Das Elektronenmikroskop mit dem Extra-Dreh

Presseaussendung der TU Wien vom 05.11.2012

Vortex-Strahlen, die wie ein Wirbelsturm rotieren, bieten völlig neue Möglichkeiten für die Elektronenmikroskopie. An der TU Wien wurden eine Möglichkeit entdeckt, extrem intensive Vortexstrahlen zu erzeugen.

Elektronenmikroskope sind heute ein unverzichtbares Werkzeug, ganz besonders in der Materialwissenschaft. An der TU Wien wird an Elektronenstrahlen geforscht, die eine innere Rotation haben, ähnlich wie ein Wirbelsturm. Mit Hilfe dieser sogenannten „Vortex-Strahlen“ können nicht nur Objekte abgebildet, sondern auch materialspezifische Eigenschaften untersucht werden – mit einer Präzision im Nanometerbereich. Ein neuer Forschungsdurchbruch ermöglicht nun viel intensivere Vortexstrahlen als je zuvor.

Quanten-Tornado: Das Elektron als Welle

In einem Tornado drehen sich die einzelnen Luftteilchen zwar nicht unbedingt um die eigene Achse, aber der Luftsog insgesamt hat eine mächtige Rotation. Ganz ähnlich verhalten sich die rotierenden Elektronenstrahlen, die an der TU Wien hergestellt werden. Um sie zu verstehen, darf man sich die Elektronen nicht bloß als winzige Punkte oder Kügelchen vorstellen, denn die könnten sich höchstens um ihre eigene Achse drehen. Die Vortex-Strahlen hingegen lassen sich nur quantenphysikalisch erklären: Die Elektronen verhalten sich wie eine Welle, und diese Quanten-Welle kann rotieren, wie ein Tornado oder wie die Wasserströmung hinter einer Schiffsschraube.

„Nachdem der Vortex-Strahl einen Drehimpuls trägt, kann er auch Drehimpuls auf das Objekt übertragen, auf das er trifft“, erklärt Prof. Peter Schattschneider vom Institut für Festkörperphysik der TU Wien. Der Drehimpuls der Elektronen in einem Festkörper ist eng mit seinen magnetischen Eigenschaften verknüpft. Für die Materialwissenschaft ist es daher ein ungeheurer Vorteil, durch die neuartigen Elektronenstrahlen auch Aussagen über Drehimpuls-Zustände treffen zu können.

Strahlen drehen – mit Blenden und Masken

Peter Schattschneider und Michael Stöger-Pollach (USTEM, TU Wien) arbeiten gemeinsam mit einer Forschungsgruppe aus Antwerpen daran, möglichst intensive und sauber kontrollierbare Vortex-Strahlen in einem Transmissions-Elektronenmikroskop zu erzeugen. Bereits vor zwei Jahren gab es erste Erfolge: Damals wurde der Elektronenstrahl durch eine winzige gitterartige Maske hindurchgeschossen, wodurch er sich in drei Teilstrahlen aufspalten ließ: Einen rechtsdrehenden, einen linksdrehenden und einen Strahl ohne Rotation.

Nun wurde eine neue, noch viel mächtigere Methode entwickelt: Die Forscher verwenden eine Blende, die zur Hälfte von einer Siliziumnitrid-Schicht bedeckt wird. Diese Schicht ist so dünn, dass die Elektronen sie fast absorptionsfrei durchdringen können, aber geeignet phasenverschoben werden. „Nach Fokussierung durch eine speziell abgestimmte astigmatische Linse erhält man einen einzelnen Vortexstrahl“, erklärt Michael Stöger-Pollach.
 
Dieser Strahl ist um eine Größenordnung intensiver als die Vortex-Strahlen, die man bisher erzeugen konnte. „Erstens spalten wir den Strahl nicht in drei Teile auf, wie bei der Gittermaske, sondern der gesamte Elektronenstrom wird in Rotation versetzt. Zweitens hatte die Gittermaske den Nachteil, die Hälfte  der Elektronen zu blockieren – die neue Spezialblende tut das nicht“, sagt Stöger-Pollach.

Durch die neue Technik lassen sich nun auch rechts- und linksdrehende Strahlen zuverlässig unterscheiden – das war bisher nur schwer möglich. Addiert man nun nämlich zu rechts- und linksdrehenden Strahlen jeweils einen bestimmten Drehimpuls hinzu, wird die Drehung des einen Strahls verstärkt, die des anderen Strahles nimmt ab.

