Künstliche Intelligenz: Ein Auto parken mit zwölf Neuronen

Presseaussendung der TU Wien vom 22.10.2018

An der TU Wien nahm man sich beim Programmieren künstlicher Intelligenz natürliche Nervenbahnen zum Vorbild. Die neuen Ansätze erzielen mit wenig Aufwand verblüffende Leistungen.

Ein natürlich gewachsenes Gehirn funktioniert ganz anders als ein gewöhnliches Computerprogramm. Es besteht nicht aus Befehlen mit klaren logischen Anweisungen, sondern aus einem Netz von Zellen, die miteinander kommunizieren. Man kann heute aber solche Netze auch am Computer nachbilden, um Probleme zu lösen, die sich nur schwer in logische Befehle zerlegen lassen.

An der TU Wien hat man nun einen neuen Ansatz für die Programmierung solcher neuronaler Netze entwickelt, der die zeitliche Entwicklung der Nervensignale völlig anders beschreibt als bisher. Inspirieren ließ man sich dabei von einem besonders einfachen und gut erforschten Lebewesen, dem Fadenwurm C. elegans. Sein Gehirn wurde am Computer simuliert, das Modell wurde dann mit speziell entwickelten Lernalgorithmen angepasst. So gelang es, mit einer extrem niedrigen Zahl simulierter Nervenzellen bemerkenswerte Aufgaben zu lösen. Obwohl das vom Wurm inspirierte Netzwerk nur über 12 Neuronen verfügt, kann man es darauf trainieren, ein Auto an einen vorherbestimmten Ort zu manövrieren. Ramin Hasani von Institut für Computer Engineering der TU Wien hat diese Arbeit nun am 20. Oktober bei der TEDx-Konferenz in Wien präsentiert.

Mathematisch lässt sich zeigen, dass diese neuartigen neuronalen Netze extrem vielseitig sind. Außerdem lässt sich ihr Verhalten gut untersuchen und verstehen – im Gegensatz zu bisherigen neuronalen Netzen, die man oft als nützliche aber undurchschaubare „Black Box“ betrachtete.

Signale in verzweigten Netzen

„Neuronale Netze müssen zuerst trainiert werden“, erklärt Ramin Hasani. „Man liefert einen bestimmten Input und passt die Verbindungen zwischen den Neuronen so an, dass am Ende möglichst zuverlässig der richtige Output geliefert wird.“

Der Input kann beispielsweise ein Bild sein – und der Output der Name der Person, die darauf zu sehen ist. „Die Zeit spielt bei diesem Vorgang normalerweise keine Rolle“, sagt Radu Grosu (Institut für Computer Engineering, TU Wien). „Bei den meisten neuronalen Netzen wird zu einem bestimmten Zeitpunkt der gesamte Input geliefert und daraus ergibt sich sofort ein bestimmter Output. In der Natur ist das aber ganz anders.“

Spracherkennung etwa ist eine zwangsläufig zeitabhängige Aufgabe, genauso wie Simultanübersetzungen oder Bewegungsabläufe, die auf eine wechselnde Umwelt reagieren. „Solche Aufgaben können viel besser gelöst werden, wenn man sogenannte RNN verwendet – recurrent neural networks“, sagt Ramin Hasani. „Das ist eine Architektur, die Zeitabläufe besser abbildet, weil sie dafür sorgt, dass sich die Nervenzellen merken, was bisher passiert ist.“

Hasani und sein Team schlugen eine neuartige RNN-Architektur vor, die auf biophysikalischen Modellen von Neuronen und Synapsen beruht und zeitabhängige Dynamik erlaubt. „In einem gewöhnlichen RNN-Modell gibt es eine unveränderliche Verbindung zwischen Neuron eins und Neuron zwei, die festlegt, wie stark das eine Neron die Aktivität des anderen beeinflusst“, erklärt Ramin Hasani. „In unserem neuartigen RNN ist diese Verbindung eine nichtlineare Funktion der Zeit.“

