Neuartige Farbsensoren kostengünstig herstellen

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 03.12.2018

Im Projekt FOWINA ist es dem Fraunhofer-Institut für Integrierte Schaltungen IIS in Erlangen und dem Fraunhofer-Institut für Silicatforschung ISC in Würzburg gelungen, neuartige Farbsensoren mit speziellen Linsenanordnungen zu entwickeln. Die Sensoren lassen sich direkt auf Chipebene realisieren und vereinen viele Funktionen auf kleinstem Raum. Durch ihre sehr geringe Bauhöhe bieten sie ein breites Einsatzspektrum und können beispielweise in mobilen Geräten sowie zur Farbregelung von LED-Leuchten eingesetzt werden.

Damit Displays, LEDs und vergleichbare Technologien Farben richtig anzeigen, werden Farbsensoren eingesetzt. Dafür können spezielle, nanoplasmonische Strukturen genutzt werden. Sie filtern das einfallende Licht so, dass nur sehr definierte Teile des Farbspektrums auf die Detektorfläche gelangen. Entscheidend für eine funktionierende Farbfilterung ist hierbei der Einfallswinkel des Lichts. Um unerwünschte Winkel und damit Farbfehler zu vermeiden, werden in herkömmlichen Sensoren makroskopische Elemente zur Verbesserung der Filtergenauigkeit eingesetzt, die jedoch den gesamten Aufbau deutlich vergrößern.

Ultraflache Sensoren für Kameras und Handys

Deswegen arbeiten die beiden Fraunhofer-Institute IIS und ISC im Projekt FOWINA an einer All-in-one-Lösung, die viele Funktionen auf kleinstem Raum vereint: Auf dem Farbsensorchip werden Farbfilterstrukturen, Winkelfilter zur Steuerung des Lichteinfalls, Auswertelektronik zur Signalverarbeitung und Photodioden zur Umwandlung des Lichts in Strom integriert. Durch ihren sehr kompakten Aufbau sind die neuartigen Farbsensoren ultraflach, sodass sie in vielen Produkten wie Kameras oder Handys eingesetzt werden können. Das Projekt »FOWINA – Formung des Winkelspektrums von Nanostruktur-Farbsensoren mit mikrooptischen Strahlführungselementen« wird im Programm »Mittelstandorientierte Eigenforschung« der Fraunhofer-Gesellschaft e.V. gefördert.

Neben dem hohen Integrationsgrad, der möglichst viele Funktionen auf einer kleinen Fläche vereint, ist auch die Herstellung vereinfacht worden und damit kostengünstiger als bisherige Verfahren. Das Fraunhofer IIS entwickelt den Sensor-Chip einschließlich der nanoplasmonischen Farbfilter. Diese können kostengünstig im CMOS (Complementary Metal Oxide Semiconductor)-Prozess zusammen mit Photodioden und der Auswerteelektronik mit nur einer einzigen Technologie hergestellt werden.

Das Fraunhofer ISC fertigt Arrays von Mikrostrukturen, die als Winkelfilterelemente für die Sensoren wirken. »Wir nutzen die moderne Zwei-Photonen-Polymerisation, mit der sich beliebig geformte Mikrostrukturen und strukturierte Oberflächen herstellen lassen«, erläutert Dr. Sönke Steenhusen, Wissenschaftler am Fraunhofer ISC. Um den Fertigungsprozess zu beschleunigen, wendet das Fraunhofer ISC die Nanoimprint-Technik – ein hochpräzises und produktionsbewährtes Abformverfahren – zur Replikation der Strukturen an. Diese Technik erlaubt auch die Kombination verschiedener Strukturen in nur einem Substrat.

Einfallswinkel des Lichts eingrenzen

Dem Fraunhofer ISC ist es im Projekt FOWINA gelungen, mithilfe von mikrooptischen Strukturen den Einfallswinkel des Lichts auf einen Bereich von +/-10 Grad einzugrenzen, sodass eine bestmögliche Farbfilterung erfolgt. Damit lässt sich zum Beispiel die Farbe von LEDs aktiv nachregeln. Zudem bieten die Mikrolinsen eine sehr hohe Oberflächengenauigkeit, sodass das Licht gezielt auf die Farbfilter trifft. Als Material für die Arrays nutzt das Fraunhofer ISC ein spezielles anorganisch-organisches Hybridpolymer, das sich durch sehr hohe chemische, thermische und mechanische Stabilität auszeichnet und sich durch Modifikation der molekularen Struktur einfach an spezifische Anforderungen anpassen lässt.

