Quantentechnologien auf dem Prüfstand

Medieninformation der Universität Innsbruck vom 18.05.2017

Angelehnt an ein Verfahren aus der Signal- und Bildverarbeitung haben Innsbrucker Physiker um Rainer Blatt gemeinsam mit Kollegen aus Deutschland und Australien eine neue Methode zur Prüfung quantenmechanischer Prozesse entwickelt und experimentell erprobt. Sie berichten darüber in der Fachzeitschrift Nature Communications.

Jede Technologie erfordert Methoden und Protokolle, die ihre Funktionstüchtigkeit überprüfen. Nur wenn garantiert werden kann, dass die Komponenten richtig zusammenspielen, können komplizierte Geräte verlässlich arbeiten. In vielen Fällen sind die Prüfmethoden standardisiert – etwa beim Auto. „Die Quantentechnologien sind hier keine Ausnahme“, sagt Thomas Monz vom Institut für Experimentalphysik der Universität Innsbruck. Basierend auf den eigenartigen Gesetzen der Quantenmechanik sind abhörsichere Kommunikation, neue schnelle Superrechner und Simulationsmethoden möglich. Es ist jedoch besonders schwierig, für die Quantentechnologien Protokolle zu entwickeln, die deren Funktionstüchtigkeit sicherstellen. „Dies hat mit den Regeln der Quantenmechanik zu tun“, erklärt Jens Eisert, Professor für Quantenphysik an der Freien Universität Berlin. „Nicht nur verändert man mit der Messung das Objekt, es ist auch so, dass der Konfigurationsraum der Quantenmechanik gigantisch groß ist – also der abstrakte Raum, in dem man quantenmechanische Systeme beschreibt.“ Ohne neue Ideen und Methoden sei es völlig unrealistisch, Prüfmethoden zu konzipieren: Man wäre in dem riesigen Konfigurationsraum der Möglichkeiten verloren.

Neue Methode der Signalverarbeitung

In der von den Forschern aus Innsbruck, Berlin, Köln und Sydney nun entwickelten Methode kommen neuartige Ideen aus der angewandten Mathematik zum Tragen, die aus dem sogenannten Compressed-Sensing-Verfahren stammen. Dieses findet eigentlich in der Signal- und Bildverarbeitung Anwendung: Statt vollständige Daten aufzunehmen, werden hier weitaus weniger Daten in völlig zufälliger Weise aufgenommen. Die zentrale Einsicht dabei ist, dass gegenwärtigen Methoden der Bildverarbeitung ein Missverständnis zugrunde liegt: „Wenn man Bilddaten stark komprimieren und in exponentieller Weise reduzieren kann, muss dies eigentlich bedeuten, dass man die Bilddaten bereits falsch aufgenommen hat“, erläutert der Theoretiker Jens Eisert. Es müsse also Methoden geben, die Information wie Bilddaten effizienter aufzunehmen. Das Compressed-Sensing-Verfahren erlaubt genau dies: Die Einsparung an Daten, die aufgenommen werden müssen, um etwa Bilder später zu rekonstruieren, ist enorm.

Auf Quantentechnologien angewandt

Diese Ideen übertrugen die Wissenschaftlerinnen und Wissenschaftler nun auf die Quantenmechanik, entwickelten sie weiter und erprobten sie im Experiment. „In diesem genuin interdisziplinären Projekt sind Methoden der angewandten Mathematik, der theoretischen Physik und der Experimentalphysik zum Tragen gekommen“, erklärt Jens Eisert. Zum Erproben der Techniken an der Universität Innsbruck haben die Physiker um Rainer Blatt und Thomas Monz einzelne geladene Teilchen (Ionen) verwendet, die wie in einer Perlenkette aufgereiht sind, und so den Quantenzustand von sieben Ionen in einem fehlerkorrigierenden Code sehr exakt rekonstruiert. Weitergedacht, sei mit solchen Methoden tatsächlich ein Prüfstand für die Präparationen von Quantensystemen denkbar, gewissermaßen ein TÜV für die Quantentechnologien, sagen die Forscher.

Gefördert wurde das Projekt unter anderem vom österreichischen Wissenschaftsfonds FWF, der Deutschen Forschungsgemeinschaft DFG und der Tiroler Industrie.

