Schutz-Schalter gegen Fettleibigkeit

Pressemeldung der TU Graz vom 22.03.2017

Ein Forscherteam der Karl-Franzens-Universität Graz und der TU Graz hat einen Wirkstoff entwickelt, der Fettleibigkeit reduziert und Typ-II-Diabetes sowie nicht-alkoholische Fettleber verhindern kann.

Laut der Weltgesundheitsorganisation WHO sind rund 1,9 Milliarden Menschen weltweit übergewichtig. 75 Prozent von ihnen leiden unter einer nicht-alkoholischen Fettleber, 400 Millionen haben Typ-II-Diabetes. Neben den psychosozialen Auswirkungen von Fettleibigkeit führen vor allem deren Folgeerkrankungen zu einer starken Einschränkung der Lebensqualität und -dauer. Wissenschafterinnen und Wissenschafter der Karl-Franzens-Universität Graz und der TU Graz haben nun einen Wirkstoff entwickelt, der Fettleibigkeit reduziert und Typ-II-Diabetes sowie nicht-alkoholische Fettleber verhindern kann. Die Forschungsergebnisse der Arbeitsgruppen von Rudolf Zechner, Robert Zimmermann, beide Uni Graz, und Rolf Breinbauer von der TU Graz wurden im renommierten Fachmagazin Nature Communications veröffentlicht.

Insulinresistenz als Vorstufe zu Typ-II-Diabetes

Einer der Hauptgründe für die Entstehung von stoffwechselbedingten Erkrankungen, die mit Adipositas in Verbindung gebracht werden, ist ein erhöhter Fettsäurespiegel im Blut. Diese Lipide werden durch die Aktivität eines Enzyms namens Adipose Triglyceride Lipase, kurz ATGL, aus dem gespeicherten Fett des Fettgewebes freigesetzt. „Bei Übergewicht verhindern übermäßig ins Blut freigesetzte Fettsäuren die Aufnahme von Glucose in den Muskel und ins Fettgewebe. Es entsteht eine sogenannte Insulinresistenz, einer Vorstufe von Typ-II-Diabetes“, erklärt Martina Schweiger, Erst- und korrespondierende Autorin der Publikation. Außerdem kommt es zum erhöhten Einstrom von Fettsäuren in Gewebe, dessen primäre Funktion nicht die Speicherung von Lipiden darstellt – etwa in die Leber. Durch die Anhäufung von Triglyzeriden in diesem Organ wird seine Funktion gestört, die Konsequenz ist eine nicht-alkoholische Fettleber.

Kein ATGL, keine Insulinresistenz

„Da die ATGL die Menge an freigesetzten Fettsäuren ins Blut bestimmt, haben wir uns vorgenommen, dieses Enzym zu inhibieren, um die metabolischen Folgen von Übergewicht zu behandeln“, so Schweiger. Bereits 2013 gelang es den Arbeitsgruppen von Zimmermann und Breinbauer, ein Molekül mit dem Namen Atglistatin zu synthetisieren, das die Aktivität der ATGL unterbindet. In ihrer neuen Studie charakterisiert die Forschergruppe jetzt die Wirkung dieses Hemmstoffes Atglistatin im Tiermodell. „Durch das Ausschalten der ATGL konnten wir die Insulinresistenz und die Entstehung der nicht-alkoholischen Fettleber vollständig verhindern. Außerdem kam es zu einer Gewichtsreduktion trotz fettreicher Nahrung“, schildert Schweiger.

Entscheidend war die Erkenntnis, dass ATGL nicht komplett unterbunden werden darf. „Hemmt man ATGL vollständig, führt das zwar ebenso zu einer Verbesserung der Adipositas und der Insulinresistenz, jedoch kommt es zu einer Verfettung des Herzens, die tödlich enden kann“, unterstreicht die Forscherin. Eine vorübergehende Hemmung hat jedoch keinerlei schädliche Nebenwirkungen. „Durch Aufnahme des Wirkstoffes Atglistatin ist das Enzym für sechs Stunden abgestellt. Nach dieser Zeit baut der Körper den Hemmstoff auf natürlichem Weg ab. Danach nimmt ATGL seine Arbeit wieder auf“, erklärt Schweiger.

