Saarbrücker Forscher erstellen digitale Objekte aus unvollständigen 3-D-Daten

Pressemitteilung der Universität des Saarlandes vom 12.10.2017

Mit speziellen Kameras können reale Objekte inzwischen digital erfasst werden. Sie stoßen jedoch noch an Grenzen, wenn beispielsweise die Oberfläche eines Objektes für den Scanner zu dunkel ist und daher kein Signal liefert oder sich Teile gegenseitig verdecken. Informatiker des Max-Planck-Instituts für Informatik haben gemeinsam mit Kollegen vom US-amerikanischen Halbleiterhersteller Intel und dem Intel Visual Computing Institute der Universität des Saarlandes eine Methode entwickelt, die selbst aus unvollständigen Aufnahmen ein digitales Objekt rekonstruieren kann. Die Forscher nutzen dafür einen speziellen Typ eines neuronalen Netzwerkes.

„Obwohl die 3D-Scan-Technologie in den vergangenen Jahren einen erheblichen Sprung gemacht hat, ist es immer noch eine Herausforderung, die Geometrie und Form eines realen Objektes digital und automatisiert zu erfassen“, erklärt Mario Fritz, der am Max-Planck-Institut für Informatik die Gruppe „Scalable Learning and Perception“ leitet. Laut Fritz sind Tiefensensoren, etwa der Microsoft Kinect Sensor, sehr leistungsfähig, aber sie funktionieren nicht auf allen Materialien gleich gut, was zu verrauschten Daten oder sogar fehlenden Messwerten führt. „Die daraus resultierenden fehlerhaften oder sogar unvollständigen 3D-Geometrien stellen ein echtes Problem für eine Reihe von Anwendungen dar, etwa in der virtuellen, erweiterten Realität oder bei der Zusammenarbeit mit Robotern und im 3-D-Druck“, erklärt Mario Fritz.

Gemeinsam mit weiteren Forschern vom US-amerikanischen Halbleiterhersteller Intel und dem Intel Visual Computing Institute der Saar-Uni entwickelte er daher eine Methode, die auch mit unvollständigen Datensätzen funktioniert. Sie nutzt ein spezielles neuronales Netzwerk. „Unsere Methode benötigt keinerlei Aufsicht während der Lernphase, was in dieser Form ein Novum ist“, erklärt Fritz. Auf diese Weise konnten die Forscher beispielsweise einen flachen Monitor, dessen digitales Abbild nach dem 3-D-Scan eher einer Bretterwand glich, so rekonstruieren, dass jedermann wieder in dem digitalen Objekt einen Monitor erkennen konnte. Damit schlagen die Saarbrücker Informatiker auch bisherige Methoden, die fehlerhafte 3D-Scans verbessern und Formen vervollständigen. Auch bei der Klassifizierung von gescannten Objekten zeigt die Methode aus Saarbrücken sehr gute Ergebnisse. In Zukunft wollen die Wissenschaftler ihre Methode weiterentwickeln, so dass es auch bei verformbaren Objekten und größeren Szenen funktioniert.

„Zukünftig muss es einfach und schnell gelingen, Objekte aus der echten Welt zu erfassen und diese realitätsnah in die digitale Welt zu projizieren“, erklärt Philipp Slusallek, Professor für Computergraphik der Universität des Saarlandes und wissenschaftlicher Direktor am Deutschen Forschungszentrum für Künstliche Intelligenz (DFKI). Am DFKI ist er auch für das europäische Verbundprojekt „Distributed 3D Object Design“, kurz DISTRO, verantwortlich, mit dem die Europäische Union die Forschungsdisziplinen Visual Computing und 3D-Computergrafik an die wissenschaftliche Weltspitze bringen will. Dazu soll eine neue Generation von exzellenten Wissenschaftlern und Technikern ausgebildet werden. Fünf der 15 ausgeschriebenen Doktorandenstellen wurden mit Forschern des Saarland Informatics Campus an der Universität des Saarlandes besetzt.

