Wie werden gute Metalle schlecht?

Presseaussendung der TU Wien vom 15.03.2021

Ein Rätsel aus der Festkörperphysik konnte nun mit neuen Messungen gelöst werden: Wie kommt es, dass sich bestimmte Metalle scheinbar nicht an die gültigen Regeln halten?

Unter einem Metall kann sich jeder etwas vorstellen: Wir denken an feste, unzerbrechliche Objekte, die elektrischen Strom leiten und einen typischen metallischen Glanz zeigen. Das Verhalten klassischer Metalle, etwa ihre elektrische Leitfähigkeit, lässt sich mit wohlbekannten, gut erprobten physikalischen Theorien erklären.

Aber es gibt auch exotischere metallische Verbindungen, die Rätsel aufgeben: Manche Legierungen sind hart und spröde, spezielle Metalloxide können durchsichtig sein. Es gibt sogar Materialien genau an der Grenze zwischen Metall und Isolator: Durch winzige Änderungen der chemischen Zusammensetzung wird das Metall zum Isolator – oder umgekehrt. Dabei treten metallische Zustände mit extrem schlechter elektrischer Leitfähigkeit auf, man spricht von „schlechten Metallen“. Bisher schien es, als könne man diese „schlechten Metalle“ mit herkömmlichen Theorien einfach nicht erklären. Neue Messungen zeigen nun: So „schlecht“ sind diese Metalle gar nicht. Wenn man genau hinsieht, passt ihr Verhalten durchaus zu dem, was man schon bisher über Metalle wusste.

Kleine Änderung, großer Unterschied

Prof. Andrej Pustogow forscht mit seiner Arbeitsgruppe am Institut für Festkörperphysik der TU Wien an speziellen metallischen Materialien – es handelt sich um kleine, speziell im Labor gezüchtete Kristalle. „Diese Kristalle können die Eigenschaften eines Metalls annehmen, doch wenn man die Zusammensetzung minimal variiert, haben wir es plötzlich mit einem Isolator zu tun, der keinen Strom mehr leitet und bei bestimmten Frequenzen durchsichtig ist wie Glas“, sagt Pustogow.

Direkt an diesem Übergang stößt man auf ein ungewöhnliches Phänomen: Der elektrische Widerstand des Metalls wird extrem groß – und zwar größer, als es nach üblichen Theorien überhaupt möglich sein dürfte. „Elektrischer Widerstand hat damit zu tun, dass die Elektronen an einander oder an den Atomen des Materials gestreut werden“, erklärt Andrej Pustogow. Nach dieser Betrachtungsweise müsste der größtmögliche elektrische Widerstand gemessen werden, wenn das Elektron auf seinem Weg durch das Material an jedem einzelnen Atom gestreut wird – zwischen einem Atom und seinem Nachbarn befindet sich schließlich nichts, woran das Elektron aus seiner Bahn geworfen werden könnte. Doch bei sogenannten „schlechten Metallen“ scheint diese Regel nicht zu gelten: Sie zeigen einen noch deutlich höheren Widerstand als dieses Modell erlauben würde.

Auf die Frequenz kommt es an

Der Schlüssel zur Lösung dieses Rätsels ist, dass die Materialeigenschaften frequenzabhängig sind. „Wenn man den elektrischen Widerstand bloß misst, indem man eine Gleichspannung anlegt, bekommt man nur eine einzige Zahl – den Widerstand für die Frequenz 0“, sagt Andrej Pustogow. „Wir haben hingegen optische Messungen durchgeführt und dafür Lichtwellen mit ganz unterschiedlichen Frequenzen verwendet.“

Dabei zeigte sich, dass die „schlechten Metalle“ so „schlecht“ gar nicht sind: Bei niedrigen Frequenzen leiten sie zwar kaum Strom, aber bei höheren Frequenzen verhalten sie sich so, wie man das von Metallen erwarten würde. Das Forschungsteam nennt als eine mögliche Ursache winzige Mengen an Verunreinigungen oder Fehlstellen im Material, welche von einem Metall an der Grenze zu einem Isolator nicht mehr ausreichend abgeschirmt werden können. Diese Defekte können dazu führen, dass manche Bereiche des Kristalls keinen Strom mehr leiten, weil dort die Elektronen an einem bestimmten Ort lokalisiert bleiben anstatt sich weiterzubewegen. Wenn man an das Material eine Gleichspannung anlegt, sodass die Elektronen von einer Seite des Kristalls zur anderen wandern können, dann trifft praktisch jedes Elektron irgendwann eine solche isolierende Region, und Strom kann kaum fließen.