Die beiden Fraunhofer-Partner optimieren aktuell die Entwicklung und die Herstellung der Farbsensoren, um eine Skalierung der Herstellung auf einen industriellen Maßstab bzw. eine spätere Massenfertigung zu ermöglichen.

Externer Link: www.fraunhofer.de

Welser FH OÖ-Wissenschafter entwickeln neuartigen Wildwarner

Pressemeldung der FH Oberösterreich vom 12.11.2018

76.000 Wildtiere kommen laut Kuratorium für Verkehrssicherheit jährlich in Österreich im Straßenverkehr zu Tode. Alle sieben Minuten ereignet sich statistisch gesehen ein Unfall mit einem Wildtier. Die Jägerschaft und die Versicherungen haben großes Interesse, diese Schadensfälle zu minimieren bzw. zu vermeiden. Viele gefährliche Straßenabschnitte werden bereits mit Wildwarnern ausgestattet. Im Auftrag der Firma Dehako haben nun die beiden FH-Professoren Kurt Niel (Messtechnik) und Roland Exler (Elektronik) eine Produktidee in ein neuartiges, elektronisches Gerät entwickelt, das Wildunfälle zukünftig fast gänzlich ausschließen kann.

„Wir haben das bestehende Wildwarngerät der Firma Dehako weiterentwickelt. Es ist kleiner, reagiert nicht nur auf Scheinwerferlicht, sondern auch auf den Schall eines Fahrzeugs. Weiters stehen diese neuen Wildwarner in Funkverbindung, sodass bei naheliegenden Geräten die Warnsignale vorzeitig ausgelöst werden können“, erklärt Roland Exler, der an der FH OÖ in Wels als Lektor Elektronik und digitale Signalverarbeitung unterrichtet. „Zusätzliche Warngeräte können nun auch im Böschungsbereich an Pflöcken angebracht werden, wo kein Schall oder Licht hinkommt. Außerdem sendet das Gerät nicht nur akustische Signale, sondern auch Lichtblitze aus“, fügt der Fachbereichsleiter für Mess- und Regelungstechnik, FH-Prof. Kurt Niel hinzu.

Die beiden Wissenschafter haben dazu die Elektronik neu konzipiert und eine durch Micro-Controller gesteuerte Einheit in Kleinserien hergestellt. Die Geräte sind ganzjährig energieautonom durch Solarzellen und Speicher und robust für alle Witterungsbedingungen.

Oftmals im Straßenbaubudget bereits vorgesehen

Das Land Oberösterreich unterstützt gemeinsam mit Versicherungsunternehmen und dem Oberösterreichischen Landesjagdverband den Ausbau von Wildwarnern an oberösterreichischen Straßen. Mit der Montage akustischer und optischer Wildwarner konnte die Anzahl der Wildunfälle an besonders frequentierten Wildwechselstellen um bis zu 90 Prozent gesenkt werden.

Bei vielen neuen Straßenbauprojekten sind die Wildwarner bereits im Baubudget vorgesehen. „Wenn man nur schätzungsweise eine geringe Schadenssumme von 1.000 Euro pro Schadensfall annimmt, ergäbe das jährlich eine Gesamtschadenssumme in Österreich von 76 Mio. Euro. Die Wildwarner sind um ein Vielfaches billiger als die späteren Schäden an Auto und Natur. Mit diesem neuen Gerätesystem wird es möglich sein, fast alle Wildunfälle zu vermeiden“, sagen die beiden Entwickler, die im Übrigen noch keinen Wildschaden in ihrer Autofahrerkarriere zu verzeichnen hatten. FH-Prof. Kurt Niel konnte die Neuentwicklung kürzlich auf einer wissenschaftlichen Tagung in Bosnien und Herzegowina präsentieren.

Externer Link: www.fh-ooe.at

Besser sehen durch Schall

Presseaussendung der TU Wien vom 27.09.2018

Eine neue, vielversprechende Mikroskopiemethode wurde an der TU Wien entwickelt – die „Nanomechanische Absorptions-Mikroskopie“. Gemessen wird dabei nicht Licht, sondern Schall.