Die Publikation ist ein weiteres Beispiel für die erfolgreiche Kooperation der Karl-Franzens-Universität Graz und der TU Graz in den Naturwissenschaften, NAWI Graz. (Gerhild Kastrun)

Originalpubliktion:
Nature Communictions.
M. Schweiger, M. Romauch, R. Schreiber, G. Grabner, S.Hütter, P. Kotzbeck, P. Benedikt, T. Eichmann, S. Yamada, O. Knittelfelder, C. Diwoky, C. Doler, N. Mayer, W. De Cecco, R. Breinbauer, R. Zimmermann, & R. Zechner: Pharmacological Inhibition of Adipose Triglyceride Lipase Corrects High-Fat Diet-induced Insulin Resistance and Hepatosteatosis in Mice.
DOI: 10.1038/NCOMMS14859

Externer Link: www.tugraz.at

Drahtlose Sensor-Systeme sorgen für Nachschub bei Seife & Co

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.03.2017

Waschräume gehören zu den wartungsintensivsten Räumen in Unternehmen. Eine neue Fraunhofer-Technik sorgt nun dafür, dass der Füllstand von Seifenspendern, Handtuchrollen oder Toilettenpapierhaltern vollautomatisch überwacht und an das Reinigungspersonal gemeldet wird. Im Zentrum des »CWS Washroom Information Service« stehen dabei Sensoren und eine raffinierte Funktechnik.

»In Waschraum 17 im dritten Stock gehen die Handtücher zur Neige, in Waschraum 21 im vierten Stock ist die Seife aufgebraucht und in 26 wird Toilettenpapier knapp.« Mit solchen Informationen schon vorab ausgestattet können Mitarbeiter des Reinigungspersonals in Zukunft ihre Rundgänge besser planen und deutlich effizienter arbeiten. Denn Waschräume gehören zu den wartungsintensivsten Räumen in Gebäuden. Neben der Reinigung müssen Seife, Handtücher und Toilettenpapier regelmäßig nachgefüllt werden. Genau dafür hat das Fraunhofer-Institut für Integrierte Schaltungen IIS eine Lösung entwickelt. Gemeinsam mit dem Fullservice-Anbieter CWS-boco International GmbH entstand das System »CWS Washroom Information Service«, das den Wartungsaufwand deutlich reduziert. Federführend ist Prof. Dr. Thomas Wieland, Leiter des Fraunhofer-Anwendungszentrums für Drahtlose Sensorik in Coburg. Neben der Sensortechnik steuern die Fraunhofer-Wissenschaftler auch ein Funksystem zur Weitergabe der Daten bei. CWS-boco ist für das Design der jeweiligen Behälter- und Spendersysteme verantwortlich.

Am Anfang des »CWS Washroom Information Service« (WIS) stehen die Sensoren. Sie sind batteriebetrieben und überwachen jeweils den Füllstand von Seifenspendern, Handtuchrollen und Toilettenpapier. Dabei kommen unterschiedliche Messmethoden zum Einsatz. Beim Seifenspender etwa registriert ein optischer Sensor den Füllstand. Zusätzlich holt sich das Sensormodul die Daten des internen Zählers im Seifenspender, der jede abgegebene Portion registriert. Optische Systeme finden auch beim Toilettenpapier Verwendung, während beim Handtuchspender wieder die Portionszählung greift.

Funknetz konfiguriert sich selbst

Die auf diese Weise erhobenen Daten gehen dann über ein ausgeklügeltes Funksystem auf die Reise. Zunächst wandern sie über das stromsparende Bluetooth 4.0 LE (Low Energy) zur nächstgelegenen »Washroom Control Unit« (WCU). Diese agiert als Sammelstelle und Kommunikationsknoten. WCUs sind im ganzen Gebäude verteilt und untereinander vernetzt. Hier kommt die vom Fraunhofer IIS entwickelte Funktechnik s-net® zum Einsatz. Der Clou dabei: Das Funknetz konfiguriert sich selbst. Jede angeschlossene WCU entscheidet selbst, an welches Gerät sie die Daten weiterschickt. »Sollte ein Modul defekt sein oder aus anderen Gründen nicht angefunkt werden können, schickt die WCU ihre Daten an ein anderes Modul«, erklärt Fraunhofer-Experte Wieland. Störungen in der Funkstrecke oder ein Geräteausfall werden im Funknetz automatisch kompensiert. Wenn alle Daten gesammelt sind, sendet die letzte WCU in der Übertragungskette das gesamte Datenpaket ebenfalls via s-net® an ein Gateway, das meist an der Außenseite des Gebäudes angebracht ist.