Externer Link: www.uni-saarland.de

Forschungsprojekt für mehr Patientensicherheit: Neue Testmethoden für die Eignung von Implantaten für MRT-Untersuchungen entwickelt

Pressemeldung der OTH Amberg-Weiden vom 11.10.2017

Mit Herzschrittmacher oder Hüftimplantaten ins MRT (Magnet-Resonanz-Tomografie)? Viele Implantate sind für eine MRT-Untersuchung geeignet, aber nicht jedes. Häufig darf aus Sicherheitsgründen keine MRT-Untersuchung durchgeführt werden, denn die starken Magnetfelder können die Elektronik der Geräte ernsthaft beeinträchtigen oder im schlimmsten Fall den Patienten durch die Kraftwirkung, die auf das Implantat wirkt, verletzen. Für die Prüfung, ob ein Implantat für MRT-Untersuchungen geeignet ist, und damit eine sichere Untersuchung bei Implantat-Trägern gewährleistet werden kann, hat die OTH Amberg-Weiden im Rahmen eines Forschungsprojekts neue Testmethoden entwickelt. Dabei handelt es sich um ein automatisiertes Prüfverfahren, das Implantate automatisch auf ihre MRT-Eignung testet.

Die Forschungsarbeiten für das Projekt „Testmethodenentwicklung für aktive, implantierbare Medizinprodukte zum Ausschluss von Fehlfunktionen im Rahmen der MRT“ begann unter der Projektleitung von Prof. Dr. Ralf Ringler (Studiengang Medizintechnik an der OTH Amberg-Weiden) vor zwei Jahren. Gemeinsam mit dem Gelsenkirchener Unternehmen MR:comp, ein weltweit agierendes Unternehmen, das sich als Prüflabor einen Namen im Testen von Implantaten erworben hat, wurden Testmethoden entwickelt, die Fehlfunktionen von Implantaten durch induzierte Kräfte, Drehmomente und Vibrationen durch statische oder zeitlich veränderliche Magnetfelder erkennen.

Das Ergebnis der zweijährigen Forschungs- und Entwicklungsarbeit: Die ersten Prototypen zur automatisierten Messung von Drehmoment und Kraft im starken Magnetfeld eines MRTs wurden erfolgreich entwickelt, getestet und optimiert. Dabei wurden die im CAD-Programm geplanten und konstruierten, mechanischen Aufbauten in der hochschuleigenen Werkstatt am Standort Amberg in die Realität umgesetzt. Parallel zur Fertigung befasste sich das Entwicklungsteam in Weiden und Gelsenkirchen mit der einzusetzenden Sensorik, sowie mit der Fragestellung der Automatisierung der Messung. Eine essentielle Anforderung bei der Entwicklung und Umsetzung der automatisierten Teststände bestand darin, das Verfahren für die Anwender und somit für die späteren Prüfingenieure zu vereinfachen und die Tests stets unter gleichen Bedingungen wiederholen zu können. Auch eine entsprechende Software wurde entwickelt. So können in Testszenarien Funktionalität und Fehlerquellen nachgewiesen, Verbesserungen erarbeitet und neue Lösungen integriert werden.

„Unsere Arbeit gewinnt vor allem vor dem Hintergrund des demografischen Wandels an Bedeutung“, sagt Projektleiter Prof. Dr. Ralf Ringler. „Die steigende Lebenserwartung führt dazu, dass immer mehr Menschen auf Implantate angewiesen sind. Gleichzeitig benötigen gerade diese Patienten nicht selten auch MRT-Untersuchungen für eine vollständige Diagnose. Mit der Entwicklung der Testmethoden leisten wir einen wichtigen Beitrag zur sicheren Untersuchung von Implantat-Trägern!“ Denn „mit den neuen Testverfahren wurde die Messgenauigkeit erhöht und die Messzeit der Prüfung deutlich reduziert. Das bedeutet, eine Prüfung eines Implantats kann mit der von uns entwickelten Testmethoden schneller, günstiger und genauer durchgeführt werden“, so Projektingenieurin M.Sc. Karina Schuller. „Wir als Prüflabor können Herstellern von Implantaten eine höhere Sicherheit geben, dass ihr Implantat für eine MRT-Untersuchung geeignet ist“, ergänzt Dr. Jörg Seehafer, MR safety Consultant bei MR:comp GmbH.

Das Forschungsvorhaben „Testmethodenentwicklung für aktive, implantierbare Medizinprodukte zum Ausschluss von Fehlfunktionen im Rahmen der Magnet-Resonanz-Tomografie (MRT)“ wurde vom Bundesministerium für Wirtschaft und Energie gefördert und im Rahmen des Programms „Zentrales Innovationsprogramm Mittelstand (ZIM)“ (Projektform: Kooperationsprojekte) durchgeführt.