Einzelne Moleküle kann man nicht fotografieren. Wenn man Objekte abbilden will, die kleiner sind als die Wellenlänge des Lichts, muss man sich besondere Tricks einfallen lassen. Man verwendet etwa Elektronenmikroskope oder bestimmt die Position bestimmter fluoreszierender Moleküle, indem man eine große Zahl von Bildern nacheinander aufnimmt.

Ein Team der Fakultät für Elektrotechnik und Informationstechnik der TU Wien konnte jetzt nach jahrelanger Forschung eine neue Mikroskopie-Methode präsentieren, mit der man einzelne Moleküle abbilden und sogar zuverlässig bestimmen kann. Die Moleküle werden auf einer winzigen Membran platziert und mit einem Laser bestrahlt. Gemessen wird, wie sich das Schwingungsverhalten der Membran dadurch verändert. Die entscheidende Messgröße ist somit nicht Licht, sondern eine mechanische Schwingung – also Schall. Veröffentlicht wurde die neue Methode nun im renommierten Fachjournal PNAS.

Das Molekül auf der Membran

Prof. Silvan Schmid vom Institut für Sensor- und Aktuatorsysteme der TU Wien beschäftigt sich mit der Wechselwirkung von elektromagnetischer Strahlung und winzigen mechanischen Strukturen. „Wir bringen einzelne Moleküle auf ganz bestimmte, extrem dünne Membranen auf“, erklärt er. „Danach wird die Membran von einem Laserstrahl abgetastet.“

Die Wellenlänge des Laserlichts wird so gewählt, dass es besonders stark mit dem gesuchten Molekül wechselwirkt. Trifft der Laserstrahl auf das Molekül, nimmt es Energie auf und erwärmt dadurch die Membran in seiner Umgebung. Diese Erwärmung wiederum bewirkt, dass sich die Schwingfrequenz der Membran verstimmt.

„Man kann sich das vorstellen wie eine kleine Trommel“, erklärt Silvan Schmid. „Wenn sich die  Trommelmembran erwärmt, wird sich auch das Trommelgeräusch ändern. Dasselbe geschieht bei unseren Mikro-Membranen.“

Die Membran schwingt mit einer Frequenz in der Größenordnung von etwa 20 Kilohertz – das entspricht einem sehr hohen Ton, in einem Frequenzbereich den zumindest Kinder normalerweise gerade noch hören können. Das Geräusch der Membran im nanomechanischen Absorptions-Mikroskop ist aber freilich viel zu leise um wahrgenommen zu werden. Es wird mit optischen Sensoren gemessen.

Wenn man die gesamte Membran Punkt für Punkt mit dem Laser beleuchtet und jedes Mal die akustische „Verstimmung“ der Membran misst, kann man dann berechnen, wo ein Molekül sitzt – und so lässt sich ein Bild mit hohem Kontrast erzeugen. „Wir haben die Methode auf Fluorophore angewandt, das sind fluoreszierende Moleküle, die auch mit anderen Methoden abgebildet werden können. Dadurch konnten wir zeigen, dass unser Schwingungs-Bild tatsächlich stimmt“, sagt Silvan Schmid. „Unsere Methode lässt sich allerdings auch auf andere Moleküle anwenden. Man muss nur die Wellenlänge des Laserlichts richtig wählen.“

Auf die Membran kommt es an

Entscheidend für das Funktionieren der neuen Methode war, passende Membranen herzustellen. „Wir benötigen ein Material, das sein Schwingungsverhalten möglichst deutlich ändert, wenn es durch einzelne Moleküle lokal erwärmt wird“, sagt Silvan Schmid. „Gelungen ist uns das schließlich mit Siliziumnitrid-Membranen mit einer Oberfläche aus Siliziumoxid.“

Silvan Schmids Forschungsteam arbeitete bei diesem Projekt mit der Biophysik-Forschungsgruppe von Prof. Gerhard Schütz (ebenfalls TU Wien) zusammen, die sich auf besonders herausfordernde Mikroskopie-Techniken spezialisiert hat.