Indem man zulässt, dass sich die Zellaktivität und die Verbindungen zwischen den Zellen mit der Zeit verändern, eröffnet man völlig neue Möglichkeiten. Ramini Hasani, Mathias Lechner und ihr Team konnten mathematisch zeigen, dass sich mit dieser Methode im Prinzip neuronale Netze mit beliebiger Dynamik erzeugen lassen. Um die Vielseitigkeit des neuen Typs neuronaler Netze zu demonstrieren, entwickelten und trainierten sie ein spezielles kleines Neuro-Netzwerk: „Wir bildeten das Nervensystem nach, das der Fadenwurm C. elegans verwendet, um einen ganz einfachen Reflex zu realisieren – nämlich das Rückzugsverhalten bei einer Berührung“, sagt Mathias Lechner (derzeit am Institute of Science and Technology Austria). „Das neuronale Netz wurde stimuliert und trainiert, um reale Aufgaben zu lösen.“

Der Erfolg ist erstaunlich: Obwohl es sich um ein kleines, einfaches Netz mit nur 12 Nervenzellen handelt, kann es (nach der entsprechenden Optimierung der Nervenverbindungen) bemerkenswert komplexe Aufgaben lösen. Das Netz kann trainiert werden, ein Fahrzeug in eine Parklücke zu manövrieren. „Der Output des neuronalen Netzes, der in der Natur die Bewegung des Fadenwurms steuern würde, wird bei uns in das Lenken und Beschleunigen des Fahrzeugs umgesetzt“, sagt Hasani. „Wir beweisen damit, dass mit unserer Methode sehr einfache neuronale Netze komplizierte Aufgaben in einer physisch realen Umgebung lösen können.“

Zusätzlich hat die neue Methode den Vorteil, dass sie einen besseren Einblick in die Funktionsweise des neuronalen Netzes bietet: Während man bei bisherigen neuronalen Netzen, die oft aus vielen tausend Knotenpunkten bestanden, nur das Ergebnis analysieren kann und die Abläufe im Inneren unüberschaubar komplex sind, lässt sich beim kleineren aber leistungsfähigen Netz der TU Wien zumindest teilweise verstehen, welche Nervenzellen welche Effekte hervorrufen. „Für die Forschung und die weitere Verbesserung des Konzeptes ist das ein großer Vorteil“, sagt Hasani.

Das bedeutet freilich nicht, dass Autos in Zukunft von künstlichen Würmern eingeparkt werden – aber es zeigt, dass künstliche Intelligenz mit der richtigen Architektur deutlich leistungsfähiger sein kann als bisher gedacht. (Florian Aigner)

Externer Link: www.tuwien.ac.at

Parasit tarnt sich durch Umstrukturierung

Presseinformation der LMU München vom 17.10.2018

Trypanosomen, die Auslöser der Afrikanischen Schlafkrankheit, tricksen die Immunabwehr ihres Wirts aus, indem sie ihre Oberfläche immer wieder verändern. Forscher haben nun das komplette Genom des Parasiten sequenziert und wichtige Aspekte seiner molekularen Strategie aufgeklärt.

Die einzelligen Parasiten namens Trypanosoma lösen beim Menschen die Afrikanische Schlafkrankheit aus, die tödlich enden kann. Professor Nicolai Siegel, Leiter der Arbeitsgruppe Molekulare Parasitologie an der LMU, erforscht an ihrem Beispiel den ständigen Wettkampf, in dem Parasiten und ihre Wirte stehen: Das Immunsystem des Wirts bekämpft den Parasiten, der wiederum Strategien gegen diese Abwehr entwickelt. Trypanosomen verändern ständig ihre Oberfläche, um vom Immunsystem des Wirts nicht erkannt zu werden. Wissenschaftler der Arbeitsgruppe haben nun in Kooperation mit Kollegen der Universität Würzburg, von ZB MED – Informationszentrum Lebenswissenschaften, der TH Köln, des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) in Würzburg (ein Institut des Helmholtz-Zentrums für Infektionsforschung) sowie Forschern in den USA, Großbritannien und Israel die genetischen Mechanismen dieser Abwehr untersucht. Das Team konnte nachweisen, dass bestimmte DNA-Verpackungsproteine die Struktur der Erbsubstanz des Parasiten beeinflussen. Über ihre Ergebnisse berichten die Wissenschaftler im Fachmagazin Nature.