Von da werden die Infos über Mobilfunk an den Server von CWS-boco International GmbH weitergeleitet. Eine visuelle Bedienoberfläche zeigt sie individuell für jeden Waschraum-Betreiber an. Der zuständige Schichtleiter kann die Waschraum-Infos als Schichtplan ausdrucken oder an die Tablet-PCs der Mitarbeiter schicken. Eine andere Möglichkeit wäre, dass ein Display im Eingangsbereich des Waschraums darstellt, was jeweils zu tun ist.

Feldtest startet 2017

Die Entwicklung des »CWS Washroom Information Service« ist inzwischen weitgehend abgeschlossen, bereits im ersten Quartal 2017 startet ein stufenweiser Feldtest mit einem Pilotkunden. CWS-boco vermarktet das System. Ein großer Vorteil der Lösung ist ihre Flexibilität. »Wir können neue Geräte mit jeweils eigenen Sensorsystemen integrieren. Vom Seifenspender über den Toilettenpapierspender bis zum Abfallbehälter lässt sich grundsätzlich jedes Produkt mit Sensoren ausstatten und ins System einbinden«, sagt Jens Einsiedler, Head of Business Digitalisation bei CWS-boco International GmbH.

Doch die Fraunhofer-Forscher denken nicht nur an Waschraum-Services. Das Sensorik-gestützte s-net® macht viele Anwendungen denkbar. »Das System ist ideal für alle Bereiche, in denen Sensorik-Daten gesammelt und weitergeleitet werden sollen«, erklärt Wieland. Denn das energieoptimierte s-net® ist wegen der Fähigkeit, sich selbst zu organisieren, nicht nur besonders zuverlässig. Die Sendefrequenz von 868 MHz besitzt gerade in verwinkelten Gebäuden gute Ausbreitungseigenschaften, da sie eine bessere Durchdringung von Wänden gewährleistet.

Die drahtlosen Sensorik-Netze mit dieser und anderen Funktechniken eignen sich beispielsweise in der Landwirtschaft zum Überwachen von Anbauflächen. In Städten könnten Sensorik-Netze die Wasserqualität von Flüssen prüfen. Bei Brücken und anderen Bauwerken kontrollieren Sensoren die Stabilität. Sogar im Bereich Gesundheit eröffnet die Technik neue Möglichkeiten. So ließen sich die Sensoren in Textilien integrieren und dann die Bewegungsabläufe des Patienten in einer Physiotherapie kontrollieren.

Weitere Anwendungen sind im Bereich Industrie 4.0 eine Option. Drahtlose Sensorik ist bestens geeignet, um Produktionsanlagen zu überwachen und den Status von Maschinen oder Werkstücken zu prüfen. Auf dieser Basis liefert das System alle für die Steuerung nötigen Daten. Daneben arbeiten Thomas Wieland und sein Team derzeit noch an einem bodenständigen, aber nicht weniger nützlichen Projekt: eine Füllstandsmessung der Müllbehälter in der Fußgängerzone von Reutlingen.

Externer Link: www.fraunhofer.de

Zuverlässiger molekularer Kippschalter entwickelt

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 09.03.2017

Neue Dimensionen bei der Verkleinerung elektronischer Bauteile – Schalter kann beliebig oft betätigt werden – Zukünftig hunderfach kleinere Schaltkreise möglich

Die Nanotechnologie macht immer neue Miniaturrekorde möglich. Doch der Verkleinerung elektronischer Bauteile sind physikalische Grenzen gesetzt, die bald erreicht sein werden. Neuartige Materialien und Bauelemente sind gefragt. Hier setzt die molekulare Elektronik an. Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) ist es jetzt gelungen, einen molekularen Kippschalter zu entwickeln, der nicht nur in der gewählten Position verbleibt, sondern den man auch beliebig oft umlegen kann. Das berichten sie in der Fachzeitschrift Nature Communications.