Externer Link: www.oth-aw.de

Innovative Dachkonstruktion besteht Praxistest

Medienmitteilung der ETH Zürich vom 12.10.2017

Mit neuartigen digitalen Planungs- und Herstellungsmethoden haben Wissenschaftler der ETH Zürich einen Prototyp für ein ultra-dünnes, geschwungenes Betondach gebaut. Nächstes Jahr soll die Methode zum ersten Mal an einem echten Gebäude eingesetzt werden.

Wissenschaftler der ETH Zürich haben mit neuartigen Design- und Fabrikationsmethoden einen Prototyp für ein ultra-dünnes und stark gewelltes Betondach gebaut. Das Dach gehört zu einer innovativen Wohneinheit mit dem Namen HiLo, die nächstes Jahr auf dem Forschungsgebäude NEST der Empa und Eawag in Dübendorf errichtet werden soll. Nach der Fertigstellung sollen Gastforschende der Empa darin wohnen und arbeiten. Wissenschaftler um Philippe Block, Professor für Architektur und Tragwerk und Arno Schlüter, Professor für Architektur und Gebäudesysteme, wollen dort neue Leichtbauweisen erproben und sie mit intelligenten und adaptiven Gebäudesystemen kombinieren.

Das selbsttragende und doppelt gekrümmte Schalendach besteht aus mehreren Schichten. Auf der inneren Betonlage kommen die Heiz- und Kühlschlangen zu liegen sowie eine Isolationsschicht. Gegen aussen schliesst eine weitere Betonschicht das Dach ab, auf welcher Dünnschicht-Solarzellen angebracht werden. Dank dieser Technologie und einer adaptiven Solar-Fassade soll die Wohneinheit dereinst mehr Energie generieren, als sie verbraucht.

Im Massstab 1:1 erprobt

Die Konstruktionsmethode für das Dach wurde von Forschern der Block Research Group unter der Leitung von Prof. Block und Dr. Tom Van Mele zusammen mit dem Architekturbüro supermanoeuvre entwickelt und an einem Prototyp im Massstab 1:1 erprobt. Der Prototyp, der bereits wieder rückgebaut wurde, um zukünftigen Experimenten Platz zu machen, war siebeneinhalb Meter hoch und hatte eine Fläche von 162 Quadratmetern. Die Dicke des Betons variierte zwischen 3 Zentimetern an den Rändern des Dachs und 12 Zentimetern an den Auflageflächen.

Anstatt auf herkömmliche Schalungen aus Holz oder Kunststoff, setzten die Forscher auf ein Netz aus Stahlseil, das in einer Gerüstkonstruktion aufgespannt wird. Auf dieses Netz kommt ein Textil aus Polymer zu liegen, das dem Beton als Schalung dient. So können die Wissenschaftler nicht nur massiv Baumaterial sparen, sondern auch Lösungen für die wirtschaftliche Herstellung ganz neue Design-Formen bereitstellen. Ein weiterer Vorteil dieser Methode ist, dass bereits während des Betonieren des Dachs die Fläche darunter frei bleibt und somit Bauarbeiten im Gebäudeinnern zeitgleich stattfinden können.

Algorithmen berechnen exakte Form

Das Drahtseil-Netz ist so konzipiert, dass es unter dem Gewicht des nassen Betons die gewünschte Form annimmt. Dies gelingt dank einer Berechnungsmethode, die Block und seine Gruppe im Rahmen des Nationalen Forschungsschwerpunkts Digitale Fabrikation weiterentwickelt haben. Die Algorithmen sorgen dafür, dass sich die Kräfte in jedem einzelnen Stahlseil richtig verteilen und das Dach exakt die vorbestimmte Form annimmt. «Wenn wir die Geometrie richtig berechnen, dann gewinnen wir die Stabilität primär aus der Geometrie und nicht aus dem Baumaterial», sagt Philippe Block. Das Kabelnetz wiegt nur 500 Kilogramm, das Textil 300 Kilogramm. Es handelt sich also um insgesamt nur 800 Kilo Material, die 20 Tonnen nassen Beton tragen.

Der Bau des Dachs wäre ohne die Hilfe modernster Computer- und Herstellungstechniken nicht denkbar. Bauroboter kamen dennoch nicht zum Einsatz, stattdessen setzten die Wissenschaftler auf die Präzision und auf das Können von Handwerkerinnen und Handwerkern. Spezialisten der Firmen Bürgin Creations und Marti haben den Beton mit einer eigens dafür entwickelten Methode aufgespritzt. Sie mussten darauf achten, dass das Textil dem Druck jederzeit standhalten konnte. Gemeinsam mit Holcim Schweiz definierten die Wissenschaftler die richtige Betonmischung, die flüssig genug sein musste, um aufgespritzt werden zu können und zähflüssig genug, um auch an den vertikalen Stellen haften zu bleiben.