Trypanosomen kommen in verschiedenen Wirbeltieren vor und werden meist von Insekten übertragen. In Säugetieren leben sie vor allem im Blut ihres Wirts. Die von den Wissenschaftlern untersuchte Art Trypanosoma brucei löst nicht nur die Afrikanische Schlafkrankheit aus, sondern ist auch der Erreger der Tierseuche Nagana bei Rindern.

Das Genom des Parasiten kodiert für etwa 2000 unterschiedliche Varianten seines Oberflächen-Proteins, wobei nur eine Variante gleichzeitig pro Zelle produziert wird. Da die Immunantwort des Wirts sich immer gegen eine konkrete Variante des Oberflächenproteins richtet, entkommt der Parasit der Immunantwort, indem er das Gen für ein bestimmtes Protein ab- und stattdessen ein anderes anschaltet. Da es einige Zeit dauert, bis die Immunzellen des Wirts das neue Oberflächenprotein als fremd erkennen, erreichen Trypanosomen auf diese Weise eine dauerhafte Infektion.

„Wir interessieren uns vor allem dafür, wie diese genetische Variabilität reguliert wird“, sagt Siegel, dessen Labor zur Tierärztlichen Fakultät gehört und im Biomedizinischen Centrum der LMU angesiedelt ist. Das Erbgut liegt im Zellkern als eng verpackter DNA-Protein-Komplex vor, der als Chromatin bezeichnet wird. Um zu untersuchen, wann welches Gen aktiviert wird, haben die Wissenschaftler erstmals das komplette Genom von T. brucei sequenziert und die dreidimensionale Anordnung der DNA aufgeklärt. Mithilfe von Einzelzellanalysen des Parasiten konnten sie zeigen, dass der Wechsel zwischen verschiedenen Oberflächenproteinen verstärkt wird, wenn zwei bestimmte Varianten von DNA-Verpackungsproteinen entfernt werden. Diese Varianten befinden sich im Chromatin an denselben Stellen, an denen auch die Gene sitzen, die für die Oberflächenproteine kodieren. Durch die Entfernung dieser Varianten verändert sich zum einen die dreidimensionale Struktur der DNA, und zum anderen lockert sich an den entsprechenden Stellen die ansonsten dicht gepackte DNA, sodass neue Gene zugänglich werden. Beide Effekte gemeinsam ermöglichen neue Interaktionen innerhalb der DNA, sodass andere Gene aktiviert werden. „Entscheidend ist dabei, dass wir beide Proteinvarianten entfernt haben“, betont Siegel, „fehlt nur eine, ändert sich zwar die dreidimensionale Struktur der DNA, aber es kommt nicht zu einem Switch der Oberflächenproteine.“

Ein besseres Verständnis dieser Abwehrmechanismen ist auch für die Erforschung anderer Krankheiten wichtig, denn zahlreiche Pathogene haben ähnliche Strategien entwickelt, etwa die Malaria-Erreger, Candida-Pilze und viele Bakterien.