Publikation:
A. Riofrio, D. Gross, S.T. Flammia, T. Monz, D. Nigg, R. Blatt & J. Eisert. Experimental quantum compressed sensing for a seven-qubit system. Nature Communications 8, 15305 (2017). DOI: 10.1038/ncomms15305

Externer Link: www.uibk.ac.at

Energiesparen mit einem Tüpfelchen Silber

Presseinformation der LMU München vom 15.05.2017

In Zukunft können außer Elektronen auch Lichtteilchen Computer steuern. Als Lichtleiterbahnen testen Forscher Ketten aus Goldnanopartikeln. LMU-Forscher zeigen, wie ein Tüpfelchen Silber beim Rechnen mit Licht enorm Energie sparen könnte.

Heutige Rechner sind schnell und klein wie nie zuvor. So wird die neueste Transistorengeneration Strukturgrößen von nur zehn Nanometer aufweisen. Um in diesen Dimensionen noch schneller und auch energiesparender zu werden, schalten und walten im Computer vermutlich bald Lichtteilchen statt Elektronen. Der Fachbegriff lautet „Optischer Computer“.

Glasfasernetze nutzen schon heute Licht, um Daten schnell und möglichst verlustfrei über weite Strecken zu transportieren. Die dünnsten Kabel besitzen jedoch Durchmesser im Mikrometer-Bereich, denn die Lichtwellen mit Wellenlängen um einen Mikrometer müssen ungehindert schwingen können. Für die Datenverarbeitung auf einem Mikro- oder gar Nanochip ist daher ein komplett anderes System nötig.

Eine Möglichkeit wäre, Lichtsignale über sogenannte Plasmonenschwingungen weiterzuleiten. Dabei regt ein Lichtteilchen (Photon) die Elektronenwolke eines Gold-Nanopartikels zum Oszillieren an. Diese Wellenbewegung pflanzt sich mit immerhin rund zehn Prozent der Lichtgeschwindigkeit über eine Kette von Nanopartikeln fort. Somit sind zwei Ziele erreicht: Nanometer-Dimension und enorme Geschwindigkeit. Bleibt der Energieverbrauch. Und der wäre im Fall einer reinen Gold-Kette durch starke Wärmeentwicklung ähnlich hoch wie in klassischen Transistoren.

Eine Art Vermittler

Tim Liedl, Professor für Physik an der LMU und Wissenschaftler im Exzellenzcluster Nanosystems Initiative Munich (NIM), beschreibt mit Kollegen von der Ohio University jetzt in der Fachzeitschrift Nature Physics, wie Silber-Nanopartikel den Energieverbrauch deutlich senken können. Die Physiker bauten eine Art Mini-Teststrecke von rund 100 Nanometern Länge aus drei Nanopartikeln: Vorne und hinten je ein Gold-Nanopartikel und ein Silber-Nanopartikel genau in der Mitte.

Das Silber dient hier als eine Art Vermittler zwischen den Goldpartikeln, ohne dass in ihm Energie verloren geht. Um das Plasmon des Silberpartikels in Schwingung zu versetzen, wäre eine höhere Anregungsenergie nötig als für Gold. Und so „umfließt“ die Energie dieses Partikel lediglich. „Der Transport wird über die Kopplung der elektromagnetischen Felder um die sogenannten Hot Spots vermittelt, die jeweils zwischen den beiden Goldpartikeln und dem Silberpartikel entstehen“, erklärt Tim Liedl. „So kann die Energie fast verlustfrei weitergereicht werden und das auf der Femtosekundenskala.“

Entscheidende Voraussetzung für die Versuche war, dass Tim Liedl und seine Kollegen Spezialisten im punktgenauen Platzieren von Nanostrukturen sind. Erst die dazu angewandte „DNA-Origami-Methode“ ermöglicht es, verschiedene kristallin gewachsene Nanopartikel in definiertem Nano-Abstand nebeneinander zu setzen. Bisherige Versuche dieser Art nutzten herkömmliche Lithographietechniken, die insbesondere für verschiedenartige Metalle nebeneinander nicht die notwendige räumliche Präzision liefern.