Bewiesen, dass es funktioniert

Den Prototypen haben die Wissenschaftler um Block im Robotic Fabrication Lab der ETH Zürich innerhalb von sechs Monaten gebaut. Er stellt einen wichtigen Meilenstein für das Projekt dar. «Wir haben bewiesen, dass es möglich ist, ein leichtes und flexibles Schalungssystem für Beton zu bauen und dass komplexe Betonstrukturen ohne grossen Materialaufwand möglich sind. In enger Zusammenarbeit mit den Unternehmen konnten wir zeigen, dass unser System auch auf der NEST-Baustelle funktionieren wird», sagt Block.

Vom Projektstart bis zum fertigen Prototypen dauerte es vier Jahre. Dies auch, weil Philippe Block die zahlreichen Industriepartner eng in die Entwicklung des Prototyps einbeziehen wollte. Nächstes Jahr will Block das Dach in acht bis zehn Wochen auf dem NEST-Gebäude neu bauen. Die einzelnen Komponenten der Dachkonstruktion lassen sich beliebig oft wiederverwenden. Das Drahtseilnetz lässt sich in wenige Teile zerlegen, die innerhalb kurzer Zeit wieder zusammengefügt und neu aufgehängt werden können.

Externer Link: www.ethz.ch

Wie Schalter in Bakterien funktionieren

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 25.09.2017

Forscher des KIT, der Universität Heidelberg und der Freien Universität Berlin analysieren Struktur und Dynamik von Riboschaltern in lichtoptischen Einzelmolekülexperimenten

Viele Bakterien besitzen molekulare Kontrollelemente, über die sie Gene an- und abschalten können. Diese Riboschalter eröffnen neue Möglichkeiten bei der Entwicklung von Antibiotika oder auch zum Aufspüren und Abbauen von Umweltgiften. Wie die Riboschalter funktionieren, haben Forscher des Karlsruher Instituts für Technologie (KIT), der Universität Heidelberg und der Freien Universität Berlin nun anhand von lichtoptischer Mikroskopie an Einzelmolekülen grundlegend untersucht. Darüber berichten sie in der Zeitschrift Nature Chemical Biology. (DOI: 10.1038/nchembio.2476)

Riboschalter (Riboswitches) liegen auf der Boten-Ribonukleinsäure (mRNA), die genetische Information zum Ort der Proteinbiosynthese transportiert. Ein Riboschalter besteht aus einem Sensor, der die Konzentration eines kleinen Stoffwechselmoleküls misst, und einem Effektor, der die Genexpression und damit die Synthese eines Proteins steuert. Weil Riboschalter in vielen bakteriellen Krankheitserregern vorkommen, stellen sie bei der Entwicklung neuer Antibiotika wichtige Angriffsziele dar. Weitere Anwendungen eröffnen sie in der synthetischen Biologie. Zum Beispiel lassen sich Bakterien mit Riboschaltern gentechnisch so modifizieren, dass sie niedermolekulare Umweltgifte, wie Herbizide, aufspüren und abbauen können. Voraussetzung ist allerdings ein grundlegendes Verständnis der Prozesse, auf denen die Funktion der Riboswitches beruht. Dazu trägt die nun im Magazin Nature Chemical Biology vorgestellte Arbeit wesentlich bei.

Die von der Heidelberg Karlsruhe Research Partnership (HEiKA) geförderte Arbeit entstand in Kooperation der Forschergruppen um Professor Gerd Ulrich Nienhaus am Institut für Angewandte Physik (APH), Institut für Nanotechnologie (INT) und Institut für Toxikologie und Genetik (ITG) des KIT sowie um Professor Andres Jäschke am Institut für Pharmazie und Molekulare Biotechnologie (IPMB) der Universität Heidelberg. Im Fokus der Arbeit steht der S-Adenosyl-L-Methionin (SAM)-I Riboschalter. „Bei diesem Riboschalter bewirkt die Anbindung des SAM-Moleküls, dass sich die Konformation, das heißt die räumliche Anordnung der Atome, von der Antiterminator (AT)-Struktur zur Terminator (T)-Struktur hin verändert“, erklärt Nienhaus. „Dadurch wird die Genexpression abgeschaltet.“