Indem herkömmliche siliziumbasierte Bauteile wie hier ein Schalter durch einzelne Moleküle ersetzt werden, könne man zukünftig elektronische Schaltkreise konstruieren, die sich mehr als hundertfach enger auf einen Chip integrieren lassen, sagt Lukas Gerhard vom Institut für Nanotechnologie.

Das Grundgerüst des elektromechanischen Molekülschalters besteht aus nur wenigen Kohlenstoffatomen. Drei Schwefelatome bilden die Füße, die auf einer glatten Goldoberfläche fixiert sind. Der Kipphebel endet in einer Nitrilgruppe mit einem Stickstoffatom. Umgelegt wird er, indem eine Spannung angelegt wird und durch das resultierende elektrische Feld eine Kraft auf die Ladung des Stickstoffatoms ausgeübt wird. Dadurch wird Kontakt zu einer zweiten Elektrode (hier der Goldspitze eines Rastertunnelmikroskops) hergestellt.

Der gesamte Schalter misst gerade mal einen Nanometer. Zum Vergleich: Allein die kleinsten in der Halbleitertechnik verwendeten Strukturen haben eine Größe von zehn Nanometern. „Die molekulare Elektronik wäre also ein sehr großer Fortschritt“, sagt Gerhard.

Bemerkenswert ist indes nicht nur die Größe des Schalters, sondern vor allem, dass er zuverlässig und vorhersehbar arbeitet. Das heißt, eine Betätigung führt immer eindeutig zu einem Schaltzustand, der Kontakt ist also entweder offen oder geschlossen. Bislang scheiterte die Umsetzung dieses Prinzips oft daran, dass die elektrische Kontaktierung einzelner Moleküle nur unzureichend kontrollierbar war. Den KIT-Forschern ist es jetzt erstmalig geglückt, einen solchen Kontakt zwischen Molekül und Goldspitze elektrisch und mechanisch beliebig oft zu öffnen und zu schließen, ohne dass plastische Verformungen auftraten.

Der Fortschritt in der synthetischen Chemie habe zwar dazu geführt, dass eine große Vielfalt von unterschiedlichen molekularen Bausteinen in milliardenfacher, Atom für Atom identischer Ausfertigung bereitgestellt werden könne, so Gerhard. „Um sie aber miteinander verschalten zu können, muss man sie so schonend berühren können, dass sie dabei nicht beschädigt werden.“ Darin, dass eine so schonende Verfahrensweise nun erstmals gelungen sei, sieht er die entscheidende Neuerung.

Die vorliegende Arbeit ist in einer engen Zusammenarbeit zwischen experimentellen Physikern und Chemikern des Instituts für Nanotechnologie am KIT und der Universität Basel und theoretischen Physikern der Universität Konstanz entstanden. (mex)

Externer Link: www.kit.edu

Wie Kristalle Wellen schlagen

Pressemitteilung der Universität Regensburg vom 13.03.2017

Physiker der Universitäten Regensburg, Marburg und Michigan erzeugen maßgeschneiderte Lichtwellen per Kristall-Symmetrie

Licht besteht aus elektromagnetischen Wellen. Um die Eigenschaften von Licht möglichst präzise zu kontrollieren, möchte man daher am besten die zeitliche Form dieser Wellen direkt einstellen – ein umso schwierigeres Unterfangen, je höher die Schwingungsfrequenz ist. Ein Team von Physikern aus Regensburg (Deutschland), Marburg (Deutschland) und Ann Arbor (USA) hat nun eine Methode entwickelt, um Lichtwellen, die von beschleunigten Elektronen in einem Festkörper abgestrahlt werden, mit Hilfe der Kristallsymmetrie maßzuschneidern.