Parallel zu den Experimenten simulierten die Physiker den Versuch per Computer und fanden ihre Messergebnisse bestätigt. Neben klassischen Elektrodynamiksimulationen konnte Alexander Govorov, Professor für Theoretische Physik an der Ohio University, Athens, USA, und Koautor der Arbeit, auch ein einfaches quantenmechanisches Modell aufstellen: „In diesem Modell stimmen das klassische und das quantenmechanische Bild sehr gut überein, was es als mögliches Beispiel in Unterrichtsbüchern qualifiziert.“ (NIM/LMU)

Publikation:
Nature Physics 2017

Externer Link: www.uni-muenchen.de

Erdgasanlagen ohne CO2-Ausstoß

Presseaussendung der TU Wien vom 10.05.2017

So umweltfreundlich war Erdgasnutzung noch nie: Die TU Wien leitete ein Forschungsprojekt, das nun eine neue Methode der Erdgasverbrennung hervorgebracht hat – ganz ohne CO2-Ausstoß.

Wie kann man Erdgas verbrennen, ohne dabei CO2 in die Luft abzugeben? Dieses Kunststück gelingt mit einem speziellen Verbrennungsverfahren, an dem die TU Wien seit Jahren forscht – der „Chemical Looping Combustion“ (CLC). Dabei wird das CO2 direkt während der Verbrennung ohne zusätzlichen Energieaufwand abgeschieden und kann anschließend gespeichert werden. Somit wird verhindert, dass es in die Atmosphäre gelangt.

In einer Versuchsanlage mit einer Leistung von 100 kW wurde die Methode bereits erfolgreich angewandt. Jetzt gelang es in einem internationalen Forschungsprojekt, die Technik auf einen größeren Maßstab hochzuskalieren, sodass nun alle Voraussetzungen dafür geschaffen wurden, eine voll funktionsfähige Demonstrationsanlage mit einer Leistung im Bereich von 10 MW zu bauen.

CO2 vom Restabgas abscheiden

Die Verbrennung von Erdgas ist deutlich sauberer als die Verbrennung von Erdöl oder Kohle. Trotzdem hat Erdgas den großen Nachteil, dass bei der Verbrennung klimaschädliches CO2 entsteht. Dieses CO2 bildet normalerweise einen Teil des Abgas-Gemischs, gemeinsam mit Stickstoff, Wasserdampf und anderen Inhaltsstoffen. In dieser gemischten Form lässt sich das CO2 weder speichern noch sinnvoll verwerten.

„In den Anlagen, mit denen wir arbeiten, funktioniert die Verbrennung aber grundlegend anders“, erklärt Stefan Penthor vom Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften der TU Wien. „Bei unserer Verbrennungstechnik kommt das Erdgas gar nicht in Kontakt mit der Luft, weil wir den Prozess auf zwei getrennte Kammern aufteilen.“

Zwischen den beiden Kammern zirkuliert ein Granulat aus Metalloxid, das für den Sauerstofftransport zuständig ist: „Durch eine Kammer pumpen wir einen Luftstrom, dort nehmen die Partikel Sauerstoff auf. Sie gelangen dann in die zweite Kammer, die vom Erdgas durchströmt wird. Dort geben sie den Sauerstoff ab, es kommt dort zu einer Verbrennung ohne Flamme, dabei entsteht CO2 und Wasserdampf“, erklärt Penthor.

Durch die Aufteilung in zwei Kammern hat man es auch mit zwei getrennten Abgasströmen zu tun: Aus der einen Kammer entweicht sauerstoffarme Luft, aus der anderen Wasserdampf und CO2. Der Wasserdampf kann ganz einfach abgetrennt werden, übrig bleibt fast reines CO2. Dieses CO2 kann für andere technische Anwendungen genutzt werden – oder man speichert es. „Die unterirdische Lagerung von CO2 in großem Stil, in ehemaligen Erdgas-Lagerstätten, könnte in Zukunft eine wichtige Rolle spielen“, glaubt Stefan Penthor. Auch das Intergovernmental Panel on Climate Change (IPCC) der Vereinten Nationen sieht die unterirdische Lagerung von CO2 als wesentlichen Bestandteil einer künftigen Klimapolitik, doch CO2 zu lagern ist nur möglich, wenn es – wie bei der neuen Verbrennungstechnik CLC – in möglichst reiner Form abgeschieden wird.

