Spracherkennung aus Gehirnströmen

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 15.06.2015

Aus Aktivitätsmustern auf der Gehirnoberfläche lassen sich gesprochene Sätze rekonstruieren / „Brain-to-Text“ vereint Kenntnisse aus den Neurowissenschaften, der Medizin und der Informatik

Sprache ist eine der Aufgaben der menschlichen Großhirnrinde (Kortex). Sprachprozesse drücken sich in Hirnströmen aus, die mittels Elektroden direkt am Kortex aufgezeichnet werden können. Nun ist es erstmals gelungen, aus diesen Strömen kontinuierlich gesprochene Laute, Wörter und ganze Sätze zu rekonstruieren und per Computer als Text wiederzugeben. Ihr Verfahren „Brain-to-Text“ stellen Forscher des KIT und des amerikanischen Wadsworth Centers nun in der Fachzeitschrift Frontiers in Neuroscience vor (doi: 10.3389/fnins.2015.00217).

„Schon lange wurde darüber spekuliert, ob die direkte Kommunikation zwischen Mensch und Maschine über Gehirnströme möglich ist“, erklärt Tanja Schultz, die mit Ihrem Team am Cognitive Systems Lab des KIT die vorliegende Studie durchgeführt hat. „Wir konnten nun zeigen, dass aus Gehirnströmen einzelne Sprachlaute und kontinuierlich gesprochene komplette Sätze erkannt werden können.“

Die Ergebnisse wurden durch die interdisziplinäre Zusammenarbeit von Forscherinnen und Forschern aus Informatik, Neurowissenschaften und Medizin möglich. In Karlsruhe wurden Methoden aus der Signalverarbeitung und der automatischen Spracherkennung angewendet. „Diese erlauben neben der Erkennung von Sprache aus Gehirnsignalen eine detaillierte Analyse der am Sprachprozess beteiligten Gehirnregionen und ihrer Interaktionen“, sagen Christian Herff und Dominic Heger, die im Rahmen ihrer Promotion das Brain-to-Text-System entwickelt haben.

Die aktuelle Arbeit ist weltweit die Erste, die kontinuierlich gesprochene Sprache erkennt und in Text transformiert. Dazu werden Informationen aus dem Kortex mit linguistischem Wissen und Algorithmen des maschinellen Lernens kombiniert, um die wahrscheinlichste Wortsequenz zu extrahieren. Derzeit arbeitet Brain-to-Text auf hörbar gesprochener Sprache, die Ergebnisse sind allerdings ein sehr wichtiger erster Schritt hin zur Erkennung gedachter Sprache.

Die Hirnströme wurden im Rahmen der Behandlung von 7 Epilepsie-Patienten, die freiwillig an den Experimenten teilnahmen, in den USA aufgezeichnet. Im Zuge ihrer neurologischen Behandlung wurde ihnen ein Elektrodennetz auf die Großhirnrinde gelegt (Elektrokortikographie (ECoG)). Während die Patienten Beispieltexte laut vorlasen, wurden die räumlich und zeitlich hoch aufgelösten ECoG-Signale aufgezeichnet. Diese wurden später in Karlsruhe analysiert und dienten als Basis für die Entwicklung von Brain-to-Text. Neben der reinen Grundlagenforschung und einem besseren Verständnis der hochkomplexen Sprachprozesse im Gehirn könnte Brain-to-Text ein Baustein sein, um Locked-in-Patienten zukünftig eine sprachliche Kommunikation zu ermöglichen. (kes)

Externer Link: www.kit.edu

Welser Bio- und Umwelttechniker entwickeln echte Stroh-Halme

Pressemeldung der FH Oberösterreich vom 12.06.2015

Normalerweise wandelt er Stroh in Biosprit um. Oder er stellt aus Stroh Isoliermaterialien für den Hausbau her. Diesmal wurde der Welser Biotechnologe FH-Prof. Alexander Jäger mit einem neuen Thema konfrontiert: „Zeigen Sie mir, wie ich Biotrinkhalme aus Stroh fachgerechnet herstellen kann“, so die Anfrage des Atzbacher Landwirts und Jungunternehmer Daniel Auinger. Die FH OÖ in Wels hat ihm nach mikrobiologischen Analysen alle offenen Fragen beantworten können. Die „echten“ Strohhalme sind bereits am Markt erhältlich.

Mit dem jungen Bio- und Umwelttechnik-Absolventen Martin Maier MSc fand sich schnell ein idealer Jungforscher für dieses Projekt: Perfekt ausgebildet in den Fächern Mikrobiologie, Chemie, Verfahrenstechnik sowie Umweltrecht wurden von der FH OÖ die noch offenen Fragen geklärt: Sind die aus Biogetreide geschnittenen Strohhalme frei von chemischen Schadstoffen? Wie müssen sie gereinigt und getrocknet werden um auch den strengen Hygienevorschriften zu entsprechen?

