Optik und Photonik: Dünnster optischer Diffusor für neue Anwendungen

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 22.12.2021

Neuartige optische Komponente auf der Basis von Metamaterialien aus Silizium-Nanopartikeln – Publikation in Advanced Materials

Die Miniaturisierung von optischen Komponenten ist eine Herausforderung in der Photonik. Forschenden des Karlsruher Instituts für Technologie (KIT) und der Friedrich-Schiller-Universität Jena ist es gelungen, einen Diffusor – eine optische Streuscheibe – auf der Basis von Silizium-Nanopartikeln zu entwickeln. Damit können sie Richtung, Farbe und Polarisation von Licht gezielt steuern. Anwendungen kann die neuartige Technologie etwa in transparenten Bildschirmen oder in der Augmented Reality finden. Über ihre Ergebnisse berichten die Forschenden in der Zeitschrift Advanced Materials. (DOI: 10.1002/adma.202105868)

Die Photonik, die Wissenschaft von der Erzeugung, Ausbreitung und Detektion von Licht, gilt als Treiber bei der Entwicklung von Technologien für das 21. Jahrhundert. Eine Herausforderung für die Forschung besteht darin, traditionelle optische Komponenten wie Linsen, Spiegel, Prismen oder Diffusoren zu miniaturisieren oder ihre Merkmale um Eigenschaften zu ergänzen, die erst durch die Nanophotonik zugänglich sind. Dies führt zu neuen Anwendungen wie miniaturisierten Sensoren in autonom fahrenden Fahrzeugen oder integrierten photonischen Quantencomputern.

Diffusoren sind Streuscheiben, die einfallendes Licht mithilfe kleiner Streuzentren beeinflussen und etwa gleichmäßig in alle Richtungen verteilen. Um eher massive traditionelle Diffusoren zu ersetzen, brachten Forschende des KIT und der Friedrich-Schiller-Universität Jena eine Schicht spezieller Silizium-Nanopartikel auf ein Substrat auf. Dabei verteilten sie die Partikel in einer ungeordneten, aber sorgfältig geplanten Weise. Die Nanopartikel sind hundertmal dünner als ein menschliches Haar und wechselwirken mit bestimmten einstellbaren Wellenlängen des Lichts. Richtung, Farbe und Polarisation von Licht können mit diesen Meta-Oberflächen gezielt gesteuert werden.

„Sweet Spot“ für die perfekte Diffusion

„Das Forschungsteam ging zwei grundlegenden Fragen nach: Wie stark können wir den optischen Diffusor verkleinern und wie genau muss die Unordnung in der räumlichen Struktur der Nanopartikel sein?“, so Aso Rahimzadegan, Doktorand am KIT und einer der beiden Hauptautoren der Studie. „Bemerkenswerterweise haben wir einen ‚Sweet Spot‘ für die Unordnung gefunden, der zu einer perfekten Diffusion führt.“ Dennis Arslan, Doktorand an der Universität Jena und ebenfalls Hauptautor dieser Publikation, erläutert: „Wir haben Meta-Oberflächen-Diffusoren hergestellt, die, wenn man sie mit bloßem Auge betrachtet, aus allen Richtungen gleich hell erscheinen. Das Bemerkenswerte daran ist, dass dies alles in einer Schicht mit einer Dicke von nur 0,2 Mikrometern geschieht. Die Diffusoren streuen Licht einer bestimmten Farbe und lassen andere Wellenlängen ungestört passieren.” Diese Eigenschaft sei beispielsweise für wissenschaftliche Anwendungen nützlich, aber auch Konsumartikel wie transparente Bildschirme, die von beiden Seiten betrachtet werden könnten, holografische Projektoren oder Augmented-Reality-Headsets profitierten davon. Nur durch die Kombination experimenteller und theoretischer Expertise beider Partner war es möglich, Antworten auf die anspruchsvollen Fragen zu finden.

Die Forschung, die zu diesen Ergebnissen führte, wurde in dem von der Deutschen Forschungsgemeinschaft geförderten Schwerpunktprogramm „Tailored Disorder“ durchgeführt und war am KIT in das Exzellenzcluster 3D Matter Made to Order integriert. (jh)

Externer Link: www.kit.edu

Magnetische Janus-Partikel verbessern Biomolekül-Transport in Miniatur-Laboren

Pressemitteilung der Universität Kassel vom 16.12.2021

Experimente von Forschenden der Uni Kassel könnten die Diagnostik von Krankheiten mithilfe von Lab-on-a-Chip-Technologien verbessern: Für den Transport von zu untersuchenden Biomolekülen (Analyte) zwischen den verschiedenen Reaktions- und Analysekammern haben sie sogenannte Janus-Partikel gezielt gesteuert.