Elektronenmikroskop mit Twist

Die neue Technologie wurde von dem Forschungsteam kürzlich im Fachjournal „Physical Review Letters“ präsentiert. In Zukunft soll die Methode für die Materialforschung eingesetzt werden. Besonders bei neu entwickelten Designer-Materialien stehen magnetische Eigenschaften oft im Zentrum der Aufmerksamkeit. „Ein Transmissions-Elektronenmikroskop mit Vortex-Strahlen ließe uns diese Eigenschaften nanometergenau untersuchen“, meint Peter Schattschneider.

Auch exotischere Anwendungen von Vortex-Strahlen sind denkbar: Im Prinzip kann man mit solchen drehimpulstragenden Strahlen Objekte in Rotation versetzen – etwa einzelne Moleküle. Vortex-Strahlen könnten daher auch neue Türen in der Nanotechnologie öffnen. (Florian Aigner)

Externer Link: www.tuwien.ac.at

Basler Chemiker schaffen erstes künstliches Metalloenzym

Medienmitteilung der Universität Basel vom 26.10.2012

Chemiker der Universität Basel haben durch die Kombination von chemisch und genetisch modifizierten Bausteinen ein künstliches Enzym geschaffen, das eine synthetisch wertvolle chemische Reaktion in guten Ausbeuten und mit hoher Selektivität katalysiert. Dank dieser Eigenschaft kann das Enzym als Katalysator bei der Synthese wichtiger Strukturelemente verwendet werden, wie die Forscher im Fachjournal «Science» berichten.

An einer katalytischen Reaktion ist neben den Reaktanden ein weiterer Stoff, der Katalysator, beteiligt, der die Reaktion beschleunigt und nach deren Ablauf unverbraucht daraus hervorgeht. In lebenden Zellen kommt diese Aufgabe Enzymen zu – von der Natur geschaffene, komplexe Katalysatoren – welche die biochemischen Prozesse in Lebewesen ermöglichen. Dem Chemiker Prof. Thomas Ward und seinem Team von der Universität Basel ist es nun erstmals gelungen, ein künstliches Metalloenzym zu synthetisieren.

Metalloenzyme – Hybride aus Proteinen und Metallkomplexen

Dank genetischer Verfahren können heute Enzyme so modifiziert werden, dass sie sich als nützliche Werkzeuge in der chemischen Synthese etabliert haben. Dennoch bleibt der Aufbau eines künstlichen Enzyms auf der Basis eines katalytisch nicht aktiven Gerüsts eine grosse Herausforderung für Chemiker, da nach wie vor nicht verstanden ist, wie die dreidimensionale Struktur eines Proteins seine katalytische Funktion beeinflusst.

Die Chemiker um Thomas Ward generierten ein künstliches Metalloenzym, ein Hybrid aus Protein und Metallkomplex. Dazu bauten sie ein künstliches, katalytisch aktives Metallfragment in ein Proteingerüst ein, das eine geeignete dreidimensionale Struktur aufweist. Als Wirtsprotein diente den Forschenden der Streptavidin-Biotin-Komplex, als Metallfragment ein an Biotin gebundener Rhodiumkomplex. Das künstliche Metalloenzym katalysierte zwar die beabsichtigte Reaktion, jedoch nur in geringer Ausbeute. Durch den Austausch zweier Aminosäuren im Streptavidinteil gelang es den Chemikern, die ursprüngliche Reaktion mit hoher Ausbeute auf das nahezu 100-Fache zu beschleunigen. Zudem erfolgte die Umsetzung – anders als die rein chemisch katalysierte Reaktion – mit hoher Selektivität bezüglich der theoretisch möglichen Produkte.

Künstliche Enzyme mit Anwenderpotential

Enzyme sind den von Chemikern synthetisierten metallorganischen Katalysatoren in mancher Hinsicht überlegen, da sie spezifischer und präziser arbeiten. Die Entwicklung künstlicher Enzyme hat daher grosses Potenzial für Anwendungen in der chemischen Synthese und der synthetischen Biologie. Chemisch betrachtet handelt es sich bei Enzymen um Proteine, Makromoleküle, die aus vielen Aminosäuren bestehen und oft ein Metallion im aktiven Zentrum haben. Bei Katalysatoren, die in der synthetischen Chemie eingesetzt werden, handelt es sich hingegen meist um weniger komplexe chemische Verbindungen. Durch die Kombination von chemisch und genetisch modifizierten Bausteinen konnten die Basler Wissenschaftler ein Enzym generieren, das so in der Natur nicht vorkommt und ein Reaktionsvermögen zeigt, das mit den Einzelkomponenten alleine nicht erzielt werden kann.