Durch diese Trennung der beiden Abgasströme erspart man sich den sehr energieintensiven Schritt, das CO2 aus dem Abgas herauszuwaschen. Trotzdem wird auf übliche Weise Strom erzeugt, die Menge der freigesetzten Energie ist genau dieselbe wie bei der herkömmlichen Verbrennung von Erdgas.

Erfolgreich auf großen Maßstab skaliert

Dass die CLC-Verbrennungsmethode funktioniert, konnte an der TU Wien bereits vor einigen Jahren anhand einer Versuchsanlage demonstriert werden. Die große Herausforderung war es nun, den Prozess so umzugestalten, dass er auf wirtschaftlich interessante Großanlagen übertragen werden kann. Dafür war es notwendig, das gesamte Anlagen design zu überarbeiten, außerdem mussten neue Herstellungsverfahren für die Metalloxid-Partikel entwickelt werden. Als Basis für das überarbeitete Anlagendesign dienten zwei Patente der TU Wien im Bereich Wirbelschichttechnik.

„Für eine große Anlage braucht man viele Tonnen dieser Partikel, daher hängt die Wirtschaftlichkeit des Konzepts nicht zuletzt davon ab, dass man sie einfach und in ausreichender Qualität herstellen kann“, sagt Stefan Penthor.

Dreieinhalb Jahre lang wurde nun im Forschungsprojekt SUCCESS an solchen Fragen geforscht. Neben der TU Wien, von der das Projekt koordiniert wurde, waren 16 Partnereinrichtungen aus ganz Europa beteiligt. Tatsächlich konnten alle wichtigen technischen Fragestellungen geklärt werden. „Das Ziel ist erreicht: Wir haben die Technologie nun so weit entwickelt, dass man jederzeit beginnen kann, eine Demonstrationsanlage im Bereich von 10 Megawatt zu errichten“, sagt Stefan Penthor. Das ist nun aber nicht mehr die Aufgabe der Forschungseinrichtungen, für diesen nächsten Schritt werden nun private Geldgeber gebraucht. Auch vom Willen der Politik und künftigen Rahmenbedingungen in der Energiewirtschaft wird der Erfolg dieser Technologie abhängen. Der nächste Schritt ist auch deswegen wichtig, weil nur so die nötige Erfahrung zum Langzeitbetrieb im industriellen Maßstab gesammelt werden kann.

Inzwischen hat das Forschungsteam an der TU Wien auch bereits das nächste wissenschaftliche Ziel ins Visier genommen: „Wir möchten das Verfahren so weiterentwickeln, dass man nicht nur Erdgas, sondern auch Biomasse verbrennen kann“, sagt Penthor. „Wenn man Biomasse verbrennt und CO2 abscheidet, würde man nicht nur CO2-neutral arbeiten, man würde sogar den CO2-Gehalt der Luft reduzieren. Man könnte also gleichzeitig Energie gewinnen und etwas Gutes für das Weltklima tun.“ (Florian Aigner)

Externer Link: www.tuwien.ac.at

Hitzebeständige Kondensatoren – stabil bis 300 Grad

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 02.05.2017

Hitze gehört zu den schlimmsten Feinden der Elektronik. Sie kann die Funktionalität stören, sie lässt elektronische Bauteile schneller altern und kann diese sogar zerstören. Fraunhofer-Forscher haben einen Kondensator entwickelt, der Temperaturen von bis zu 300 Grad Celsius aushält. Sie nutzen dabei einen neuartigen Materialmix – und einen besonderen 3D-Trick.

Hitze, Staub und Feuchtigkeit schaden elektronischen Bauteilen. Gegen Staub und Feuchtigkeit lassen sich diese gut schützen. Doch die Hitze bleibt ein Problem, denn sie entsteht im Bauteil selbst. Überall, wo Strom fließt, wird auch Hitze generiert. Und nicht immer ist in der elektronischen Komponente genügend Platz, um die Abwärme mit Kühlrippen oder Ventilatoren abzuleiten. Noch schwieriger wird es, wenn das Gerät in einer heißen Umgebung arbeitet, beispielsweise ein Bohrmeißel in der Ölindustrie, der in einigen Tausend Metern Tiefe mit hoher Geschwindigkeit rotiert. Dabei entstehen Temperaturen von bis zu 250 Grad. Hinzu kommt die enorme mechanische Belastung für die elektronischen Komponenten.