Bei hoher Wechselstromfrequenz hingegen bewegt sich jedes Elektron ununterbrochen hin und her – es legt im Kristall keinen weiten Weg zurück, weil es immer wieder die Richtung ändert. Das bedeutet, dass in diesem Fall viele Elektronen gar nicht in Kontakt mit einer der isolierenden Regionen im Kristall kommen.

Hoffnung auf wichtige weitere Schritte

„Unsere Ergebnisse zeigen, dass optische Spektroskopie ein sehr wichtiges Werkzeug ist, um fundamentale Fragen der Festkörperphysik zu beantworten“, sagt Andrej Pustogow. „Viele Beobachtungen, für die man bisher glaubte, exotische, neuartige Modelle entwickeln zu müssen, könnten sich sehr wohl mit bekannten Theorien erklären lassen, wenn man diese adäquat ergänzt. Unsere Messmethode zeigt, wo die Ergänzungen notwendig sind.“ Bereits in früheren Studien konnte Prof. Pustogow mit seinen internationalen Kolleg_innen mittels spektroskopischen Methoden wichtigen Einblick in den Grenzbereich zwischen Metall und Isolator erlangen und damit ein Fundament für die Theorie schaffen.

Das metallische Verhalten von Materialien, in denen starke Korrelationen zwischen den Elektronen herrschen, ist auch besonders relevant für die sogenannte „unkonventionelle Supraleitung“ – ein Phänomen, das vor einem halben Jahrhundert entdeckt wurde, aber bis heute nicht vollständig verstanden ist. (Florian Aigner)

Originalpublikation:
Rise and fall of Landau’s quasiparticles while approaching the Mott transition. Andrej Pustogow et al., Nature Communications 12, 1571 (2021); DOI: 10.1038/s41467-021-21741-z

Externer Link: www.tuwien.at

Mit zwei Virusarten gegen Tumore

Medienmitteilung der Universität Basel vom 03.03.2021

Eine internationale Forschungsgruppe unter Leitung der Universität Basel hat eine vielversprechende Strategie für therapeutische Krebsimpfungen entwickelt. Mit zwei unterschiedlichen Viren als Vehikel verabreichten sie im Tierversuch krebskranken Mäusen spezifische Tumorbestandteile und regten damit ihr Immunsystem an, den Tumor anzugreifen. Der Ansatz wird nun in klinischen Studien getestet.

Das Immunsystem als Verbündeten im Kampf gegen Krebs einzusetzen, ist Basis einer ganzen Palette von modernen Krebstherapien. Ein Ansatz ist dabei die sogenannte therapeutische Krebsimpfung: Nach der Diagnose ermitteln Fachleute, welche Bestandteile des Tumors als Erkennungsmerkmal für das Immunsystem dienen könnten. Anschliessend verabreichen sie der Patientin oder dem Patienten genau diese Bestandteile durch eine Impfung, um eine möglichst starke Immunreaktion gegen den Tumor auszulösen.

Als Vehikel, welche die charakteristischen Tumormoleküle in den Körper einbringen sollen, dienen unschädlich gemachte Viren. Allerdings scheiterten bisher viele Versuche für eine solche Krebstherapie an einer zu wenig effizienten Immunantwort. Eine Hürde besteht darin, dass der Tumor aus körpereigenen Zellen besteht und das Immunsystem Sicherheitsvorkehrungen trifft, um diese nicht anzugreifen. Zudem richten sich die Immunzellen oft mehr gegen das – körperfremde – Virusvehikel als gegen seine – körpereigene – Fracht. Somit blieb bei fast allen bisher entwickelten Krebstherapien dieser Art der erhoffte Schlag gegen den Tumor aus. Denn das richtige Vehikel ist ebenso bedeutend für die Wirksamkeit wie die Wahl des richtigen Tumorbestandteils als Angriffspunkt.

Arenaviren als Vehikel

Die Forschungsgruppe um Prof. Dr. Daniel Pinschewer von der Universität Basel hat bereits in früheren Studien entdeckt, dass sich Viren aus der Familie der Arenaviren als Vehikel gut eignen, um eine starke Immunantwort auszulösen. Nun berichten sie im Fachblatt «Cell Reports Medicine», dass die Kombination aus zwei verschiedenen Arenaviren im Tierversuch vielversprechende Resultate lieferte.