Seit einigen Jahren können Physiker extrem kurze ultraviolette Lichtblitze erzeugen. Zu diesem Zweck wird eine Methode eingesetzt, die sich „Generation Hoher Harmonischer“ nennt. Dabei entreißt ein intensiver Laser im nahinfraroten Spektralbereich gasförmigen Atomen ihre Elektronen, um sie wenig später wieder zurück in den Kern zu schleudern und bei der Kollision ultraviolettes Licht zu erzeugen. Dieser Prozess erfolgt derart rasant, dass das Licht in äußerst kurzen Impulsen emittiert wird, die nur einige zehn Attosekunden dauern. Seit Beginn unseres Universums sind noch nicht so viele Sekunden vergangen, wie Attosekunden in einer einzelnen Sekunde enthalten sind. Dieser unvorstellbar kurze Augenblick stellt jedoch die natürliche Zeitskala für die Bewegung von Elektronen in Atomen, Molekülen und Festkörpern dar.

Um solche Vorgänge zu beobachten, benutzen Forscher heute Attosekunden-Lichtblitze, mit denen sie eine Folge superschneller Schnappschüsse nach dem Prinzip einer Stroboskopkamera aufnehmen und zu einem Zeitlupenfilm zusammenfügen. Präzise Hochgeschwindigkeitsaufnahmen erfordern eine möglichst genaue Kontrolle dieser Lichtblitze. Am liebsten würde man die Wellenform eines Lichtimpulses selbst maßschneidern, anstatt nur seine Helligkeit oder Zeitdauer einzustellen. Nun gelang es einem Team von Physikern an den Universitäten Regensburg, Marburg und Ann Arbor, genau dies durch „Hohe-Harmonische-Generation“ in einem Festkörper-Kristall zu erreichen. Wenn man die Symmetrie des Kristalls geschickt ausnutzt, können ultrakurze Wellenformen mit einer Detailgenauigkeit geformt werden, die in atomaren Gasen fehlt.

Die Experimente wurden an der Hochfeld-Terahertz-Quelle an der Universität Regensburg durchgeführt, wo „Hohe Harmonische“ in einem Volumenhalbleiter erzeugt werden. Zum ersten Mal gelang es den Physikern, Details der Trägerwelle der „Hohen Harmonischen“ aufzulösen. Darüber hinaus zeigten sie, dass die Kristallorientierung die Lichtemission in einer verblüffenden Art beeinflusst: Für bestimmte Richtungen hat jeder zweite ausgesandte Lichtimpuls das genau umgekehrte Vorzeichen seines Vorgängers. Die Kristallsymmetrie kann außerdem dazu genutzt werden, eine beliebige Polarisation der Lichtwelle der „Hohen Harmonischen“ einzustellen. Die experimentellen Ergebnisse wurden durch eine quantenmechanische Simulation von den Physikern aus Marburg und Ann Arbor als raffinierter Interferenzmechanismus der angeregten und beschleunigten Elektronen erklärt.

Maßgeschneiderte Lichtwellen aus Festkörper-basierten Attosekunden-Quellen dürften schon bald in neuen superschnellen Zeitlupenkameras zum Einsatz kommen. Außerdem könnten sie als extrem schnelle Vorspannung genutzt werden, um elektrische Ströme zu treiben. Dieses Prinzip könnte eine qualitativ neue Art Lichtwellen-getriebener Elektronik ermöglichen, welche die Taktraten aktueller elektronischer Bauelemente millionenfach übertrifft.

Die Ergebnisse der Forschergruppe werden in der nächsten Ausgabe der Fachzeitschrift „Nature Photonics“ veröffentlicht. (Claudia Kulke)

Publikation:
F. Langer, M. Hohenleutner, U. Huttner, S. W. Koch, M. Kira, and R. Huber: “Symmetry-controlled temporal structure of high-harmonic carrier fields from a bulk crystal”.
DOI: 10.1038/nphoton.2017.29

Externer Link: www.uni-regensburg.de

Wenn Moleküle Nanotrommeln verstimmen

Presseaussendung der TU Wien vom 13.03.2017

Die Analyse kleinster Mengen von pharmazeutischen Proben ist für die Forschung und Synthese neuer Medikamente äußerst wichtig, stellt aber derzeit eine technische Herausforderung dar. Eine neue Infrarot-Messmethode, die an der TU Wien in Zusammenarbeit mit zwei Forschungsgruppen aus Kopenhagen entwickelte wurde, könnte Abhilfe schaffen.

