Mini-Organe geben Einblicke in die Darmregeneration

Medienmitteilung der Universität Basel vom 08.10.2020

Forschende vom Friedrich Miescher Institut for Biomedical Research (FMI) und der Universität Basel haben Mechanismen entschlüsselt, die der Bildung von sogenannten Organoiden und der Regeneration des Darms zugrunde liegen. Dafür verwendeten sie ein einzigartiges bildbasiertes Hochdurchsatzverfahren. Sie haben einen Wirkstoff identifiziert, der die Regeneration des Darms im Tierversuch verbessert, wie sie im Fachblatt «Nature» berichten.

Im letzten Jahrzehnt gab es einen Boom auf dem Gebiet der Organoide – Miniaturorgane, die aus Stammzellen in der Petrischale gezüchtet werden. Diese Systeme rekapitulieren die Zusammensetzung des Zelltyps und zahlreiche Funktionen von Elternorganen wie Gehirn, Niere, Darm oder Lunge. Sie eignen sich perfekt für experimentelle Manipulationen, was sie zu unschätzbaren Werkzeugen für Forschende weltweit macht.

Organoide aus dem Darm – dem sich am schnellsten erneuernden Gewebe bei Säugetieren – rekapitulieren nicht nur die Struktur des Darmepithels, sondern auch seine Fähigkeit, sich nach einer Schädigung zu regenerieren. Darm-Organoide können sich aus einer einzigen Zelle entwickeln, angetrieben von der intrinsischen Fähigkeit der Zelle, einen Regenerationsprozess zu durchlaufen und durch Selbstorganisation eine komplizierte hierarchische Struktur aufzubauen. Die Faktoren, die diesen Prozess antreiben und regulieren, sind jedoch unklar.

Ein Forschungsteam um Prof. Dr. Prisca Liberali vom FMI und der Universität Basel hat sich das Ziel gesetzt, die Darmregeneration zu verstehen, indem sie die funktionellen genetischen Interaktionen entschlüsseln, die diesen Prozess regulieren. Zu diesem Zweck richteten sie eine bildbasierte Plattform für die Hochdurchsatzanalyse ein. Hiermit erstellten sie Profile von über 400’000 Organoiden, die mit einer Bibliothek von Wirkstoffen behandelt wurden. Ziel war, zu beurteilen, welche Wirkstoffe die Organoide beeinflussen. Dann klassifizierten sie jedes Organoid nach seiner Erscheinungsform (Phänotyp) und erstellten für jeden der 3000 untersuchten Wirkstoffe einen einzigartigen „phänotypischen Fingerabdruck“.

Wirkstoff fördert Darmregeneration

Dieser Datensatz ermöglichte es den Forschenden, 230 Gene zu identifizieren, die an der Entwicklung von Organoiden beteiligt sind, sowie ihre funktionellen genetischen Interaktionen. Zu den Treffern des Screens gehörte ein Hemmstoff des sogenannten Retinsäure-Signalwegs, der die regenerativen Eigenschaften der Organoide förderte. Bestätigen konnten die Forschenden diesen Effekt durch Analyse der Genexpression und Zelltyp-Zusammensetzung.

Auch im Tierversuch mit Mäusen mit strahleninduzierten Darmschäden stellten die Wissenschaftler eine bessere Erholung der Tiere fest, wenn sie mit dem Wirkstoff behandelt wurden: Sie zeigten eine verbesserte Geweberegeneration und verringerten Gewichtsverlust.

«Diese Studie stellt eine unglaubliche technische Meisterleistung dar, und die von uns entwickelte Screening-Plattform lässt sich auf viele Systeme anwenden», sagt Prisca Liberali. «Wir haben die erste Karte der genetischen Interaktionen bei der Entwicklung von Darm-Organoiden erstellt.»

Der identifizierte Wirkstoff wirke selektiv auf regenerative Zellen, indem er die Zellen länger in einem regenerativen Zustand halte, ohne eine unkontrollierte Zellteilung zu verursachen, erklärt die Forscherin. «Wir glauben, dass unsere Erkenntnisse den Weg für neuartige Therapien ebnen, die die Regeneration und Erholung des Darmepithels nach einer akuten Schädigung fördern, zum Beispiel bei Krebspatienten, die eine Chemo- oder Strahlentherapie erhalten.»