Für trendige Bars und Restaurants

Alle Fragestellungen wurden geklärt und so konnte das Jungunternehmen Bio-Strohhalme Auinger die „echten Strohhalme“ auf den Markt bringen. „Unsere Zielgruppen für die Bio-Strohhalme sind nicht nur umweltbewusste Konsumenten, sondern auch trendige und hochqualitative Bars und Restaurants“, so Daniel Auinger.

Ohne Farbstoffe und Weichmacher

Auf die Frage nach den Vorteilen dieser echten Strohhalme antwortet der Welser Forscher Alexander Jäger: „Ein natürliches, in der Region hergestelltes Produkt aus nachwachsenden reinen Rohstoffen – frei von Farbstoffen und Weichmachern. Da schmecken die Getränke mit dem Strohhalm gleich besser.“

Externer Link: www.fh-ooe.at

Moleküle auf Knopfdruck: Internationale Forschungsgruppe kontrolliert erstmals Zusammenschluss von Atomen

Pressemeldung der Universität Kassel vom 15.06.2015

Es ist die Rede von einem „Meilenstein“: Einer deutsch-israelischen Forschungsgruppe ist es erstmals gelungen, die Bildung einer Bindung zweier Atome gezielt zu steuern. Beteiligt waren Prof. Dr. Christiane Koch und Dr. Wojciech Skomorowski von der Universität Kassel. Das Forschungsergebnis wurde jetzt im renommierten Fachjournal Physical Review Letters veröffentlicht.

Die Forschungsgruppe beschoss dafür Magnesium-Atome mit Femtosekunden-Lasern – das sind Laser, die extrem kurze Lichtimpulse aussenden und über eine sehr hohe Lichtstärke verfügen. Jeweils zwei Magnesium-Atome verbanden sich unter diesem Beschuss zu Mg2-Molekülen. Das Neuartige: Den Physikerinnen und Physikern gelang es, die Ausbeute der Mg2-Moleküle über den Lichtimpuls zu steuern. Schossen die Wissenschaftler einen Lichtimpuls ab, dessen Frequenz sich in seiner extrem kurzen Dauer erhöhte („Chirp“), bildeten sich fünfmal so viele Mg2-Moleküle wie ohne diese Frequenzsteigerung. Umgekehrt konnten die Wissenschaftler mit einem negativen Chirp, also einer nachlassenden Frequenz, die Ausbeute senken.

„Chemisches Montageband“

Nach einem solchen Mechanismus wurde lange gesucht. Der Herausgeber der Physical Review Letters, die American Physical Society, hob die Veröffentlichung daher mit einer gesonderten Würdigung auf seinem Online-Portal ‚Physics‘ hervor. Während die Aufspaltung von Molekülen durch Laser inzwischen mehrfach gelungen sei, heißt es darin, habe die Physik an der Steuerung von Atom-Verbindungen seit 30 Jahren gearbeitet. Der Erfolg könne – zusammen mit ähnlichen Mechanismen – letztlich zu einem „chemischen Montageband“ führen, „an dem Laser molekulare Stücke zu einem gewünschten Endprodukt spalten und zusammenschweißen“.

Während die Israelis aus Haifa die Experimente durchführten, lieferten Prof. Koch und Dr. Skomorowski sowie ein Kollege aus Jerusalem die theoretische Grundlage für das Phänomen. Mit dem so entwickelten Modell konnten die Experimente verfeinert und die Ausbeute an Mg2-Molekülen weiter gesteigert werden. „Unsere Ergebnisse sind ein Meilenstein auf dem Weg zur Kontrolle von molekularen Bindungen“, erklärte Prof. Koch. „Wir zeigen, dass die Form des Laserpulses Übergänge zwischen verschiedenen quantenmechanischen Schwingungszuständen des neu gebildeten Moleküls und damit das beobachtete Signal beeinflusst.“

Prof. Koch leitet an der Universität Kassel das Fachgebiet „Theoretische Physik/ Quantendynamik und –kontrolle“. Ihr Mitarbeiter Skomorowski ist seit 2013 als Humboldt-Stipendiat am Fachgebiet beschäftigt.

Publikation:
Physical Review Letters

Externer Link: www.uni-kassel.de

technologiewerte.de – MOOCblick Juni 2015

Spannende Themen, herausragende Dozenten und flexible Lernmöglichkeiten tragen zum wachsenden Erfolg der Massively Open Online Courses (MOOCs) bei – offene, internetgestützte Kurse mit einer Vielzahl an Teilnehmern rund um den Globus.

Folgender Kurs – zu finden auf der MOOC-Plattform edX – sollte einen Blick wert sein:

Autonomous Mobile Robots
Roland Siegwart (ETH Zürich)
Start: 15.06.2015 / Arbeitsaufwand: 75 Stunden

Externer Link: www.edx.org

Banknoten-Check mit ultraschnellem Zeilensensor

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.06.2015

Schnelligkeit und eine exakte Bildwiedergabe sind das A und O bei der Qualitätsprüfung im Sicherheitsdruck. Herkömmliche Bildsensoren stoßen hier an ihre Grenzen. Fraunhofer-Forscher haben einen ultraschnellen Zeilensensor entwickelt, der hochwertige Bilder liefert und Banknoten mit fehlerhaften Sicherheitsmerkmalen identifiziert.