Zunächst synthetisierten die Wissenschaftler in Heidelberg die SAM-I Riboschalter und markierten sie an verschiedenen Stellen gezielt mit je zwei unterschiedlichen Fluoreszenzfarbstoffen. Die Forscher am KIT untersuchten diese RNA-Moleküle dann in hoher räumlicher und zeitlicher Auflösung mit höchst sensitiven Lichtmikroskopen, welche die Fluoreszenzemission einzelner Farbstoffmoleküle registrierten. In Förster-Resonanzenergietransfer-Experimenten (FRET) ließ sich die Konformationsdynamik direkt erfassen: Ein grüner Farbstoff wird dazu mit Laserlicht zur Lichtemission angeregt. Befindet sich in der Nähe ein roter Farbstoff, kann dieser die Anregungsenergie des grünen Farbstoffs übernehmen und selbst Licht aussenden. Die Wahrscheinlichkeit, dass ein Energietransfer stattfindet, ist stark abhängig vom Abstand der Farbstoffe zueinander, sodass sich Strukturänderungen eines Moleküls, an das die Farbstoffe gezielt angebracht sind, direkt über die Emission des roten Farbstoffs beobachten lassen. Da die Lichtemission extrem schwach ist, bedurfte es aufwendiger Datenanalyseverfahren, basierend auf Hidden Markov Modeling. Professorin Bettina Keller vom Institut für Chemie und Biochemie der Freien Universität Berlin entwickelte die Verfahren speziell für diese Art von Experimenten, um die zeitabhängigen Lichtemissionssignale aus dem Rauschen herauszuheben.

Bei der Analyse gelang es den Forschern, nicht nur zwei Konformationen (T und AT) des SAM-I Riboschalters zu unterscheiden, sondern insgesamt vier (T1, T2, AT1 und AT2). Überraschend war auch, dass der Riboschalter in An- und Abwesenheit von SAM nicht, wie eigentlich zu erwarten war, vollständig zwischen T- und AT-Strukturen hin und her schaltete, sondern ständig zwischen allen Zuständen hin und her fluktuierte; lediglich deren Gewichtungen waren verschoben. Ein für die biologische Funktion besonders wichtiges Ergebnis war, dass die beobachteten Strukturfluktuationen mit angedocktem SAM deutlich schneller waren als ohne SAM. Da die Riboschalter-Sequenz auf der Boten-RNA direkt vor dem zu steuernden Gen liegt, muss das RNA-Molekül nach der Synthese – bei Anwesenheit von SAM – schnellstmöglich eine T-Struktur (Schalter aus) einstellen können, um die anschließende Transkription des zu steuernden Gens zu verhindern. Die Beschleunigung der Strukturfluktuationen durch SAM-Bindung stellt demnach sicher, dass die T-Struktur schnell genug eingestellt werden kann. „Mithin spielt die Dynamik des SAM-I Riboschalters eine entscheidende Rolle für seine Funktion“, resümiert Nienhaus vom KIT. „Diese detaillierten Einblicke in die Funktionsweise eines Biomoleküls verdanken wir einem fächerübergreifenden Forschungsansatz mit Beiträgen aus der Physik, der Biotechnologie und der theoretischen Chemie.“ (or)

Publikation:
Christoph Manz, Andrei Yu Kobitski, Ayan Samanta, Bettina G Keller, Andres Jäschke & G Ulrich Nienhaus: Single-molecule FRET reveals the energy landscape of the full-length SAM-I riboswitch. Nature Chemical Biology (2017). DOI: 10.1038/nchembio.2476

Externer Link: www.kit.edu

Bakterielle Nano-Harpune funktioniert wie Power-Bohrer

Medienmitteilung der Universität Basel vom 25.09.2017

Um sich unliebsamer Konkurrenten zu entledigen, bedienen sich einige Bakterien einer ausgeklügelten Waffe – der Nanoharpune. Forscher vom Biozentrum der Universität Basel haben nun ganz neue Einblicke in deren Bau, die Funktionsweise sowie das Recycling gewonnen. Wie sie im Fachblatt «Nature Microbiology» berichten, bohrt sich die Nanoharpune in wenigen Tausendstelsekunden in die Zellwand der Nachbarzelle und injiziert dort einen Giftcocktail.