Publikation:
Nature 2018

Externer Link: www.uni-muenchen.de

Hochautomatisiert unterwegs – OTH Amberg-Weiden schließt Forschungsprojekt Ko-HAF ab

Pressemeldung der OTH Amberg-Weiden vom 16.10.2018

Hochautomatisiertes Fahren bei höheren Geschwindigkeiten – daran haben 16 Partner aus Industrie, Wissenschaft und öffentlicher Hand seit 2015 gemeinsam im Projekt „Ko-HAF – Kooperatives Hochautomatisiertes Fahren“ erfolgreich geforscht. Die OTH Amberg-Weiden war in dem vom Bundesministerium für Wirtschaft und Energie im Rahmen des Programms „Neue Fahrzeug- und Systemtechnologien“ geförderten Forschungsprojekt für die Kommunikation der Fahrzeuge mit einem Safety Server zuständig.

Das Projekt Ko-HAF zielt auf das sichere hochautomatisierte Fahren bei höheren Geschwindigkeiten auf Autobahnen: Solche Systeme muss der Fahrer nicht mehr dauerhaft überwachen. Er kann sich anderen Aufgaben widmen, muss jedoch immer in der Lage sein, die Steuerung nach Aufforderung mit einer gewissen Zeitreserve zu übernehmen. Dazu muss die Vorausschau des Fahrzeugs weiter reichen, als dies mit fahrzeugeigenen Sensoren möglich ist. Hier setzt Ko-HAF an: Fahrzeuge senden Umfeldinformationen (etwa geänderte Straßenführung bei Baustellen oder Hindernisse auf der Fahrbahn) über Mobilfunk an den sogenannten Safety Server. Dort werden diese gesammelt und verdichtet, sodass eine hochgenaue und hochaktuelle Karte zur Verfügung steht. Diese liefert die im Sinne eines künstlichen Horizonts benötigte weitere Vorausschau. Etwaige Änderungen der Karte werden über Mobilfunk an alle Fahrzeuge im Ko-HAF-Verbund übertragen. Die Kommunikationseinheit hierfür wurde durch das Projektteam von Prof. Alfred Höß von der OTH in Amberg entwickelt, realisiert und den Projektpartnern zur Verfügung gestellt.

Bei der Anschlusspräsentation referierte M.Sc. Josef Schmid vom Projektteam der OTH Amberg-Weiden zur Übertragung von hochgenauen Karten. Wie unterschiedlich die erreichbaren Übertragungsgeschwindigkeiten bei Mobilfunk (LTE) im realen Umfeld sein können, wurde an einem Stand und auch live im Forschungsfahrzeug der Hochschule demonstriert.

Externer Link: www.oth-aw.de

Mit dem Virtual-Reality-Handschuh virtuelle Objekte «berühren»

Medienmitteilung der ETH Zürich vom 15.10.2018

Forscher der ETH Zürich und der EPFL haben einen ultraleichten Handschuh entwickelt, der es seinen Nutzern erlaubt, virtuelle Objekte zu «berühren» und zu manipulieren. Der Handschuh mit dem Namen DextrES wiegt weniger als acht Gramm und gibt seinem Träger ein äusserst realistisches, haptisches Feedback. Zudem bietet er dank künftig möglichem Batteriebetrieb eine noch nie da gewesene Bewegungsfreiheit.

Weltweit befassen sich Ingenieure und Software-Entwickler mit der Entwicklung von Technologien, die es dem Nutzer erlauben, virtuelle Objekte zu berühren, zu greifen und zu manipulieren – mit dem gleichen Gefühl, wie wenn sie etwas in der realen Welt berühren würden. Forschern der EPFL und der ETH Zürich ist mit diesem neuen, haptischen Handschuh soeben ein wichtiger Schritt auf dem Weg zu diesem Ziel gelungen. Der DextrES überzeugt nämlich nicht nur durch sein geringes Gewicht, sondern gibt auch ein äusserst realistisches Feedback. Zudem ist er in der Lage, mit einer Spannung von gerade mal 200 Volt und einigen Milliwatt Leistung an jedem Finger eine Haltekraft von bis zu 40 Newton zu generieren. Und nicht zuletzt besitzt er das Potenzial, um künftig mit nur einer sehr kleinen Batterie betrieben zu werden. Diese Eigenschaften, in Kombination mit dem geringen Formfaktor des Handschuhs – er ist gerade mal 2 mm dick – führen zu einer beispiellosen Präzision und Bewegungsfreiheit.