Die Forschenden setzten dabei auf zwei sehr weit entfernt verwandte Arenaviren namens Pichinde Virus und Lymphozytäres Choriomeningitis Virus, die sie mit molekularbiologischen Verfahren für die Verwendung als Impfvektor anpassten. Verabreichten sie den gewählten Tumorbestandteil zunächst mit dem einen Virus und zu einem späteren Zeitpunkt mit dem anderen, verschob sich das Ziel der Immunantwort vermehrt vom Vehikel auf die Fracht. «Indem wir nacheinander zwei verschiedene Viren verwenden, fokussieren wir die ausgelöste Immunantwort auf das, worauf es ankommt, nämlich das Tumormolekül», erklärt Pinschewer.

Tumor eliminiert oder verlangsamt

Bei Versuchen mit Mäusen konnten die Forschenden eine starke Aktivierung der sogenannten T-Killerzellen messen, die die entarteten Krebszellen eliminierten. Bei etwa 20 bis 40 Prozent der Tiere – je nach Art ihrer Krebserkrankung – verschwand der Tumor, während sich bei weiteren das Tumorwachstum zumindest temporär verlangsamte.

«Über die Wirksamkeit dieser neuen Therapieform beim Menschen können wir zwar im Moment noch nichts sagen», gibt Pinschewer zu bedenken. Laufende Studien mit einer Krebstherapie, die auf nur einem einzelnen Arenavirus basiert, wiesen aber bereits erste vielversprechende Ergebnisse aus. Effekte auf Tumore im Tierversuch liessen sich nicht eins zu eins auf die entsprechenden Krebserkrankungen beim Menschen übertragen. «Da die Therapie mit zwei verschiedenen Viren bei Mäusen aber besser wirkt als die Therapie mit nur einem Virus, stimmen mich unsere Forschungsresultate optimistisch», fügt Pinschewer hinzu.

Das Biotech-Unternehmen Hookipa Pharma, zu dessen Gründern auch Pinschewer gehört, untersucht die Wirksamkeit dieses neuartigen Ansatzes zur Krebstherapie am Menschen nun in klinischen Studien. «Im Moment wird getestet, was unser Ansatz bewirken kann», so der Forscher. «Bewährt er sich, wären auch Kombinationen mit bestehenden Therapien denkbar, sodass die miteinander verzahnten Wirkmechanismen Tumore noch besser ausmerzen können.»

Originalpublikation:
Weldy V. Bonilla et al.
Heterologous arenavirus vector prime-boost overrules self-tolerance for efficient tumor-specific CD8 T cell attack
Cell Reports Medicine (2021), doi: 10.1016/j.xcrm.2021.100209

Externer Link: www.unibas.ch

Neuer Ansatz für energieeffiziente KI-Anwendungen gefunden

Presseaussendung der TU Graz vom 11.03.2021

Forscher der TU Graz zeigen eine neue Design-Methode für besonders energieschonende künstliche neuronale Netzwerke, die mit extrem wenigen Signalen auskommen, und – ähnlich wie der Morse-Code – auch den Pausen zwischen den Signalen eine Bedeutung zuweisen.

Die meisten neuen Errungenschaften der Künstlichen Intelligenz (KI) erfordern sehr große neuronale Netze. Sie bestehen aus hunderten Millionen von Neuronen, die in mehreren hundert Schichten angeordnet sind, also sehr „tiefe“ Netzstrukturen haben. Diese großen, tiefen neuronalen Netze verbrauchen im Computer sehr viel Energie. Besonders energieintensiv sind jene neuronalen Netze, die in der Bildklassifizierung (z. B. Gesichts- und Objekterkennung) eingesetzt werden, da sie in jedem Zeittakt sehr viele Zahlenwerte mit großer Genauigkeit von einer Neuronenschicht zur nächsten senden müssen.