Anwendungsmöglichkeiten für die neue Technologie gibt es viele: „Unsere neue Methode liefert ein sehr deutliches, klares Signal. Dadurch ist sie für viele Bereiche interessant. Man kann auf diese Weise einzelne Moleküle lokalisieren und analysieren, man kann Detektoren für winzige Stoffmengen bauen, man kann sie aber auch für die Festkörper-Forschung einsetzen, etwa um elektronische Schwingungen in Nano-Antennen zu messen“, sagt Silvan Schmid. (Florian Aigner)

Originalpublikation:
Chien et al, Single-molecule optical absorption imaging by nanomechanical photothermal sensing, PNAS (2018).

Externer Link: www.tuwien.ac.at

Roboter-Auge mit Rundumblick

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.10.2018

Roboter können sich in alle Richtungen bewegen – aber nicht in alle Richtungen sehen. Der patentierte Lasersensor SensePRO der Fraunhofer-Einrichtung für Additive Produktionstechnologien IAPT schafft Abhilfe.

Wo bin ich? Diese Frage müssen auch Roboter beantworten, wenn sie unermüdlich Werkstücke kleben, schweißen oder Dichtungen verfugen. Denn nur wenn die Robotersteuerung auf den Millimeter genau weiß, an welcher Stelle sich der Klebe- oder Schweißkopf gerade befindet, ist das Endergebnis präzise. Der Roboter braucht also eine Art Auge. In der Automobilindustrie und vielen weiteren Branchen übernehmen das spezielle Sensoren, die mehrheitlich mit dem Prinzip der Lasertriangulation arbeiten. Eine Laserdiode wirft eine Linie aus rotem Licht auf das Werkstück, von dort wird das Licht unter einem bestimmten Winkel reflektiert und weiter in eine Kamera geworfen. Aus der Position, von der das Licht auf den Kamerachip trifft, lassen sich die Position und die Entfernung des Sensors zum Werkstück innerhalb des Koordinatensystems bestimmen.

Dabei gibt es jedoch ein Problem: »Die bestehenden Sensoren sind durch Abschattungen in ihrer Flexibilität begrenzt, schränken zusätzlich die Bewegungsfreiheit der Robotersysteme ein und führen zu einem hohen Integrationsaufwand«, sagt Mauritz Möller, Abteilungsleiter Fabriksysteme für die additive Fertigung an der Fraunhofer-Einrichtung für Additive Produktionstechnologien IAPT in Hamburg. Die Höhenmessung klappt bei herkömmlichen Sensoren nur, wenn diese in Bearbeitungsrichtung angebracht sind. Ändert sich bei diesen Sensoren die Bewegungsrichtung des Roboters, bleibt das Auge blind. Die Festlegung auf eine Bearbeitungsrichtung schränkt die Flexibilität der Handhabungssysteme deutlich ein. Die einzigen Alternativen sind die Verwendung mehrerer Sensoren oder zusätzlicher Achsen – beides ist nach dem heutigen Stand der Technik mitunter teurer als der Roboter selbst.

Patentiertes Messprinzip

Mauritz Möller hat mit seinen Kollegen Malte Buhr, Vishnuu Jothi Prakash und Julian Weber eine innovative Lösung entwickelt: Der Sensor namens SensePRO ist kompakt mit 15 Zentimeter Durchmesser, hat eine eigens entwickelte Auswertesensorik, die einen abschattungsfreien Rundumblick ermöglicht, und erzeugt einen 360°-Messvorhang, der vollkommene Flexibilität bei der Messrichtung bietet. Egal wohin sich der Roboter bewegt, immer ist mindestens eine Laserlinie optimal positioniert und liefert genaue Positionsinformationen in die Kamera. Außerdem kommt es nicht zu Abschattungen des Lichts durch kompliziert geformte Bauteile. Dieses Messprinzip ist mittlerweile patentgeschützt. Der Anwender kann den Sensor ohne Integrationsaufwand für alle Robotersysteme vollkommen flexibel und vor allem prozesssicher in Klebe- und Schweißprozessen einsetzen und erreicht eine bedeutend vereinfachte Prozessführung und Qualitätssicherung – mit nur einem Sensor.