«Unser Ziel war es, ein leichtgewichtiges Gerät zu entwickeln, das – anders als bestehende Virtual-Reality-Handschuhe – kein sperriges Exoskelett, Pumpen oder sehr dicke Kabel benötigt», erklärt Herbert Shea, Leiter des Soft Transducers Laboratory (LMTS) der EPFL. DextrES wurde an der ETH Zürich erfolgreich von Freiwilligen getestet und wird am kommenden ACM Symposium on User Interface Software and Technology (UIST) einem Fachpublikum vorgestellt.

Gewebe, Metallbänder und Elektrizität

Der Handschuh besteht aus Baumwolle und dünnen, elastischen Metallbändern, die über die Finger laufen. Diese Bänder sind durch einen dünnen Isolator voneinander getrennt. Wenn die Finger des Trägers mit einem virtuellen Objekt in Kontakt kommen, appliziert die Steuereinheit eine Spannungsdifferenz zwischen den Metallbändern, die dazu führt, dass sie aufgrund elektrostatischer Anziehung zusammenkleben. Dies wiederum erzeugt eine Bremskraft, die die Bewegungen der Finger oder des Daumens blockiert. Sobald die Spannung unterbrochen wird, gleiten die Metallbänder wieder reibungslos, und der Träger kann seine Finger frei bewegen.

Das Hirn austricksen

Zurzeit wird DextrES noch über ein sehr dünnes elektrisches Kabel mit Strom versorgt. Dank der geringen erforderlichen Spannung und Leistung könnte letztlich jedoch eine kleine Batterie diese Aufgabe übernehmen. «Das System benötigt deshalb so wenig Strom, weil keine Bewegung erzeugt, sondern eine gebremst wird», so Shea. Um herauszufinden, wie exakt reale Bedingungen simuliert werden müssen, um dem Nutzer ein realistisches Erlebnis zu verschaffen, sind nun weitere Tests erforderlich. «Die menschliche Sensorik ist hochentwickelt und hochkomplex. In den Fingergelenken und eingebettet in die Haut, verfügen wir über eine hohe Dichte an unterschiedlichen Rezeptoren. Die Wiedergabe eines realistischen Feedbacks in der Interaktion mit virtuellen Objekten stellt deshalb eine grosse Herausforderung dar, die zurzeit noch ungelöst ist. Unsere Arbeit geht einen Schritt in diese Richtung, indem wir uns insbesondere auf das kinästhetische Feedback fokussieren», erklärt Otmar Hilliges, Leiter des Advanced Interactive Technologies Lab der ETH Zürich.

Im Rahmen dieses gemeinsamen Forschungsprojekts wurde auf dem Microcity-Campus der EPFL in Neuenburg die Hardware entwickelt, während an der ETH Zürich das Virtual-Reality-System kreiert und die Nutzertests durchgeführt wurden. «Unsere Partnerschaft mit dem LMTS-Lab der EPFL hat sich als goldrichtig erwiesen. Sie erlaubt es uns, eine der ältesten Herausforderungen im Bereich Virtual Reality mit einer Geschwindigkeit und in einer Präzision anzugehen, die anderweitig nicht möglich wären», ergänzt Hilliges.

Der nächste Schritt wird nun eine Vergrösserung des Gerätemassstabs und damit einhergehend der Einsatz an anderen Körperteilen mittels eines leitfähigen Gewebes sein. «Gamer sind heute der grösste Markt. Es gibt jedoch zahlreiche weitere mögliche Anwendungsgebiete, insbesondere im Gesundheitswesen – beispielsweise für die Schulung von Chirurgen. Möglich wäre der Einsatz der Technologie auch in Augmented-Reality-Anwendungen», so Shea.

Externer Link: www.ethz.ch