des Fahrzeugs übernehmen? Zwar gibt es bereits Fahrerbeobachtungssysteme, diese nutzen jedoch bisher kaum Kamerabilddaten und beschränken sich vorwiegend auf die Erkennung von Müdigkeit.

Künstliche Intelligenz erkennt, was der Fahrer tut

Dem Dialog zwischen Fahrer und Auto widmen sich die Forscherinnen und Forscher am Fraunhofer IOSB – und füllen damit diese Lücke. »Mit unserer Technologie erkennen wir nicht nur das Gesicht, sondern vielmehr die aktuellen Posen des Fahrers und der Mitfahrer«, sagt Dr. Michael Voit, Gruppenleiter am Fraunhofer IOSB. »Aus diesen Posen wiederum können wir zuverlässig bestimmen, womit sich Fahrer und Insassen gerade beschäftigen.«

Der Kern der Entwicklung liegt in Algorithmen und Verfahren des maschinellen Lernens, also der Künstlichen Intelligenz. Die Algorithmen analysieren die Kameradaten in Echtzeit und finden heraus, ob der Fahrer telefoniert, mit den Kindern spielt oder auf das Handy des Mitfahrers schaut. Die Technologie des Fraunhofer IOSB geht damit über die reine Bilderkennung hinaus und interpretiert Aktivitäten im Kontext. Die Forscherinnen und Forscher haben das System zunächst angelernt, indem sie zahlreiche Kameraaufnahmen per Hand annotierten: Wo befinden sich Hände, Füße, Schultern der Personen, wo sind Objekte wie Smartphones, Bücher und Co. zu erkennen? Anschließend evaluierten sie die Algorithmen mit neuen Bildern und korrigierten oder verifizierten deren Ergebnisse.

Aufnahmen des Fahrers oder der Insassen abstrahiert das System zu einem digitalen Skelett – einer Art Strichmännchen, das die Körperpose der Person nachbildet. Aus der Skelettbewegung und einer ergänzenden Objekterkennung wiederum schließt es auf die Aktivität. »Die Algorithmen wissen also, ob jemand schläft oder auf die Straße blickt, wie abgelenkt die Person ist und wie lange es dauert, bis die volle Aufmerksamkeit wieder auf den Verkehr gerichtet werden kann«, erläutert Voit. Hierfür werden sowohl klassische Videokameras unterstützt als auch Infrarotkameras, die im Dunkeln sehen können, sowie 3D-Kameras, die die Entfernung der Objekte zur Kamera messen. Auch bei der Platzierung der Kameras lässt das System den Innenraumdesignern Freiheit.

Fragen rund um die Aktivitätserkennung im Fahrzeuginnenraum bearbeiten die Forscherinnen und Forscher in zahlreichen Verbundprojekten mit namhaften Autoherstellern wie Audi und Volkswagen, aber auch Zulieferern wie Bosch und Continental. Die Projekte werden durch das Bundesministerium für Bildung und Forschung BMBF, das Bundesministerium für Wirtschaft und Energie BMWi oder das Bundesministerium für Verkehr und digitale Infrastruktur BMVI unterstützt. »Wir erkennen nicht nur die Aktivitäten des Fahrers, sondern aller Insassen im gesamten Fahrzeuginnenraum«, bekräftigt Voit. »Die Technologie ist bereit für die Vorserie. Wir stehen schon im ersten Kontakt mit Unternehmen, die unsere Technologie nutzen wollen.« Bindeglied der Entwicklungen ist der institutseigene Fahrsimulator, von dem Industriekunden auch im Rahmen individueller F&E-Projekte profitieren können. Dank simulierbarer Verkehrssituationen bietet er die Grundlage für das Sammeln relevanter Fahrt- und Verhaltensdaten und ermöglicht mit seiner umfangreichen Sensorausstattung Studien für alle Insassen.

Für Datenschutz ist gesorgt

Was Datenschutz- und Sicherheitsaspekte angeht, so denken die Forscherinnen und Forscher diese von Anfang an mit. »Die Kameradaten werden in Echtzeit ausgewertet, nicht gespeichert und verlassen zu keinem Zeitpunkt das Fahrzeug. Personalisierte Modelle werden dafür ebenso wenig benötigt – somit werden keine personenbezogenen Daten gesammelt«, sagt Dr. Pascal Birnstill, Senior Scientist, zu den Themen Datensicherheit, Datenschutz und Transparenz am Fraunhofer IOSB. Die Technologie respektiert also von vornherein die Privatsphäre und entspricht damit den strengen Regularien und dem hohen Datenschutzbewusstsein in der EU.