Intelligentes Thermomanagement

Um über lange Zeit in rauen Produktionsumgebungen arbeiten zu können, enthält der Sensor ein Kühlmodul, das entweder mit Wasser oder Luft arbeitet. Zu diesem Zweck besitzt die optische Bank, auf der die Laserdioden und die Kameras montiert sind, eine interne Kühlstruktur. Diese ist so komplex geformt, dass sie nur im 3D-Druck hergestellt werden kann. Durch das intelligente Thermomanagement hält der Sensor viele Jahre durch. Der Sensor ist so ausgelegt, dass er auf Roboter aller gängigen Hersteller von Kuka bis Fanuc passt und sich für alle denkbaren Einsatzszenarien eignet. Das erlaubt eine einfache Integration in bestehende Fertigungsanlagen.

SensePRO soll voraussichtlich 2021 serienreif sein. Die Chancen stehen gut, dass sich SensePRO gut im schnell wachsenden Markt der Industrieroboter etablieren kann, da aktuell keine Konkurrenzsysteme erhältlich sind. In Deutschland werden jedes Jahr etwa 1300 neue Roboter für Schweiß- oder Klebeanwendungen verkauft, die so einen Sensor brauchen.

Für Mauritz Möller und seine Kollegen Malte Buhr, Vishnuu Prakash und Julian Weber ist das Ziel des Projekts, die wirtschaftliche Verwertung von SensePRO beispielsweise in einer Ausgründung zu überprüfen. Dazu haben die vier Innovatoren einen Antrag zur EXIST-Förderung gestellt, der bewilligt wurde. Mit dem EXIST-Programm unterstützt das Bundesministerium für Wirtschaft und Energie Unternehmensgründungen aus Hochschulen und Forschungseinrichtungen mit jeweils bis zu 1 Mio Euro.

Externer Link: www.fraunhofer.de

Mit Sensoren gegen Falschfahrer: Jungforscher bringen Frühwarnsystem zur Marktreife

Pressemitteilung der Universität des Saarlandes vom 21.08.2018

Drei Nachwuchswissenschaftler der Universität des Saarlandes haben ein System entwickelt, das Geisterfahrer stoppen und Unfälle verhindern kann. Für ihre solarbetriebene Erfindung, die kostengünstig in Leitpfosten am Straßenrand eingebaut wird, erhielten sie schon im Studium mehrere Preise. Mit einem EXIST-Stipendium gründen sie derzeit eine Firma. Das Saarland unterstützt ihr Vorhaben: Das Saar-Verkehrsministerium öffnet den Jung-Ingenieuren die Türen, damit das System auf die Straße kommt. Derzeit sammeln sie an saarländischen Autobahnen Massendaten, um die Software auszufeilen und zu verfeinern.

Es kommt eher selten vor, dass eine Idee das Potenzial hat, Leben zu retten. Und das sogar weltweit. Falschfahrer sind international ein Problem. Immer wieder kommt es zu Unfällen, die wegen der Wucht des Frontalaufpralls oft tödlich enden. Systeme, die abhelfen, sind meist teuer, aufwändig oder brachial – wie Krallen, die Reifen auch von Krankenwagen und Polizei platzen lassen. Und so bleiben heute Autobahnen vielerorts ungeschützt. Mit ihrem solarbetriebenen Sensorsystem liefern drei Nachwuchsforscher der Saar-Uni eine kostengünstige Lösung. Eingebaut ist es in Leitpfosten, die ohnehin am Straßenrand stehen.

„Unser Sensorsystem erkennt Falschfahrer und kann Fahrer, Polizei und Verkehrsfunk sofort warnen. Auch weitere Reaktionen können wir programmieren. So könnte etwa über ein verbundenes Leitsystem die Straße gesperrt werden“, erklärt Julian Neu (25), der das „Ghostbuster“ genannte System mit seinen Studienkollegen Daniel Gillo (27) und Benjamin Kirsch (26) während des Studiums entwickelt hat. Ihre Firma T-ProTex hat ihre Keimzelle auf dem Campus am Lehrstuhl für Mikromechanik, Mikrofluidik und Mikroaktorik von Professor Helmut Seidel.