Für dieses Problem hat das Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS eine Lösung parat. Die Forscher haben einen Kondensator entwickelt, der Temperaturen von bis zu 300 Grad verkraftet. Zum Vergleich: Herkömmliche Elektronik kann nur Temperaturen von bis zu 125 Grad widerstehen.

Kondensatoren speichern Ladungsträger und zählen zu den am häufigsten verwendeten passiven Bauelementen in der Elektronik. Der Aufbau eines Kondensators ist simpel: Zwei leitfähige Platten fungieren als Plus- beziehungsweise Minus-Elektrode, dazwischen liegt eine isolierende Schicht, das sogenannte Dielektrikum. Um die Hitzebeständigkeit zu verbessern, nutzt das Team um Dorothee Dietz, Wissenschaftlerin am Fraunhofer IMS, einen neuartigen Materialmix und einige konstruktive Kniffe.

3D-Trick für mehr Fläche

Bei der Fertigung der leitenden Metallschichten werden winzige Löcher in die Grundfläche geätzt, um die Fläche zu vergrößern. Der 3D-Trick erhöht die Kapazität und ermöglicht es gleichzeitig, ein dickeres Dielektrikum zu verwenden. Eine dickere Schicht wiederum widersteht hohen Temperaturen besser und kann unkontrollierte Leckströme im Kondensator vermindern.

Auch bei der Produktion des isolierenden Dielektrikums gehen die Experten neue Wege. Sie verwenden Tantalpentoxid, eine Verbindung aus dem Metall Tantal und Sauerstoff, sowie Aluminiumoxid. Der Materialmix speichert die Ladungsträger besser als das üblicherweise verwendete Siliziumoxid und bewirkt so einen höheren Kapazitätsbelag des Kondensators. In der Elektrotechnik werden diese besonders leistungsfähigen Materialien deshalb auch als High-k-Dielektrika bezeichnet.

Außerdem verwenden die Fraunhofer-Forscher ein elektrisch hochleitfähiges Silizium sowie das besonders robuste und hitzebeständige Ruthenium. »Mit unserem Materialmix und den konstruktiven Tricks können wir einen Kondensator herstellen, der äußerst robust und hitzebeständig ist, ohne an Leistung zu verlieren«, erklärt Dorothee Dietz.

Extrem präzise: Schichten mit nur einer Atomlage

Doch die Hochtemperatur-Fähigkeit ist nicht der einzige Vorteil der Halbleiter aus dem Fraunhofer-Labor. Hergestellt werden die Kondensatoren nämlich im Metall-Oxid-Halbleiter-Verfahren (MOS). Dabei werden Schichten mit jeweils nur einer Atomlage Dicke verarbeitet (Atomic Layer Deposition). So lässt sich die Gesamtdicke der Schichten exakt einstellen. »Das macht die Produktion sehr flexibel. Der Hersteller kann Bauteile genau nach den Vorgaben des Kunden anfertigen, ohne den Prozessablauf verändern zu müssen«, sagt Dietz.

Das Know-how im Bereich der Hochtemperaturelektronik lässt sich auf viele andere passive oder aktive Bauelemente wie Widerstände, Dioden oder Transistoren anwenden. Die am Fraunhofer IMS etablierte Technologie eignet sich auch für komplette integrierte Schaltungen. Damit kann der Kondensator nicht nur im Bohrmeißel, sondern ebenso in Einspritzanlagen von Motoren oder Flugzeugturbinen verbaut werden – also überall da, wo extrem hitzebeständige und robuste Bauteile gefragt sind.

Externer Link: www.fraunhofer.de

technologiewerte.de – MOOCblick Mai 2017

Spannende Themen, herausragende Dozenten und flexible Lernmöglichkeiten tragen zum wachsenden Erfolg der Massively Open Online Courses (MOOCs) bei – offene, internetgestützte Kurse mit einer Vielzahl an Teilnehmern rund um den Globus.

Folgender Kurs – zu finden auf der MOOC-Plattform edX – sollte einen Blick wert sein:

How Virtual Reality (VR) Works
Jurgen P. Schulze (UC San Diego)
Start: 15.05.2017 / Arbeitsaufwand: 30-42 Stunden

Externer Link: www.edx.org