Originalpublikation:
Ilya Lukonin, Denise Serra, Ludivine Challet Meylan, Katrin Volkmann, Janine Baaten, Rui Zhao, Shelly Meeusen, Karyn Colman, Francisca Maurer, Michael B. Stadler, Jeremy Jenkins, Prisca Liberali.
Phenotypic landscape of intestinal organoid regeneration.
Nature (2020)

Externer Link: www.unibas.ch

Schnelle Hilfe für Verschüttete

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.10.2020

Sei es bei Lawinen, sei es bei Erdbeben – Verschüttete müssen schnellstmöglich geborgen werden. Mit einem neuartigen mobilen Radargerät des Fraunhofer-Instituts für Hochfrequenzphysik und Radartechnik FHR lassen sich künftig hektargroße Bereiche rasch und gründlich durchsuchen. Der Clou: Die Technologie kombiniert Bewegung und präzise Lebenszeichendetektion.

In manchen Regionen bebt die Erde täglich mehrere hundert Mal. Die meisten dieser Beben sind nicht allzu stark, andere jedoch entwickeln eine enorme Zerstörungskraft, bringen Gebäude zum Einsturz und lassen Tsunamis entstehen, die ganze Landstriche verwüsten. Rettungskräfte stehen bei einer solchen Katastrophe vor einer schwierigen Aufgabe: Wo in all den Trümmern befinden sich Verletzte, die dringend Hilfe benötigen? Anhaltspunkte können Radargeräte liefern. Jedoch lassen sich diese bislang nur stationär betreiben. Das System wird an einer Stelle aufgestellt und kann von dort aus – je nach Radar – etwa zwanzig bis dreißig Meter weit schauen. Diese Distanz ist zu gering, wenn es um großflächige Zerstörungen geht.

Eine Technologie des Fraunhofer FHR in Wachtberg kann den Suchradius deutlich vergrößern. »Wir haben ein mobiles Radargerät entwickelt, das Puls und Atmung verschütteter Personen bestimmen und sie auf diese Weise orten kann«, erläutert Dr. Reinhold Herschel, Teamleiter am Fraunhofer FHR. »Langfristig könnte eine Drohne, ausgerüstet mit dem Radargerät, die Unglücksstelle abfliegen. So lassen sich selbst hektargroße Bereiche effektiv und schnell durchsuchen.«

Mehrere Sender und Empfänger ermöglichen verschiedene Blickwinkel

Das dahinterliegende Prinzip: Das Radargerät sendet eine Welle aus, die an den Trümmerteilen zum Teil reflektiert wird, zum Teil durch sie hindurchgeht – und dann beispielsweise vom Verschütteten zurückgestrahlt wird. Über die Zeiten, die das Signal braucht, um wieder am Detektor des Radargeräts anzukommen, lassen sich die Entfernungen berechnen. Bewegt sich ein Objekt – hebt und senkt sich etwa die Haut des Verschütteten bei jedem Pulsschlag um einige hundert Mikrometer –, so ändert sich die Phase des Signals. Ebenso bei den Atembewegungen. Da man nur zehn- bis zwölfmal pro Minute Luft holt, das Herz aber durchschnittlich 60 Mal pro Minute schlägt, lassen sich diese Signaländerungen über Algorithmen gut voneinander trennen. Auch den Ort, an dem sich ein Verschütteter befindet, können die Forscher genau bestimmen. Möglich machen es MIMO-Radare, kurz für Multiple Input Multiple Output, die über mehrere Sender und Empfänger verfügen – es lassen sich also verschiedene »Blickwinkel« realisieren, über die dann die genaue Position bestimmt werden kann, an der die Rettungssanitäter nach dem Überlebenden graben müssen.