Der Informatiker Wolfgang Maass hat gemeinsam mit seinem Doktoranden Christoph Stöckl nun eine Design-Methode für künstliche neuronale Netzwerke gefunden, die den Weg zu einer energieeffizienten leistungsfähigen KI-Hardware (z. B. Chips für Fahrassistenzsysteme, Smartphones und anderen Mobile Devices) ebnet. Die beiden Forscher des Instituts für Grundlagen der Informationsverarbeitung der TU Graz haben künstliche neuronale Netzwerke in Computer-Simulationen zur Bildklassifizierung derart optimiert, dass die Neuronen – ähnlich wie Neurone im Gehirn – nur relativ selten Signale aussenden müssen und eben diese Signale sehr einfach sind. Die nachgewiesene Klassifizierungsgenauigkeit von Bildern mit diesem Design kommt trotzdem sehr nahe an den aktuellen Stand der Technik derzeitiger Bildklassifizierungstools heran.

Informationsverarbeitung im menschlichen Gehirn als Vorbild

Maass und Stöckl ließen sich dabei von der Arbeitsweise des menschlichen Gehirns inspirieren. Dieses verarbeitet mehrere Billionen Rechenoperationen in der Sekunde, benötigt dafür aber nur ca. 20 Watt. Möglich wird dieser geringe Energieverbrauch durch die zwischenneuronale Kommunikation mittels sehr einfacher elektrischer Impulse, sogenannter Spikes. Die Information wird dabei nicht nur durch die Anzahl der Spikes, sondern auch durch ihre zeitlichen variablen Muster kodiert. „Man kann sich das vorstellen wie einen Morse-Code. Auch die Pausen zwischen den Signalen übertragen Informationen“, erklärt Maass.

Konvertierungsmethode für trainierte künstliche neuronale Netzwerke

Dass eine Spike-basierte Hardware den Energieverbrauch von Anwendungen mit neuronalen Netzen reduzieren kann, ist nicht neu. Dies konnte aber bisher nicht für die sehr tiefen und großen neuronalen Netze realisiert werden, die man für wirklich gute Bildklassifikation benötigt.

In der Design-Methode von Maass und Stöckl kommt es nun bei der Informationsübertagung nicht nur darauf an, wie viele Spikes ein Neuron aussendet, sondern auch, wann das Neuron diese Spikes aussendet. Die Zeit bzw. die zeitlichen Abstände zwischen den Spikes kodieren sich praktisch selbst und können daher sehr viel zusätzliche Information übertragen. „Wir zeigen, dass mit wenigen Spikes – in unseren Simulationen sind es durchschnittlich zwei – genauso viel Informationen zwischen den Prozessoren vermittelt werden können wie in energieaufwendiger Hardware“, so Maass.

Mit den Ergebnissen liefern die beiden Informatiker der TU Graz einen neuen Ansatz für Hardware, die wenige Spikes und damit einen geringen Energieverbrauch mit State-of-the-Art-Performances von KI-Anwendungen verbindet. Die Ergebnisse könnten die Entwicklung von energieeffizienten KI-Anwendungen drastisch beschleunigen und werden unter anderem in Nature Machine Intelligence beschrieben. (Christoph Pelzl)

Originalpublikation:
Nature Machine Intelligence. Optimized spiking neurons can classify images with high accuracy through temporal coding with two spikes. C. Stoeckl and W. Maass.
DOI: 10.1038/s42256-021-00311-4

Externer Link: www.tugraz.at

Autonomer Wasserroboter rettet Ertrinkende

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.03.2021

In deutschen Schwimmbädern fehlen ausgebildete Bademeister. Vielerorts führt der Fachkräftemangel sogar zu Schließungen. Abhilfe könnte ein schwimmender Rettungsroboter schaffen, der das Personal künftig bei Notfällen unterstützen soll. Ein Forscherteam des Fraunhofer-Instituts für Optronik, Systemtechnik und Bildauswertung IOSB in Ilmenau hat das Unterwasserfahrzeug mithilfe des Wasserrettungsdienstes Halle e.V. entwickelt.

Fast 420 Menschen sind nach Angaben der Deutsche Lebens-Rettungs-Gesellschaft DLRG im Jahr 2019 ertrunken. Die meisten davon verloren ihr Leben in Binnengewässern. Aber auch in Schwimmbädern kam es zu Unfällen mit tödlichem Ausgang. Ein Grund dafür sind die fehlenden ausgebildeten Bademeister, die die Bäder sichern – und das in ganz Deutschland. Auch dem DLRG mangelt es an Nachwuchs bei Rettungsschwimmern. Abhilfe schaffen will ein Forscherteam des Institutsteils für Angewandte Systemtechnik AST des Fraunhofer IOSB. Ein weltweit einzigartiger Wasserroboter soll Bademeistern und Rettungsschwimmern zur Seite stehen und Schwimmende in Not retten. Bei der Entwicklung des autonomen Systems nutzen die Wissenschaftlerinnen und Wissenschaftler ihre jahrelange Expertise im Bereich der Unterwasserrobotik. Mit DEDAVE haben sie bereits ein mehrfach prämiertes autonomes Unterwasserfahrzeug entwickelt.

