Spinelektronische Materialien mit einer ultraschnellen Sonde untersuchen

Presseinformation der Universität Göttingen vom 13.01.2009

Prozess der Charakterisierung von Materialeigenschaften kann massiv beschleunigt werden

Spinelektronische Materialien, die für die Entwicklung von magnetischen Speichern von Bedeutung sind, lassen sich künftig sehr viel leichter herstellen als bisher: Der langwierige Prozess der Charakterisierung und Optimierung von Materialeigenschaften kann mit Hilfe einer neuen Untersuchungsmethode – einer ultraschnellen Sonde – massiv beschleunigt werden. Entwickelt wurde sie von Wissenschaftlern aus den USA, Frankreich und Deutschland. „Damit sind erhebliche Fortschritte auf dem Gebiet der Spinelektronik zu erwarten“, so Dr. Markus Münzenberg, Physiker und Leiter einer Forschungsgruppe an der Universität Göttingen. Die Ergebnisse wurden in der Zeitschrift „Nature Materials“ veröffentlicht.

Elementarteilchen, viele Atomkerne sowie Atome mit bestimmten Elektronenkonfigurationen besitzen einen sogenannten Spin, der die Rotation um die eigene Achse bezeichnet. Weicht die Ausrichtung der Spins in einer Gruppe von Teilchen von ihrer zufälligen Verteilung ab, handelt es sich um Spinpolarisation. Diese lässt sich auf unterschiedlichen Wegen physikalisch beeinflussen und hat dabei Auswirkungen auf die magnetische Struktur von Festkörpern. Nach Angaben von Dr. Münzenberg sagen theoretische Berechnungen eine enorme Anzahl von Materialien mit hoher Spinpolarisation voraus. Bislang wurden jedoch nur wenige realisiert, da zur Herstellung eines Prototyps im Labor zahlreiche Schritte der Strukturierung durchlaufen werden müssen.

Die neu entwickelte Untersuchungsmethode zur ultraschnellen Bestimmung der spinpolaren Materialeigenschaften nutzt die sogenannte Femtosekundendynamik: Dabei werden Elektronen durch kurze Laserpulse mit einer Zeitspanne von 80 Femtosekunden angeregt. Dr. Münzenberg: „Das Elektron selbst ist die Sonde, die in einer Umgebung von wenigen Atomen lokal die elektronischen Eigenschaften ermittelt.“ Materialien mit hoher Spinpolarisation sollen unter anderem als magnetische Speicher in der Nanoelektronik eingesetzt werden: Sie lassen sich beliebig oft löschen und überschreiben, verfügen über hohe Schaltgeschwindigkeiten bei geringem Energieverbrauch und benötigen nur einen Bruchteil des Platzes herkömmlicher Speicherzellen.

Originalveröffentlichung:
G.M. Müller, J. Walowski, M. Djordjevic, G.X. Miao, A. Gupta, A.V. Ramos, K. Gehrke, V. Moshnyaga, K. Samwer, J. Schmalhorst, A. Thomas, A. Hütten, G. Reiss, J.S. Moodera & M. Münzenberg: Spin polarization in half-metals probed by femtosecond spin excitation, Nature Materials 8, 56 – 61 (2009)

Externer Link: www.uni-goettingen.de

4000 Kunststoff-Aktoren simulieren „Künstliche Haut“

Pressemitteilung der TU Dresden vom 07.01.2009

Forscher des Sonderforschungsbereichs „Reaktive Polymere“ entwickeln ein hoch auflösendes tastbares Display.

Forscher der TU Dresden haben Plastik-Mikrochips entwickelt, welche aus Tausenden so genannter Mikroaktoren bestehen. Sie nutzen die ungewöhnlichen Eigenschaften der winzigen Kunststoffaktoren zum Realisieren einer „künstlichen Haut“ („Artificial Skin“) mit über 4.000 Aktorpixeln. Deren aktives Polymer ist ein temperaturempfindliches Hydrogel, das sein Volumen computergesteuert um 90 Prozent anschwellen oder schrumpfen lassen kann, wenn Licht aus dem darunter liegenden LCD-Feld darauf fällt und es so erwärmt. Dieser Vorgang findet quasi in Echtzeit statt und ist beliebig oft umkehrbar.