In Lab-on-a-Chip-Systemen laufen komplexe chemische Prozesse auf geringstem Raum ab. Analog zu großen Apparaturen in Laboren befinden sich auf nur plastikkartengroßen Kunststoffsubstraten Kanäle, Pumpen, Ventile und Messkammern von der Dicke eines menschlichen Haares. Eine Probe, z.B. ein Tropfen Blut, läuft darin vorbei an Sensoren, die die chemischen Bestandteile der Probe analysieren. Die Sensoren übersetzen diese wiederum in elektrische Signale zur Auswertung. Solche Systeme werden bereits zur Diagnostik eingesetzt, beispielsweise in Blutzuckermessgeräten oder Schwangerschaftstests. Die Technik bietet aber noch viel Entwicklungspotenzial.

Das Fachgebiet funktionale dünne Schichten und Physik mit Synchrotronstrahlung der Universität Kassel (Prof. Dr. Arno Ehresmann) erforscht seit etwa zehn Jahren Technologien, die spezifische Biomoleküle (z.B. nachzuweisende Analyte) in Lab-on-a-Chip-Systemen mithilfe von magnetischen Mikro- und Nanoteilchen gezielt durch die Reaktions- und Analysekammern transportieren können. Sie haben jetzt eine Methode entwickelt, die die Kontrolle über diese Bewegungen deutlich verbessert und den Transport beschleunigt. Ihre Ergebnisse haben sie nun im Fachjournal Scientific Reports veröffentlicht.

Die Experimentalphysiker haben sogenannte Janus-Partikel hergestellt, die zwei Seiten mit unterschiedlichen physikalischen Eigenschaften besitzen: Siliziumdioxid-Kugeln von drei Mikrometern Durchmesser mit einer magnetischen Metall-Kappe, die die Kugel zur Hälfte bedeckt. „An der einen Seite der Kugel binden zum Beispiel Moleküle aus der Probe, die analysiert werden sollen, und die magnetische Metallkappe auf der anderen Seite dient zur Bewegungskontrolle durch externe Magnetfelder“, erklärt Erstautor Rico Huhnstock.

Die zweite Komponente ist ein magnetisches Dünnschichtsubstrat, welches in unterschiedlich magnetisierte Streifensegmente mikrostrukturiert wurde und damit die zur Bewegung der Partikel notwendigen mikroskaligen Magnetfelder erzeugt. Indem die Forschenden nun äußere Magnetfelder anlegen und deren Richtungen periodisch ändern, bewegen sie die sich daran ausrichtenden magnetischen Janus-Partikel in einer wässrigen Lösung über das Substrat. Die Anordnung bietet darüber hinaus die Möglichkeit, die Partikel gezielt räumlich rotieren zu lassen. „Durch die Rotationsbewegung der Kugeln wird die Haftwahrscheinlichkeit der Analyte an den Partikeln deutlich erhöht. Das ist besonders dann ein großer Vorteil, wenn die Analyte in nur sehr geringer Konzentration vorliegen. Gleichzeitig können wir die Partikel wiederum durch Rotation über bestimmten Analysekammern genauer ausrichten“, beschreibt Huhnstock. So lassen sich die zu untersuchenden Moleküle deutlich sensitiver nachweisen.

Darüber hinaus benötigt diese Methode weniger Strom als bisherige Systeme und ermöglicht eine schnellere Durchsatzgeschwindigkeit der Proben. Die Janus-Partikel bewegen sich mit bis zu 200 Mikrometer pro Sekunde, etwa zehnmal schneller als in gängigen Systemen. Das ergab die Auswertung der Partikelbewegung durch Informatiker des Fachgebiets für Intelligente Eingebettete Systeme (Prof. Dr. Bernhard Sick) an der Uni Kassel. „Mit unseren Ergebnissen aus der Grundlagenforschung lassen sich langfristig Schnellnachweise mit Lab-on-a-Chip-Technologien realisieren, die kostensparend Biomoleküle zum Beispiel als Nachweis für bestimmte Krankheiten detektieren können, ohne auf Technik und Personal in einem Labor angewiesen zu sein“, so Huhnstock.