Algorithmus erkennt Herzflimmern

Das Besondere an der Technologie: Die Kombination von Bewegung und präziser Lebenszeichendetektion. Die Bewegung kann sich dabei zum einen auf eine Drohne beziehen, die das Unglücksgebiet überfliegt. Das Prinzip lässt sich aber auch umkehren: Stellt man das Gerät an eine feste Stelle, lassen sich die Lebenszeichen von Menschen detektieren, die sich im Umkreis des Geräts bewegen. Sinnvoll kann das etwa bei zahlreichen Verletzten sein, die beispielsweise nach einem Erdbeben in einer Turnhalle erstversorgt werden. Über das Radargerät lassen sich die Lebenszeichen aufzeichnen und den jeweiligen Verletzten zuordnen. Wer braucht die Hilfe am dringendsten? Der Algorithmus schaut dabei vor allem nach Veränderungen: Flimmert das Herz? Atmet der Patient sehr schnell? Die verschiedenen Signale können auseinander gerechnet und getrennt dargestellt werden. Und das mit hoher Genauigkeit: Die Pulsfrequenz beispielsweise misst das Radargerät auf ein Prozent genau, wie der Vergleich mit tragbaren Pulsgeräten ergab. Während bei der Suche nach Verschütteten per Radar noch Forschungsbedarf besteht, hat das Forscherteam bei der Lebenszeichendetektion von sich bewegenden Personen bereits erfolgreich Testläufe mit einem Abstand von bis zu 15 Metern durchgeführt. Der nächste Schritt zum Produkt wäre jetzt eine Verifikations-studie mit einem Partner im medizinischen Bereich. Nach positiver Evaluierung mit ausreichender Datenbasis kann dann zusammen mit interessierten Industriepartnern der Zertifizierungprozess gestartet werden. Die zuverlässige Detektion Verschütteter in schwierigen Fällen wie Erdreich oder Beton sowie die UAV-basierte Messung werden noch etwa zwei Jahre in Anspruch nehmen, bis eine ausreichend hohe Zuverlässigkeit für die Produktentwicklung erreicht ist. Hier ist das Fraunhofer FHR weiterhin forschend engagiert, um dieses ehrgeizige Ziel zu erreichen.

Externer Link: www.fraunhofer.de

technologiewerte.de – MOOCblick Oktober 2020

Spannende Themen, herausragende Dozenten und flexible Lernmöglichkeiten tragen zum wachsenden Erfolg der Massively Open Online Courses (MOOCs) bei – offene, internetgestützte Kurse mit einer Vielzahl an Teilnehmern rund um den Globus.

Folgender Kurs – zu finden auf der MOOC-Plattform edX – sollte einen Blick wert sein:

Railway Engineering: An Integral Approach
Rolf Dollevoet (TU Delft)
Start: 21.10.2020 / Arbeitsaufwand: 24-36 Stunden

Externer Link: www.edx.org

Streckbank für Zellen

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 24.09.2020

Eine raffinierte, wenige Mikrometer kleine Vorrichtung macht es möglich, die Reaktion einzelner biologischer Zellen auf mechanischen Stress zu untersuchen – Publikation in Science Advances

Das Verhalten von Zellen wird durch ihre Umgebung gesteuert. Neben biologischen Faktoren und chemischen Substanzen geraten auch physikalische Kräfte wie Druck oder Zug in den Fokus. Eine Methode, mit der sich der Einfluss äußerer Kräfte auf einzelne Zellen analysieren lässt, haben Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) und der Universität Heidelberg entwickelt. Mit einem 3D-Druckverfahren stellen sie Mikro-Gerüste her, auf deren jeweils vier Pfeilern sich eine Zelle ansiedelt. Auf ein äußeres Signal hin schwillt ein Hydrogel im Inneren des Gerüstes an und drückt die Pfeiler auseinander: Die Zelle muss sich „strecken“. Die Arbeit ist Teil des Exzellenzclusters „3D Matter Made to Order“ (3DMM2O). Über ihre Ergebnisse berichten die Forschenden in Science Advances (DOI: 10.1126/sciadv.abc2648).

Viele zelluläre biologische Prozesse, wie etwa die Wundheilung oder die Entwicklung von Gewebe, werden stark von den Eigenschaften ihrer Umgebung beeinflusst. Zellen reagieren beispielsweise auf biologische Faktoren oder chemische Stoffe. Doch zunehmend geraten auch einwirkende physikalische Kräfte in den Blickpunkt der Forschung: Wie genau stellen sich die Zellen auf sie ein?

Das Team des Exzellenzclusters 3DMM2O hat im deutsch-japanischen Universitätskonsortium HeKKSaGOn und in Kooperation mit australischen Wissenschaftlerinnen und Wissenschaftlern einen besonders raffinierten Weg beschritten, um sich dieser Frage zu nähern. Für die Herstellung ihrer Zell-Streckbänke nutzten sie das „direkte Laserschreiben“, ein spezielles 3D-Druckverfahren: Dabei wird ein Laserstrahl computergesteuert in eine spezielle flüssige Druckertinte fokussiert. Deren Moleküle reagieren nur an den beleuchteten Stellen und bilden dort ein festes Material. Alle anderen Bereiche bleiben flüssig und können weggewaschen werden. „Dieses Verfahren ist bei uns im Exzellenzcluster etabliert, um dreidimensionale Strukturen aufzubauen – auf der Mikrometerskala und darunter“, erläutert Marc Hippler vom Institut für Angewandte Physik des KIT, Erstautor der Veröffentlichung.