So kann diese künstliche Haut wie etwa bei Schnecken und Muscheln die Konsistenz und Struktur seiner Oberfläche so ändern, dass sie nicht nur visuelle, sondern auch tastbare Eindrücke darstellt. Die vermittelbaren Impressionen umfassen Konturen, Texturen und sogar die Oberflächen-Weichheit. Wird dieses taktile Display beispielsweise mit einem Computertomografen kombiniert, so kann ein virtueller Zugang zu real nicht erreichbaren Orten gewährt werden. So könnte ein Chirurg die Beschaffenheit eines Organs mit seinem Tastsinn untersuchen, ohne den Bauch des Patienten wirklich öffnen zu müssen.

Besonders großes Potenzial der hochintegrierten aktiven Plastik-Mikrochips sehen die Forscher zudem in Einmalchips, mit denen man sehr schnell, zuverlässig und preiswert medizinische Diagnosen durchführen kann, da diese ähnlich wie ein elektronischer Mikroprozessor in einem einzigen Schritt Tausende Vergleiche auf einmal durchführen können.

Der Artikel ist in der Zeitschrift „Advanced Materials“ als „Advance in Advance“-Artikel erschienen.

Externer Link: www.tu-dresden.de

Zweiter Emmy für den Videostandard H.264

Presseinformation der Fraunhofer-Gesellschaft vom 09.01.2009

Für die Entwicklung des Videostandards H.264/MPEG4-AVC hat das Joint Video Team den Technology & Engineering Emmy® AWARD in der Kategorie »Daytime« erhalten. Bereits im vorherigen Jahr wurde der Standard mit dem Technik- Emmy in der Kategorie »Primetime« ausgezeichnet. Damit hat der Fraunhofer-Wissenschaftler Thomas Wiegand seinen zweiten Emmy erhalten. Die Entwickler von H.264/MPEG4-AVC sind die einzigen, die mit zwei Emmys in unterschiedlichen Kategorien ausgezeichnet wurden.

Mobiles Fernsehen, hochauflösendes TV, Filme auf DVD, Videos auf dem Handy – erst Videokomprimierung macht es möglich. Besonders effizient arbeitet der Standard ITU-T Recommendation H.264 / ISO/IEC 14496-10 AVC, kurz H.264. Das Verfahren reduziert die für die Übertragung eines Videos erforderliche Datenrate um mehr als die Hälfte – und das bei gleicher Qualität.

Auf der International Consumer Electronics Show in Las Vegas hat die National Academy of Television Arts & Sciences (NATAS) die Entwickler des Standards mit dem Technology & Engineering Emmy® Award 2009 geehrt. Den Preis nahmen die Leiter des Joint Video Teams, Thomas Wiegand (Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI), Gary J. Sullivan (Microsoft), Ajay K. Luthra (Motorola) und Jens-Rainer Ohm (RWTH Aachen) entgegen. Das Joint Video Team wird von der International Telecommunications Union ITU, der International Organisation for Standardization ISO und der International Electrotechnical Commission IEC getragen.

Der Emmy ist der bedeutendste Fernsehpreis der USA. Der Preis wird von drei Origanisationen verliehen. Die NATAS vergibt die Auszeichnungen für tagsüber gesendete Filme und Beiträge sowie Sport und Nachrichten und für technische Kategorien. Sendungen des Abendprogramms würdigt die Amerikanische Fernsehakademie (Academy of Television Arts & Sciences, ATAS) in Los Angeles. Ausländische TV-Beiträge werden von der International Academy of Television Arts & Sciences in New York geehrt.

Der jetzt verliehene Preis ist bereits die zweite Emmy-Auszeichung für den Videostandard. Im Vorjahr hatte die Amerikanische Fernsehakademie H.264 in Hollywood mit einem Preis geehrt – dem Primetime Emmy für Technology & Engineering. Nun konnte sich Prof. Dr. Thomas Wiegand über seinen zweiten Emmy freuen. Der Fraunhofer-Wissenschaftler hat als Editor umfangreiche H.264-Spezifikationen verfasst und gemeinsam mit seinem Team am HHI auch erheblich zum technischen Inhalt von H.264 beigetragen. Viele der Arbeiten am HHI wurden vom Bundesministerium für Bildung und Forschung gefördert.