Publikation:
Huhnstock, R., Reginka, M., Tomita, A. et al. Translatory and rotatory motion of exchange-bias capped Janus particles controlled by dynamic magnetic field landscapes. Sci Rep 11, 21794 (2021).

Externer Link: www.uni-kassel.de

Saarbrücker Forscher entwickeln Wirkstoffkandidaten gegen Krankenhauskeim

Pressemitteilung der Universität des Saarlandes vom 14.12.2021

Die zunehmende Ausbreitung resistenter Keime führt dazu, dass ehemals hochwirksame Antibiotika zur Behandlung von Infektionserkrankungen oftmals nicht mehr erfolgreich eingesetzt werden können. Um dieser Entwicklung entgegenzuwirken, hat das Team um Prof. Anna Hirsch vom Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS) neue Wirkstoffkandidaten entwickelt, die dazu in der Lage sind, einen der wichtigsten Krankenhauskeime unschädlich zu machen.

Ihre Ergebnisse haben die Forscher in der Fachzeitschrift Angewandte Chemie veröffentlicht.

Der Krankenhauskeim Pseudomonas aeruginosa verursacht eine Vielzahl von Infektionserkrankungen: von Lungenentzündungen über Wund-, Augen- und Harnwegsinfektionen bis hin zur Sepsis. Besonders durch P. aeruginosa ausgelöste Lungenentzündungen stellen eine große Gefahr für Mukoviszidose- und Covid-19 Patienten während der künstlichen Beatmung dar. Verschärft wird die Bedrohung durch diesen Keim dadurch, dass zunehmend Varianten auftreten, welche gegen mehrere der konventionell eingesetzten Antibiotika resistent sind. Derzeit liegen in der EU bei etwa zehn Prozent der Infektionen mit P. aeruginosa Resistenzen gegen drei oder mehr Antibiotikaklassen vor – Tendenz steigend.

Um dem resultierenden Bedarf nach neuen Strategien und Behandlungsmöglichkeiten gerecht zu werden, haben Forscherinnen und Forscher des HIPS, einem Standort des Helmholtz-Zentrums für Infektionsforschung (HZI) in Zusammenarbeit mit der Universität des Saarlandes, einen erfolgversprechenden Ansatz entwickelt. Hierbei wird eine der wichtigsten „Waffen“ von P. aeruginosa entschärft: ein Enzym namens LasB, das für den Abbau von menschlichem Gewebe verantwortlich ist und es dem Keim damit ermöglicht, besser den Ort der Infektion zu erreichen und sich dort einzunisten.

Wirkstoffe dieser Art werden auch als „Pathoblocker“ bezeichnet, da sie die Bakterien im Gegensatz zu Antibiotika nicht abtöten, sondern lediglich deren krankmachende Eigenschaften blockieren. Dies bietet den Vorteil, dass für den Menschen ungefährliche Bakterien nicht in Mitleidenschaft gezogen werden und es weniger häufig zur Entstehung von Resistenzen kommt. Im konkreten Fall kommt eine neu entwickelte Klasse von Wirkstoffen zum Einsatz, die direkt an LasB binden und dieses somit inaktivieren. Anna Hirsch, Leiterin der Abteilung Wirkstoffdesign und Optimierung am HIPS, sagt: „Da uns die dreidimensionale Molekülstruktur von LasB aus einer früheren Studie bestens bekannt war, konnten wir unsere Moleküle so entwerfen, dass sie bestmöglich zu ihrem Zielprotein passen und dieses effizient und spezifisch inaktivieren können. Das Ergebnis ist eine Reihe an Wirkstoffkandidaten, die dazu in der Lage sind, LasB zwölfmal besser zu binden als bisherige Kandidaten. Das ist ein ausgezeichneter Ausgangspunkt für die weitere Entwicklung hin zum fertigen Medikament.“ Dass die entwickelten Moleküle das Potenzial haben, den Wirtsorganismus vor dem schädlichen Effekt von LasB zu schützen, zeigen erste Ergebnisse aus einem Modell mit Galleria mellonella-Larven. Kommen die Larven in Kontakt mit LasB, so überleben nur rund zehn Prozent. Unter dem Einfluss der Wirkstoffe aus dem Labor von Anna Hirsch steigt dieser Wert auf über 60 Prozent.