Zahlreiche Anwendungen – auch jenseits der Aktivitätserkennung

Wie wichtig Aktivitätserkennungen sind, zeigt eine Verordnung der EU: Das »Driver Monitoring« soll bei der Automatisierung des Autos verpflichtend werden. Mit der Technologie aus dem Fraunhofer IOSB können Fahrzeughersteller nicht nur diese Richtlinie erfüllen, sondern zudem zahlreiche Visionen in puncto autonomes Fahren Realität werden lassen. Ein Beispiel: Spracherkennung stößt bei der Kommunikation von Mensch und Auto schnell an ihre Grenzen. So ist der Befehl »Park dort ein« für sich genommen nicht aussagekräftig. Über die Körperposen- und Aktivitätserkennung weiß das System jedoch, auf welche Parklücke der Nutzer in dem Moment zeigt. Auch bei Sicherheitsaspekten von fahrerlosen Fahrzeugen kann das System helfen: Während derzeit die Fahrenden noch darauf achten, dass alle Mitfahrer die Sicherheitsregeln einhalten und sich beispielsweise anschnallen, wird dies künftig das fahrerlose Fahrzeug übernehmen müssen – etwa bei autonom fahrenden Taxis oder Bussen. Auch hier ist eine zuverlässige Innenraumüberwachung unverzichtbar.

Externer Link: www.fraunhofer.de

Weiterentwicklung: Vollautonome Drohne kann vermisste Menschen in Wäldern finden

Pressemeldung der JKU Linz vom 24.06.2021

Eine Drohne, die Menschen auch unter einem Blätterdach finden kann gibt es seit 2020. Nun schafft sie diese Aufgabe aber auch vollautonom.

Sie sorgte im Vorjahr für Aufsehen: Eine Drohne, die mithilfe einer Zentrale am Boden vermisste Menschen auch in dichten Wäldern finden konnte. Nun hat das Institute für Computer Grafik der Johannes Kepler Universität Linz noch eines draufgesetzt – die Drohne kann diese Aufgabe nun auch vollständig autonom erfüllen.

Das bisherige System ist eine Kombination einer neuen Bildverarbeitungstechnik zum Wegrechnen von Verdeckungen (Airborne Optical Sectioning, AOS) – z.B. des Blätterdachs eines Waldes – und einer Methode, die mittels Machine Learning Wärmesignaturen auswerten und so Menschen erkennen kann. Das Verfahren erreicht zwar über 90% Trefferquote, allerdings muss die Drohne vorgegebene Bahnen abfliegen und die Daten werden später am Boden ausgewertet und berechnet.

Das Problem: Die Ergebnisse liegen erst verspätet vor und die Drohne benötigt zudem vorab Informationen über den festgelegten Flugweg. Beides kann bei Rettungseinsätzen problematisch sein.

Nun ist es JKU Wissenschaftler*innen unter Leitung von Institutsvorstand Prof. Oliver Bimber gelungen, den gesamten Berechnungsprozess in Echtzeit auf der Drohne selbst durchzuführen – und das während des Flugs. Das wiederum erlaubt eine vollautonome Suche nach Personen. D.h. die Drohne entscheidet nun anhand der aufgezeichneten Messdaten völlig eigenständig, welche Route sie fliegt, um Personen in kürzester Zeit und mit der höchsten Trefferquote aufzufinden. Die Flugroute wird also nicht mehr vorgegeben, und die Ergebnisse dieses vollautonomen Ansatzes übertreffen die des bisherigen manuellen Verfahrens bei Weitem – sowohl in der Trefferquote also auch in der benötigten Suchzeit.

Diese neue Methode wurde soeben im renommierten Wissenschaftsjournal Science Robotics veröffentlicht.

Einsatz bei Umweltschutz und Rettungsmissionen

Die Anwendungsmöglichkeiten dieser Technologie sind vielfältig und reichen von Such- und Rettungseinsätzen oder Wildtierzählungen bis hin zur Waldbranderkundungen. Nun soll in den kommenden Jahren die an der JKU entwickelte Technologie mit einem professionellen Drohnensystem, das eine mehrstündige Flugzeit ermöglicht, kombiniert und weiterentwickelt werden. (Christian Savoy)

Externer Link: www.jku.at