Externer Link: www.fraunhofer.de

Die Tricks des Virensensors

Presseinformation der LMU München vom 07.01.2009

Wie ein zelluläres Enzym die Erreger aufspürt

Viren nutzen Wirtszellen als Fabriken für den viralen Nachwuchs. Dazu schleusen sie in ihre unfreiwilligen Gastgeber die Bauanleitung für virale Proteine, üblicherweise sind das RNA-Moleküle. Diese Nukleinsäure kommt aber auch in den Zellen höherer Organismen vor – RNA bildet unter anderem die Bauanleitung für zelleigene Proteine – sodass virale RNA nicht leicht als fremdes Material identifizierbar ist. Das zelluläre Protein RIG-I erkennt dennoch diese Moleküle und löst eine Immunreaktion aus. Einem Forscherteam um Professor Karl-Peter Hopfner und Prof. Taekjip Ha (Illinois, USA) gelang jetzt der Nachweis, dass RIG-I eine neuartige Translokase ist. Das Enzym bewegt sich also auf bestimmte Weise entlang doppelsträngiger RNA. „Wir vermuten, dass diese Aktivität dem Protein erlaubt, RNA-Viren in unseren Zellen bei der Replikation zu identifizieren“, so Hopfner. „Denn dabei entsteht ja doppelsträngige RNA, die dann als Auslöser für die antivirale Antwort des Immunsystems fungiert.“ (Science, online, 1. Januar 2009)

Jede Zelle benötigt ein ganzes Arsenal von Proteinen. Deren Bauanleitung ist bei höheren Organismen in den Genen gespeichert, also Abschnitten des Erbmoleküls DNA. Soll ein bestimmtes Protein produziert werden, wird das zugehörige Gen in ein dazu passendes RNA-Molekül übersetzt. Die Ribosomen im Zellinneren stellen die Proteine dann getreu dieser Bauanleitung her. „Diese Fließbandproduktion können Viren für ihre eigenen Zwecke nutzen“, sagt Hopfner. „Die Parasiten bestehen meist nur aus einem RNA-Molekül als Erbgut in einer kleinen Proteinkapsel. Die RNA enthält in erster Linie Bauanleitungen für neue Kapselproteine. Wird eine Wirtszelle umprogrammiert, produziert die Zellmaschinerie hauptsächlich neue Viruskapseln. Diese werden mit viraler RNA gefüllt – und eine neue Virengeneration befällt weitere Zellen.“

Menschliche Wirtszellen sind den viralen Freibeutern aber nicht wehrlos ausgeliefert: Das RIG-I-Protein erkennt die fremde RNA und löst Alarm aus. Dann wird der Botenstoff Beta-Interferon produziert, der bestimmte Killerzellen als Vorhut der Körperabwehr aktiviert. „Außerdem wird durch diese Reaktion das zelluläre Selbstmord-Programm eingeleitet“, berichtet Hopfner. „Ist die Wirtszelle tot, können sich die Viren nicht mehr vermehren.“ Wie kann RIG-I fremde virale RNA von körpereigener RNA unterscheiden? RIG-I erkennt ein bestimmtes chemisches Signal viraler RNA, ein so genanntes Triphosphat, das sich am Anfang des fadenförmigen RNA-Moleküls befindet. Auch die RNA im Zellkern trägt das Triphosphat-Ende. Auf dieses wird dann meist – anders als beim viralen Gegenstück – eine molekulare Kappe, das „Cap“, gesetzt.

In einer vorangegangenen Arbeit konnte ein Forscherteam um Hopfner erste Einblicke in die molekularen Mechanismen liefern, die der Erkennung des RNA-Triphosphats zugrundeliegen. Dabei zeigte sich, dass ein bestimmter Bereich des RIG-I-Proteins für diesen Vorgang entscheidend ist. Allerdings blieben viele Fragen offen. Die Erkennung eines Triphosphates kann nicht die hohe Genauigkeit des Erkennungsprozesses viraler RNA erklären, da erstens zelluläre RNA manchmal auch Triphosphate habe kann, und nicht alle von RIG-I erkannten viraler RNAs Triphosphat haben. Zudem benötigt der Erkennungsprozess die Energie aus der Spaltung des ATP-Moleküls. Lange aber war unklar, wozu diese Eigenschaft nötig ist.