Neben dem Wirkprinzip der entwickelten Substanzen handelt es sich auch bei deren Optimierung um einen innovativen Ansatz. „Üblicherweise beginnt man beim Design solcher Inhibitoren mit sehr kleinen Molekülen und erweitert diese dann schrittweise“, sagt die Erstautorin der Studie, Cansu Kaya. „Bei der Analyse des Bindeverhaltens früherer Kandidaten ist uns aufgefallen, dass manchmal zwei dieser Moleküle gleichzeitig an LasB binden. Inspiriert von dieser Beobachtung, haben wir die beiden Fragmente anschließend so miteinander verknüpft, dass ihre räumliche Ausrichtung zueinander nicht beeinflusst wird. Diese als fragment linking bezeichnete Methode ist deutlich komplizierter als konventionelle Ansätze, bietet aber im Erfolgsfall einen deutlich höheren Aktivitätsgewinn in sehr kurzer Zeit. Wir hoffen, dass unsere Methode in Zukunft auch verwendet werden kann, um die Entwicklung von Wirkstoffen gegen andere Krankheiten zu beschleunigen.“

Prof. Rolf Müller, Geschäftsführender Direktor des HIPS und Leiter der Abteilung Mikrobielle Naturstoffe, sieht den entwickelten Ansatz als vielversprechende Ergänzung zur Entwicklung neuer Antibiotika: „Leider ist die Entwicklung neuer Antibiotika sehr langwierig, teuer und wird nur noch von wenigen Pharmafirmen unterstützt. Die entwickelten Substanzen bieten uns einen alternativen Ansatz, um das Problem der antimikrobiellen Resistenz angehen zu können. Da sich resistente Keime auch in Zukunft immer mehr ausbreiten werden, sind solche Wirkstoffkandidaten von unschätzbarem Wert.“

In Folgestudien sollen die beschriebenen Substanzen nun weiterentwickelt und für ihre Anwendung am Menschen optimiert werden. Bei diesem Vorhaben wird Anna Hirsch von der US-amerikanischen Förderorganisation CARB-X unterstützt: Diese fördert die Arbeiten auf diesem Gebiet seit Ende 2020 mit Fördergeldern in Höhe von 1,46 Millionen Euro.

Originalpublikation:
Kaya C, Walter I, Yahiaoui S, Sikandar A, Alhayek A, Konstantinović J, Kany A, Haupenthal J, Köhnke J, Hartmann R & Hirsch A: Substrate-Inspired Fragment Merging and Growing Affords Efficacious LasB Inhibitors. Angewandte Chemie, 2021, DOI: 10.1002/anie.202112295

Externer Link: www.uni-saarland.de

Eigenentwickelter Impfstoff gegen SARS-CoV-2 zeigt starke Immunantwort

Pressemitteilung der Universität Tübingen vom 24.11.2021

Ergebnisse der Phase-I-Studie in Fachzeitschrift Nature publiziert

Am Universitätsklinikum Tübingen wurde im November 2020 unter Leitung von Prof. Dr. Juliane Walz in der KKE Translationale Immunologie der Medizinischen Klinik (Ärztlicher Direktor Prof. Dr. Helmut Salih) die klinische Erprobung eines eigenentwickelten Impfstoffs (CoVac-1) gegen SARS-CoV-2 begonnen. Nun liegen die Ergebnisse der Phase-I-Studie vor und belegen eine potente Aktivierung der T-Zell-Antwort gegen das Coronavirus. Die Ergebnisse sind aktuell in der renommierten Fachzeitschrift Nature publiziert. Derzeitig befindet sich die Studie in der zweiten Phase. Ziel ist, in Patienten und Patientinnen mit Antikörpermangel eine breite und starke T-Zell-vermittelte Immunantwort gegen SARS-CoV-2 zu induzieren, um so schwere Covid-19-Krankheitsverläufe zu verhindern.