Materialien für pharmazeutische Produkte sind ein teures Gut. Entsprechend vorsichtig geht man mit ihnen um, wenn es beispielsweise um die Synthese neuer Medikamente geht. Um die gewünschte Zusammensetzung auszutesten oder anzupassen, braucht es genaue Messinstrumente. Eine bisher gängige Messmethode ist Infrarotspektroskopie. Um die Probe aber überhaupt analysieren zu können, muss diese zunächst vorbereitet werden. Der pharmazeutische Stoff kann beispielsweise in einer wässrigen Lösung gelöst sein. Da aber Wasser einen hohen Absorptionsgrad des Lichts aufweist, ist eine genaue Messung schwierig. Alternativ wird das Material gefriergetrocknet oder in Pulverform vorbereitet, allerdings erfordern beide Varianten ca. 1 mg Material, was je nach Anwendung eine relativ große Menge darstellt.

Prof. Silvan Schmid vom Institut für Sensor- und Aktuatorsysteme der TU Wien entwickelt gemeinsam mit zwei Forschungsgruppen von Dänemarks Technischer Universität und der Universität Kopenhagen eine neue Messmethode, die bereits mit winzigsten Proben Mengen genaue Messergebnisse liefert.

Vibration von Molekülen

„Eine hohe Fehlerquelle im Messprozess besteht in der Samplevorbereitung, weil damit direkt hantiert werden muss. Das begünstigt Verunreinigungen“, erklärt Prof. Schmid. In der von ihm mitentwickelten Messmethode wird Probenmaterial direkt aus einer Lösung eingebracht und anschließend in ein Aerosol umgewandelt. Durch das Aerosol können die enthaltenen Stoffe, die gemeinsam mit Luft transportiert werden, direkt in das Messinstrument geblasen werden – ohne händische Verunreinigungen zu riskieren. Im Messaufbau wird das Aerosol durch einen vibrierenden Luftfilter aus Siliziumnitrit geblasen und haftet dort an. „Unsere Methode basiert auf nanomechanischen Resonatoren. Man kann sich diese wie kleinste perforierte Trommeln vorstellen, die auch entsprechend vibrieren können“, erklärt Prof. Schmid.

Diese vibrierenden Filter sind etwa 1.000 mal dünner als ein Haar und etwa 500-1000 µm breit. Auf dem Filter werden zusätzlich Elektroden aufgebracht, um die Vibration der Filtertrommel zu messen. Anschließend wird ein Infrarotlaser auf den Filter ausgerichtet. Das Licht des Lasers regt eine molekulare Vibration des auf dem Filter adsorbierten Probenmaterials an, die die Trommel erwärmt und dadurch eine messbare Verstimmung erzeugt. Die Infrarotquelle kann entsprechend ihres Frequenzspektrums „durchgestimmt“ werden, was wiederum unterschiedliche Frequenzen in der Vibration der Moleküle erzeugt. Je nachdem in welcher Frequenz die Moleküle vibrieren, lässt sich eine Verstimmung des vibrierenden Filters feststellen. „Wir haben die Absorptions-Peaks bestimmter Medikamente, beispielsweise von Indometacin, mit unseren Messergebnissen verglichen, und diese stimmen überein. Unsere Methode benötigt dazu aber weniger als ein Millionstel des Probenmaterials das für Standard-Infrarotspektroskopie benötigt wird“, zeigt sich Prof. Schmid erfreut.

Nächster Schritt: Erhöhte Empfindlichkeit und industrielle Anwendbarkeit

Ein weiterer Schritt in Richtung realistischer Anwendbarkeit für die Industrie setzt Silvan Schmid mit der Fortsetzung seiner Forschungen. Momentan beschäftigt sich seine Gruppe u. a. mit der Optimierung der vibrierenden Filter, um die Empfindlichkeit noch weiter zu erhöhen. Dies würde es erlauben, die benötigte Menge Probenmaterial noch weiter zu verringern. (Christine Cimzar-Egger)

Originalpublikation:
M. Kurek et al.
Nanomechanical Infrared Spectroscopy with Vibrating Filters for Pharmaceutical Analysis.
Angewandte Chemie International Edition
DOI: 10.1002/anie.201700052

Externer Link: www.tuwien.ac.at