„In einer Kooperation mit Biophysikern in Illinois konnten wir einzelne RIG-I-Moleküle sichtbar machen und untersuchen“, so Hopfner. „Dabei hat sich gezeigt, dass das Protein die Energie für seine Funktion als Translokase – und zwar eine neuartige Form dieser Enzymklasse – benötigt. RIG-I bindet bevorzugt an doppelsträngige RNA und bewegt sich unter Verbrauch von ATP direkt daran entlang. Vermutlich kann das Protein auf diese Weise RNA-Moleküle erkennen, die gerade von der viralen Proteinmaschinerie verdoppelt wird, und so Viren direkt bei der Replikation identifizieren.“ Die Translokaseaktivität von RIG-I wird dabei von Triphosphaten sehr stark stimuliert, was darauf hindeutet, dass RIG-I zwei virale Muster (Triphosphat und doppelsträngige RNA) in einem Mechanismus integriert und somit äußerst effizient und spezifisch virale RNA erkennt. Dies vermeidet, dass fälschlicherweise zelluläre RNA erkannt wird.

Wie wird nun ein Signal an die Zelle zur Immunantwort generiert? RIG-I assoziert mit einem Rezeptor auf Mitochondrien, das sind zelluläre Bestandteile. Diese Assoziation leitet eine Signalweiterleitung ein, die schliesslich zur Produktion des Immunfaktors Interferon führt. Für diese Interaktion sind zwei spezifische Domänen (CARDs) auf RIG-I notwendig, die aber die Translokase-Aktivität des Enzyms bei doppelsträngiger RNA behindern, wenn kein Triphosphat vorhanden ist. „Wir vermuten, dass sich in Anwesenheit eines Triphosphates die Struktur des Enzyms leicht ändert“, so Hopfner. „Diese Konformationsänderung würde dann die Translokation anschalten. Während der Translokation wären die CARDs dann für die Signaltranstuktion frei.“

In weiterführenden Projekten wollen Hopfner und sein Team diese Mechanismen nun genau entschlüsseln. Denn viele Punkte sind noch ungeklärt, etwa auch die technisch nur schwer nachweisbare Strukturänderung des Enzyms, die erst die Weiterleitung des Signals ermöglicht. „Wir wollen aber auch dem RIG-I verwandte Moleküle in der Zelle untersuchen, die ebenfalls virale RNA-Moleküle erkennen und regulatorische Aufgaben übernehmen“, berichtet Hopfner. „Diese Studien gehen aber über ein rein theoretisches Interesse hinaus: So könnte etwa eine durch RIG-I ausgelöste Immunantwort möglicherweise für eine RNA-basierte Krebstherapie verwendet werden – entsprechende Therapieansätze gibt es sogar schon.“

Publikation:
„Cytosolic viral sensor RIG-I is a 5′-triphosphate dependent translocase on double stranded RNA“, Sua Myong, Sheng Cui, Peter V. Cornish, Axel Kirchhofer, Michaela U. Gack, Jae U. Jung, Karl-Peter Hopfner and Taekjip Ha, ScienceExpress online, 1. Januar 2009

Externer Link: www.uni-muenchen.de

Der Vorteil, anders zu sein

Pressemitteilung der Universität Heidelberg vom 05.01.2009

Wissenschaftler des Zentrums für Molekulare Biologie und des Interdisziplinären Zentrums für Wissenschaftliches Rechnen der Universität Heidelberg sowie der Universität Freiburg demonstrieren, dass die Individualität von Bakterien evolutionäre Vorteile haben kann

Auch genetisch identische Organismen weisen individuell stark schwankende Konzentrationen bestimmter Proteine auf. Am Beispiel des bakteriellen Chemotaxissystems haben Wissenschaftler diese Proteinkonzentrationen in Einzelzellmessungen bestimmt und durch Computer-Modelle des Regelsystems gezeigt, dass diese Schwankungen dazu dienen können, die Bakterienpopulation fit für unvorhergesehene Änderungen in ihrer Umwelt zu machen.