Im aktuellen Fall verwendeten die Forscherinnen und Forscher drei verschiedene Druckertinten: Eine Tinte aus protein-abweisendem Material, mit der sie das eigentliche Mikrogerüst herstellten. Mit einer zweiten Tinte aus protein-anziehendem Material fertigten sie anschließend vier Balken, die jeweils mit einem der Gerüstpfeiler verbunden sind. Auf diesen vier Balken verankert sich die Zelle. Eine dritte Tinte ist der eigentliche Clou: Die Wissenschaftler „drucken“ mit ihr eine Masse im Inneren des Gerüstes. Geben sie dann eine spezielle Flüssigkeit zu, dehnt sich die Hydrogel-Masse aus. Sie entwickelt so eine Kraft, die ausreicht, um die Pfeiler mitsamt den Balken zu bewegen – und somit die Zelle auf den Balken zu strecken.

Zellen wirken Deformation aktiv entgegen

Die Wissenschaftlerinnen und Wissenschaftler des Exzellenzclusters haben zwei ganz verschiedene Zellarten auf ihre Mikro-Streckbank gelegt: humane Knochentumor-Zellen und embryonale Mäusezellen. Sie stellten fest, dass die Zellen den äußeren Kräften mit Motorproteinen aktiv entgegenwirken und ihre Zugkräfte so stark erhöhen. Wird die externe Streckung aufgehoben, so entspannen sich die Zellen wieder und kehren zu ihrem Ausgangszustand zurück. „Dieses Verhalten zeigt eindrucksvoll die Anpassungsfähigkeit an eine dynamische Umgebung. Wenn sich die Zellen nicht mehr erholen würden, wären sie nicht mehr in der Lage, ihre ursprüngliche Funktion – beispielsweise den Wundverschluss – zu erfüllen“, so Professor Martin Bastmeyer vom Zoologischen Institut des KIT.

Wie das Team weiter herausfand, spielt bei der Reaktion der Zellen auf die mechanische Stimulation ein Protein namens NM2A (NonMuscle Myosin 2A) eine entscheidende Rolle: Genetisch veränderte Knochentumor-Zellen, die NM2A nicht bilden können, waren kaum noch in der Lage, der äußeren Deformation entgegenzuwirken.

An den aktuellen Arbeiten im Exzellenzcluster haben Heidelberger Forschende aus der biophysikalischen Chemie und Karlsruher Forschende der Physik und der Zell- und Neurobiologie mitgewirkt. In dem deutsch-japanischen Universitätskonsortium HeKKSaGOn haben sich unter anderem die Universität Heidelberg, das Karlsruher Institut für Technologie und die Universität Osaka zusammengeschlossen.

Exzellenzcluster 3D Matter Made to Order

Im Exzellenzcluster 3D Matter Made to Order (3DMM2O) forschen Wissenschaftlerinnen und Wissenschaftler des Karlsruher Instituts für Technologie und der Universität Heidelberg interdisziplinär an innovativen Technologien und Materialien für digitale skalierbare additive Fertigungsverfahren, um den 3D-Druck präziser, schneller und leistungsfähiger zu machen. Ziel ist es, die 3D-Fertigung und Materialverarbeitung vom Molekül bis zur Makrostruktur vollständig zu digitalisieren. Zusätzlich zur Förderung als Exzellenzcluster innerhalb der Exzellenzstrategie des Bundes und der Länder wird 3DMM2O durch die Carl-Zeiss-Stiftung gefördert. (ffr)

Originalpublikation:
Marc Hippler, Kai Weißenbruch, Kai Richler, Enrico D. Lemma, Masaki Nakahata, Benjamin Richter, Christopher Barner-Kowollik, Yoshinori Takashima, Akira Harada, Eva Blasco, Martin Wegener, Motomu Tanaka, Martin Bastmeyer: Mechanical Stimulation of Single Cells by Reversible Host-Guest Interactions in 3D Micro-Scaffolds, Science Advances, 2020, DOI: 10.1126/sciadv.abc2648.

Externer Link: www.kit.edu