Allein im ersten Halbjahr 2014 wurden nach Angaben der Deutschen Bundesbank knapp 25 000 falsche Euro-Banknoten im Wert von 1,5 Millionen Euro registriert. Um Geldfälschern ihr kriminelles Handwerk zu erschweren, werden Banknoten mit speziellen Sicherheitsmerkmalen ausgestattet. Dazu zählen winzige Strukturen, die mit bloßem Auge nicht sichtbar sind, sowie Hologramme mit Kippeffekten. Dabei verändert sich das Motiv, wenn man es aus unterschiedlichen Perspektiven betrachtet. Qualitätsprüfungen beim Druck sollen mit Hilfe spezieller Kameras sicherstellen, dass diese Merkmale auf jeder Banknote fehlerfrei vorhanden sind.

Das AIT Austrian Institute of Technology ist am internationalen Markt führend in der Herstellung solcher Prüfsysteme für den Sicherheitsdruck. Für die Entwicklung eines neuen Sensors hat die österreichische Forschungseinrichtung das Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS in Duisburg mit ins Boot geholt. Denn heute verfügbare Sensoren stoßen mittlerweile an ihre Grenzen: Ihre Geschwindigkeit reicht oft nicht aus, um die Qualität in Echtzeit während des Produktionsprozesses zu prüfen.

Kamera nimmt 200 000 Farbbilder pro Sekunde auf

Mit dem 60-Zeilen-Sensor, den die Duisburger Experten entwickelt haben, gehören diese Nachteile der Vergangenheit an: »Unser Sensor ist doppelt so schnell wie heute verfügbare Lösungen und liefert gleichzeitig qualitativ hochwertige Bilder in sehr hoher Auflösung«, erklärt Werner Brockherde vom IMS. Der Sensor erfasst die Geldscheine – ähnlich wie ein Scanner – Zeile für Zeile, wenn sie aus der Druckerpresse kommen. Pro Sekunde nimmt die Kamera dabei bis zu 200 000 Farbbilder auf, bei Belichtungszeiten von Millionstel Sekunden. Eine Software vergleicht die Bildaufnahmen mit einem Sollbild und identifiziert Banknoten mit fehlerhaften Sicherheitsmerkmalen. Um die hohe Geschwindigkeit zu erreichen, haben die IMS-Wissenschaftler für jede Pixelspalte eine eigene Auslesekette auf dem Chip integriert. Zudem entwickelten sie spezielle Photopixel, dank derer man trotz der kurzen Belichtungszeiten mit herkömmlichen Optiken arbeiten kann. In jeder Pixelspalte werden die drei Farben Rot, Grün und Blau gleichzeitig und über die gesamte Pixelfläche erfasst. Dies sorgt für eine qualitativ hochwertige Farbwiedergabe. Eine weitere Besonderheit des Sensors: Die hohe Anzahl an Zeilen ermöglicht es, Objekte aus unterschiedlichen Blinkwinkeln zu erfassen. »Damit lassen sich erstmalig auch Oberflächenstrukturen in 3D wie etwa Kippeffekte von Hologrammen überprüfen«, sagt Brockherde.

Die spezielle Architektur des Sensors eröffnet Spielräume für weitere Anwendungen. Dank der hohen Zeilenanzahl ließe sich sein Wellenlängenspektrum noch erweitern – bis in den UV- oder Infrarotlicht-Bereich. Das wäre auch für das Recycling von Kunststoffen interessant, wo der Sensor geschredderte Materialien anhand ihrer Farbinformationen identifizieren und so eine Trennung erleichtern könnte. Mit der Fähigkeit, auch 3D-Oberflächen zu analysieren, eignet er sich zudem für die Qualitätsprüfung unterschiedlicher Materialien in der industriellen Fertigung. Ein weiteres Einsatzgebiet ist die Untersuchung von Schienen oder Fahrdrähten der Bahn: Selbst bei einer Geschwindigkeit von rund 300 km/h könnte der Sensor gestochen scharfe Bilder mit einer Auflösung von bis zu 0,4 mm liefern und so winzigste Haarrisse erkennen. Erdnahe Satelliten, die mit einem solchen Sensor ausgestattet sind und die Erde mit einer Geschwindigkeit von 26 000 Kilometern pro Stunde umkreisen, könnten Farbaufnahmen von der Erdoberfläche mit einer Auflösung von drei Zentimetern machen.

Die Markteinführung des neuen Sensors als Herzstück der AIT-Prüfkameras ist für Ende 2015 geplant.

Externer Link: www.fraunhofer.de