Nicht nur Menschen, sondern auch alle anderen Organismen sind Individuen, und das kann evolutionär durchaus sinnvoll sein: weil unterschiedliche Individuen nicht alle auf dieselben Signale in gleicher Weise reagieren, ist stets ein Teil der Population auf künftige Änderungen der Umwelt besser vorbereitet, d.h. die Population als Ganzes kann sich so besser an Änderungen anpassen. Die Überprüfung dieser These ist bei höheren Organismen schwer, weil die Umgebung und das Verhalten dieser Organismen sehr komplex sind. Wissenschafter des Zentrums für Molekulare Biologie (ZMBH) und des Interdisziplinären Zentrums für Wissenschaftliches Rechnen (IWR) der Universität Heidelberg sowie des Zentrums für Biosystemanalyse der Universität Freiburg haben in einer Arbeit, die nun in PLoS Computational Biology veröffentlich wurde, die kleinsten und einfachsten Organismen – Bakterien – untersucht, um zu zeigen, wie eine Bakterienpopulation von Unterschieden zwischen Individuen profitieren kann.

Bei einfachen einzelligen Organismen wie Bakterien sind es vor allem die interzellulären Variationen von Proteinmengen, die diese individuell machen. Solche Variationen entstehen spontan durch die stochastische Natur der Proteinproduktion, und betreffen gleichermaßen bakterielle und eukaryotische Zellen. Die Forschungsgruppe von Dr. Victor Sourjik am ZMBH beschäftigt sich seit Jahren mit der Charakterisierung dieser interzellulären Variationen und untersucht deren Auswirkungen auf das chemotaktische Verhalten von Escherichia coli-Bakterien.

Die Chemotaxis ermöglicht es Bakterien, chemische Gradienten in ihrer Umgebung zu verfolgen, um auf Nahrungsmolekülen zu schwimmen oder giftige Stoffe zu meiden. Dieses Verhalten beruht auf einem einfachen Kontrollmechanismus, das ein Signal an die Flagellenmotoren sendet, wann immer eine Bakterienzelle im Gradienten in eine günstige Richtung schwimmt. Um zu gewährleisten, dass die Bakterien ansteigende chemische Reize kontinuierlich wahrnehmen können, wird die Empfindlichkeit nach einer kurzen Pause durch ein Adaptationssystem zurückgesetzt. Solche Adaptationen sind ein integrer Teil der meisten sensorischen Systeme, wie z.B. auch beim menschlichen Sehen – zuerst werden wir durch helles Licht geblendet, dann aber adaptieren sich unsere Augen an die Helligkeit, und wir können die Grautöne wieder unterscheiden.

In der bakteriellen Chemotaxis wird die Adaptation durch zwei Enzyme vermittelt, deren Konzentrationen von Zelle zur Zelle erstaunlich stark schwanken. Das hat zur Folge, dass einige Zellen schnell und andere langsam adaptieren, was auf den ersten Blick ein Nachteil zu sein scheint. Die Computersimulationen zeigen nun, dass sich wegen dieser Schwankungen nur wenige Bakterien einer Population in einem bestimmten Gradienten optimal chemotaktisch verhalten können. Bei ihnen wird der ansteigende Reiz des Lockstoffs durch die Rate der Adaptation genau ausgeglichen. Bakterien, die zu schnell oder zu langsam adaptieren, können die chemischen Reize nicht richtig wahrnehmen. Die optimale Adaptationsrate hängt aber direkt von der Gradientenstärke ab, und hier kommt der Vorteil der Heterogenität einer Population zum Tragen.

Bakterien, die in einem flachen Gradienten schlecht abschneiden, weil sie zu schnell adaptieren, können dafür einen steileren Gradienten optimal verfolgen. Da die Gradienten in der Umwelt nicht vordefiniert sind, profitiert die Population als Ganzes davon, dass sich die Adaptationszeiten einzelner Zellen voneinander unterscheiden und es immer Zellen gibt, die den einen oder anderen Nährstoffgradienten verfolgen und dabei neue Nahrungsquellen entdecken können.

Originaltext: PLoS Computational Biology; Article #08-PLCB-RA-0555R2: „Dependence of Bacterial Chemotaxis on Gradient Shape and Adaptation Rate“. Autoren: Victor Sourjik, Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH); Dirk Lebiedz, Universität Freiburg; Nikita Vladimirov, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen der Universität Heidelberg (IWR); Linda Løvdok, ZMBH

Externer Link: www.uni-heidelberg.de