Dicht an dicht drängeln sich Millionen winziger Mikroben auf Blättern, Steinen oder unserer Haut. Und beinahe überall müssen sie um Ressourcen und Nährstoffe wetteifern. Im Laufe der Evolution haben daher einige Bakterien eine Waffe entwickelt, mit der sie ihren Konkurrenten und Gegnern in der Umgebung einen Giftcocktail injizieren und sie so ausschalten. In der Fachwelt wird dieser einer Harpune ähnelnden Waffe auch als Typ 6 Sekretionssystem (T6SS) bezeichnet.

Bereits vor zwei Jahren gelang es Prof. Marek Basler den atomaren Aufbau der Nanoharpune im «abgefeuerten» Zustand aufzuklären. In der aktuellen Studie, die in Zusammenarbeit mit verschiedenen Forschungsgruppen und Technologieplattformen am Biozentrum entstand, legte das Team nun erstmals die Struktur der Nanoharpune im «abschussbereiten» Zustand offen. Anhand dieser Erkenntnisse konnten die Forscher nun zeigen, wie die T6SS-Harpune im Detail funktioniert.

Struktur der Nanoharpune verändert sich beim Abfeuern

Die Harpune ist aus verschiedenen Bauteilen aufgebaut, dazu gehören eine äussere Hülle und ein Speer mit einer scharfen Spitze. Die Hülle selbst besteht aus über 200 zahnradartigen Proteinringen, die sich um den starren Speer herumwinden. Beim Abfeuern des T6SS zieht sich die Hülle zusammen und stösst dabei den Giftspeer aus der Zelle heraus. Dieser dringt in die benachbarten Zellen ein und setzt dort tödliche Toxine frei. «Bis jetzt gab es nur Vermutungen darüber, wie sich die Struktur der T6SS-Hülle bei der Kontraktion verändert», sagt Basler. «Mithilfe der Kryo-Elektronenmikroskopie, die am C-CINA durchgeführt wurde, erhielten wir nun erstmals von der gedehnten Hüllstruktur ein Bild in atomarer Auflösung.»

Durch den Vergleich der Strukturen im gedehnten und kontrahierten Zustand konnten die Forscher am Rechner modellieren, wie das T6SS genau funktioniert. «Beim Zusammenziehen der Hülle, verdreht sich Ring für Ring. Dadurch wird der Abstand zum vorherigen Ring kleiner, der Durchmesser nimmt zu und der Speer wird freigelegt», erklärt Basler. «Die Kombination aus Schrumpfen und Drehen führt dazu, dass der Speer ein Loch in die Zielzelle bohrt. Innerhalb von weniger als zwei Millisekunden zieht sich die T6SS-Hülle auf die Hälfte ihrer Länge zusammen und schraubt gleichzeitig den Giftspeer heraus. Die Bakterien verfügen demnach über einen extrem leistungsfähigen Bohrer.»

Nur kontrahierte T6SS-Hülle wird demontiert

Darüber hinaus beschäftigte die Forscher eine weitere Frage. Einige Bakterien verwenden nach dem Abfeuern der Harpune einzelne Bauteile der Hülle für den Bau einer neuen Harpune. «Uns war lange Zeit nicht klar, warum nur die kontrahierte, nicht aber die gedehnte Hüllstruktur demontiert wird», sagt Basler. «Jetzt konnten wir sehen, dass aus der Oberfläche der kontrahierten Hülle ein Proteinabschnitt herausragt, der von einem Protein erkannt wird, der dieses Bauteil in seine Einzelteile zerlegt. Im gedehnten Zustand der Nanoharpune ist dieser Abschnitt jedoch versteckt und die T6SS-Hülle so vor der Demontage geschützt.»

Auch zukünftig soll die Nano-Harpune der Bakterien weiter Gegenstand der Forschung sein. «Eines unserer Projekte widmet sich der Frage, wie das T6SS in der Bakterienhülle befestigt ist. Wenn die Harpune mit so einer Wucht abgefeuert wird, dann muss diese sehr fest verankert sein, ansonsten würde die Waffe nicht einwandfrei funktionieren oder deren Abschuss könnte für den Waffenträger selbst tödlich enden.»

Originalbeitrag:
Jing Wang, Maximilian Brackmann, Daniel Castaño-Díez, Mikhail Kudryashev, Kenneth N. Goldie, Timm Maier, Henning Stahlberg and Marek Basler
Cryo-EM structure of the extended type VI secretion system sheath-tube complex
Nature Microbiology (2017), doi: 10.1038/s41564-017-0020-7

Externer Link: www.unibas.ch