»Es gibt typische Körperpositionen, an denen man erkennt, dass sich jemand in Gefahr befindet«, erklärt Informatiker Helge Renkewitz, der das abgeschlossene Projekt in enger Zusammenarbeit mit dem Wasserrettungsdienst Halle e.V. geleitet hat. Das Vorhaben wurde vom Bundesministerium für Wirtschaft und Energie BMWi gefördert. An der Hallendecke angebrachte Überwachungskameras registrieren die Bewegungsmuster und Position des Ertrinkenden im Becken und senden die Koordinaten an den Roboter. Dieser befindet sich, vor fremden Augen geschützt, in einer Dockingstation am Boden des Schwimmbeckens, die sich im Notfall öffnet. Hat das Fahrzeug sein Ziel erreicht, ortet es mithilfe von Kameras die gefährdete Person und befördert diese an die Wasseroberfläche. Eine Fixier- und Fangvorrichtung verhindert, dass leblose Körper beim Auftauchen herunterrutschen. Diese Vorrichtung lässt sich auch auf andere Unterwasserfahrzeuge montieren.

Tests im Freigewässer erfolgreich abgeschlossen

An Badeseen übernehmen Flugdrohnen und Zeppelinsysteme die Aufgabe der Überwachungskameras. »Diese Drohnen und Werbeballons lassen sich problemlos mit Kameras ausstatten«, sagt Renkewitz. Für die Rettung im Badesee, wo das Wasser trübe ist, muss das Unterwasserfahrzeug anstelle von optischen mit akustischen Sensoren ausgestattet sein. Mithilfe des Echos der Schallwellen lassen sich Lage und Ausrichtung von Personen so exakt bestimmen, dass der Roboter die Zielperson autonom ansteuern und aufnehmen kann.

Dass dies in der Praxis einwandfrei funktioniert, konnten die Forscher in Freiwasser-Tests im Hufeisensee bei Halle (Saale) eindrucksvoll demonstrieren: Ein in drei Metern Tiefe abgelassener, 80 Kilo schwerer Dummy wurde von dem Rettungsroboter aufgenommen, fixiert, innerhalb einer Sekunde an die Wasseroberfläche befördert und auf dem kürzesten Weg eine Strecke von 40 Metern zurück zum Ufer gebracht, wo bereits die Rettungskräfte warteten. Ein Signal alarmiert diese sofort, wenn der Roboter über einen Notfall informiert wird. »Die komplette Rettungsaktion dauerte gut zwei Minuten. Verunglückte müssen innerhalb von fünf Minuten reanimiert werden, um dauerhafte Schäden auszuschließen. Diese kritische Zeitspanne konnten wir problemlos einhalten«, sagt Renkewitz.

Futuristische Optik

Das aktuelle System, das mit Batterien, Antrieb, Kameras, optischen und Navigationssensoren ausgestattet ist, misst 90 Zentimeter in der Länge, 50 Zentimeter in der Höhe und 50 Zentimeter in der Breite. Ziel von Renkewitz‘ Team ist es, das Rettungssystem weiter zu miniaturisieren und in verschiedenen Versionen für den Einsatz in Schwimmbädern und im Binnengewässer zu bauen. Es soll kleiner, leichter und kostengünstiger ausfallen als der bisherige Prototyp, der auf einem bereits existierenden Unterwasserfahrzeug basiert. Der künftige Roboter soll stattdessen das stromlinienförmige Design eines Rochen haben.

Der Wasserroboter ist bereits zum Patent angemeldet. In modifizierten Versionen kann er weitere Aufgaben übernehmen – etwa bei Offshore- und Staumauerinspektionen oder in Fischfarmen, um die Gesundheit der Fische zu überwachen. »Der Anwendungsbereich ist breit gestreut, unsere Unterwasserfahrzeuge eignen sich beispielsweise auch für das Aufspüren und die Prüfung von archäologischen Funden am Boden von Gewässern«, so der Forscher.

Externer Link: www.fraunhofer.de