T-Zellen spielen eine bedeutende Rolle bei der Covid-19-Erkrankung. Das konnte das Forschungsteam um Prof. Walz, Leiterin der klinischen Studie, bereits in mehreren wissenschaftlichen Publikationen belegen. Im Rahmen dieser Forschungsarbeiten wurden im Blut von Personen mit überstandener Covid-19-Erkrankung diejenigen Peptide identifiziert, die für eine Erkennung und Langzeitschutz durch T-Zellen speziell beim SARS-CoV-2-Virus von Bedeutung sind. „Genau die Peptide, die eine bedeutende Rolle bei der Langzeitimmunität nach durchgemachter SARS-CoV-2-Infektion spielen, werden nun in unserem CoVac-1 Impfstoff eingesetzt“, erklärt Juliane Walz. Als Peptide werden kurze Eiweiße bezeichnet, die auf der Oberfläche von Tumorzellen, aber auch auf Virus befallenen Zellen dem Immunsystem und hier speziell den T-Zellen präsentiert werden. Dies ermöglicht dem Immunsystem, „fremde“ und infizierte Zellen zu erkennen und diese zu eliminieren. Die Idee für den Impfstoff kommt aus der Krebsimmuntherapie, einem der Hauptforschungsschwerpunkte der Tübinger Immunologen.

Ergebnisse der Phase-I-Studie

CoVac-1 wurde in einer klinischen Phase-I-Studie in gesunden Probanden und Probandinnen zwischen 18 und 80 Jahre eingesetzt. Hier konnte bei guter Verträglichkeit eine äußerst potente Aktivierung der T-Zell-Antwort gegen SARS-CoV-2 belegt werden.

Insgesamt wurden 36 Probandinnen und Probanden im Rahmen der Studie einmalig geimpft. Bei wenigen Teilnehmenden wurden leichte Nebenwirkungen wie Kopfschmerzen und Müdigkeit beobachtet, schwerwiegende Nebenwirkungen traten nicht auf. Bei allen Probandinnen und Probanden entwickelte sich an der Impfstelle eine lokale Verhärtung. „Diese Lokalreaktion wird für unseren Impfstoff erwartet und gewünscht. Sie ist Ausdruck der Bildung eines Depots an der Impfstelle, das einen schnellen Abbau des Impfstoffs verhindert und so eine langanhaltende Immunreaktion ermöglicht“, erklärt Dr. Jonas Heitmann, einer der Erstautoren der Studie.

Bei allen Studienteilnehmenden lag vier Wochen nach der Impfung die gewünschte breite und starke T-Zell-Immunantwort gegen SARS-CoV-2 vor. In ersten Folgeuntersuchungen blieben diese Immunantworten in unveränderter Stärke bestehen. Darüber hinaus sind die durch CoVac-1 aktivierten T-Zell-Antworten deutlich stärker ausgeprägt als die bei Genesenen nach natürlicher Infektion und auch potenter als die T-Zell-Immunität, die durch zugelassene mRNA- oder Vektorimpfstoffe erzeugt wird. Anders als bei den bislang zugelassenen Impfstoffen richtet sich die CoVac-1-induzierte T-Zell-Immunität nicht nur gegen das Spike Protein, sondern gegen verschiedene Virusbestandteile. Die Wirksamkeit des Impfstoffes wird durch keine der bekannten SARS-CoV-2-Varianten negativ beeinflusst.

Eigene Impfstoffentwicklung, Herstellung und Erprobung

CoVac-1 wird im Wirkstoffpeptidlabor und der sogenannten GMP-Einheit des Universitätsklinikums und der Medizinischen Fakultät Tübingen hergestellt. Auch hier wird auf die langjährige Erfahrung und Expertise bei der Produktion von Impfstoffen für Krebserkrankte zurückgegriffen. Die klinische Evaluation des Impfstoffs erfolgt in der KKE Translationale Immunologie, einer deutschlandweit einzigartigen Einrichtung im Department Innere Medizin des Universitätsklinikums. Diese wurde etabliert, um innovative Immuntherapiekonzepte möglichst rasch in ersten klinischen Studien erproben zu können, damit Patienten und Patientinnen schnellstmöglich von neuen Erkenntnissen der Forschung profitieren.

Weitere Entwicklung von CoVac-1

Auf Grundlage dieser Studienergebnisse wurde bereits im Juni die Phase-II-Studie gestartet, die CoVac-1 in Patienten und Patientinnen mit angeborenem oder erworbenem Immunglobulinmangel untersucht. Hierzu gehören beispielsweise Leukämie- oder Lymphompatientinnen und -patienten, die auf Grund ihrer Erkrankung oder einer Therapie keine ausreichende durch antikörpervermittelte Immunität aufbauen können.

Externer Link: www.uni-tuebingen.de