„Unfälle mit Geisterfahrern haben wegen hoher Geschwindigkeiten oft ein besonders fatales Schadensausmaß, weshalb wir insbesondere an Autobahnauffahrten versuchen, Falschfahrer mit Schildern und Pfeilen vom falschen Weg abzubringen“, sagt die saarländische Verkehrsministerin Anke Rehlinger. „Ist der Autofahrer aber einmal falsch aufgefahren, bleibt dies meist unbemerkt, bis es zum Crash kommt. Ein Frühwarnsystem wie der Ghostbuster könnte hier eine echte Wende bringen – und im Ernstfall Leben retten.“ Sie findet die Idee so gut, dass ihr Ministerium die Weiterentwicklung der Leitpfosten unterstützt – mit dem Ziel, sie auf saarländischen Straßen zu testen. Damit wäre das Saarland Vorreiter der neuen Technik.

Nach Testläufen auf dem Campus sammeln die Gründer mit ihren Leitpfosten jetzt Daten an saarländischen Autobahnen, um die Software ihres Systems für den Praxiseinsatz auszufeilen. Das Verkehrsministerium hat hierfür alle Zuständigen im Land – vom Straßenbauamt über die Verkehrsleitstelle bis hin zur Polizei – an einen Tisch gebracht. „Es hat uns überrascht, wie viele Türen uns geöffnet werden. Wir hatten eine E-Mail an die Verkehrsministerin geschrieben und ihr unser System vorgestellt. Darauf hat sie uns eingeladen, es zu präsentieren. Als wir zu dem Termin kamen, war der Saal voller Entscheider aus den unterschiedlichsten Bereichen, die alle interessiert waren“, erzählt Julian Neu.

Mit Sensoren kommen die Jungingenieure den Geisterfahrern auf die Spur: „Ein Infrarot-Bewegungssensor erfasst pausenlos jede Bewegung im Umfeld von rund zehn bis zwölf Metern des Leitpfostens“, erklärt Benjamin Kirsch. Nähert sich ein Wagen, aktiviert dieser Sensor zwei weitere, die an den Seiten des Leitpfostens einander gegenüberliegen. Dadurch, dass das Auto erst an einem Sensor und Sekundenbruchteile später am anderen vorbeifährt, erfasst das System, in welcher Richtung das Fahrzeug fährt. „Weil nur einer der Sensoren ständig aktiv ist, der das System nur bei Bedarf aufweckt, arbeitet es sehr energiesparend“, ergänzt Daniel Gillo. Auch unterscheidet es zweifelsfrei Autos von anderen Störungen. „Ein Mikrofon erfasst hierzu Geräusche – allein das der Reifen auf dem Asphalt genügt schon“, erläutert er. Das Zusammenspiel der Sensoren ist bereits ausgereift, in vielen Tests haben die Gründer die Anordnung und die Signalverarbeitung optimiert. Mit den neuen Massendaten vorbeifahrender Autos von der Autobahn, verfeinern sie jetzt die Algorithmen, also die Befehle, die dem System exakt sagen, was es wann tun soll.

Die Idee zu ihrer Erfindung kam den Studenten nach einer Vorlesung von Professor Helmut Seidel. An seinem Lehrstuhl forschten Daniel Gillo, Julian Neu und Benjamin Kirsch als studentische Mitarbeiter schon während ihres Studiums. Jetzt hat ihre neue Firma T-ProTex in einem Raum des Lehrstuhls ihr Büro. „Das ist für unseren Start der ideale Rahmen. Der ständige Austausch mit Professoren, Wissenschaftlern und Experten etwa von der Kontaktstelle für Wissens- und Technologietransfer ist für uns Gold wert, von ihrem Know-how und ihrer Erfahrung profitieren wir sehr“, sagt Gründer Julian Neu.

Hintergrund

Mit ihrem Prototyp gewannen die Studenten 2016 den ersten Preis des Cosima-Studentenwettbewerbs in München. Ein Jahr später belegten sie beim internationalen Wettbewerb iCan in Peking den zweiten Platz. Im Juni 2017 erhielten sie den Deutschen Mobilitätspreis der Initiative „Deutschland – Land der Ideen“ und des Bundesverkehrsministeriums. Ebenfalls 2017 bewarben sie sich erfolgreich um ein EXIST-Gründerstipendium beim Bundeswirtschaftsministerium.

Externer Link: www.uni-saarland.de