Originalbeitrag:
Todd K. Hyster, Livia Knörr, Thomas R. Ward, Tomislav Rovis
Biotinylated Rh(III) Complexes in Engineered Streptavidin for Accelerated Asymmetric C-H Activation
Science (2012), published online 26 October 2012 | doi: 10.1126/science.1226132

Externer Link: www.unibas.ch

Kooperierende Moleküle: Physiker der TU Graz untersucht Wechselwirkungen organischer Moleküle

Pressemitteilung der TU Graz vom 25.10.2012

Leistung im Miniformat: Die elektronischen Bauelemente der Zukunft sollen schneller, leistungsfähiger und vor allem immer kleiner sein. Die langfristige Vision der ultimativen Miniaturisierung sind einzelne Moleküle, die elektrisch leiten und schalten. Um dieser Vision näher zu kommen, müssen die Wechselwirkungen und physikalischen Eigenschaften von Molekülen im Detail erforscht werden. David Egger, Dissertant am Institut für Festkörperphysik der TU Graz, hat genau das getan und ist dabei auf ein interessantes Phänomen gestoßen: Im Kollektiv verhalten sich die chemischen Bauteile nicht als „Einzelkämpfer“, sondern arbeiten zusammen. Die Forschungsarbeit, die der junge Wissenschafter in Kooperation mit Kollegen der Humboldt-Universität zu Berlin verfasste, wurde kürzlich im renommierten Fachjournal „Advanced Materials“ publiziert.

Die fortschreitende Miniaturisierung elektronischer Bauelemente ist durch physikalische Grenzen nur eingeschränkt möglich – noch. Wie man diese Grenzen überwinden könnte, wird in der Nanoelektronik erprobt: „Ziel ist es, statt Halbleiter-Mikrostrukturen einzelne Moleküle als elektrische Leiter und Schalter fungieren zu lassen“, erklärt David Egger vom Institut für Festkörperphysik.

Gemeinsam anders als alleine

In seiner Doktorarbeit hat der Physiker in einem Forschungsaufenthalt bei Georg Heimel an der Humboldt-Universität zu Berlin die Eigenschaften von organischen Molekülen in verschiedenen Situationen untersucht. Dabei hat sich ein überraschendes Phänomen offenbart: Zwei organische Moleküle, die individuell betrachtet sehr ähnliche physikalische Eigenschaften haben, zeigen im Kollektiv einer Nanometer dünnen Schicht völlig unterschiedliche Charakteristika. „Wenn die Moleküle kooperieren, ändern sich plötzlich wichtige elektrische Kennzahlen wie die Leitfähigkeit oder das elektrische Verhalten bei Erwärmung“, erklärt Egger.

Modellierung an Hochleistungsrechnern

Ein grundlegendes Verständnis von derartigen Phänomenen im Nanobereich ist für die Entwicklung neuartiger Bauteile, etwa für die Chipindustrie, essentiell. Da bestimmte physikalische Prozesse für Experimente nur schwer unter kontrollierten Bedingungen zugänglich sind, nutzt Egger zum besseren Verständnis die Modellierung und Simulation an Hochleistungsrechnern und untersucht die Wechselwirkung von Molekülen in dünnen Schichten so unter stabilen Bedingungen.

Biografische Skizze

David Egger wurde 1987 in Klagenfurt geboren. Er studierte Technische Physik an der TU Graz und schloss seinen Master 2010 ab. Derzeit ist er Doktorand bei Egbert Zojer am Institut für Festkörperphysik der TU Graz. David Egger ist Träger des DOC Stipendium der Österreichischen Akademie der Wissenschaften und wurde 2011 mit dem Forschungspreis für Simulation und Modellierung des Landes Steiermark – „Nachwuchsförderung“ ausgezeichnet.

www.tugraz.at

Gestreutes Röntgenlicht zeigt krankes Gewebe

Pressemitteilung der TU München vom 22.10.2012

Röntgen-Technologie verbessert Früherkennung von Lungenerkrankungen:

Schwere Lungenerkrankungen gehören weltweit zu den häufigsten Todesursachen. Bisher sind sie im Frühstadium nur schwer zu diagnostizieren. Mit einer von Münchener Wissenschaftlern im Rahmen einer internationalen Kooperation entwickelten Röntgentechnik ist dies jetzt möglich. Nun arbeiten die Wissenschaftler daran, die Methode praxistauglich zu machen.

Jedes Jahr sterben allein in Deutschland mehr als 100.000 Menschen an schweren Lungenerkrankungen. Vorläufer einer lebensgefährlichen chronisch obstruktiven Lungenerkrankung (chronic obstructive pulmonary disease, COPD) ist in der Regel eine chronische Bronchitis. Eine schwer wiegende Begleiterscheinung sind teilweise zerstörte Lungenbläschen und eine Aufblähung der Lunge (Emphysem). Doch in normalen Röntgenaufnahmen sind die feinen Unterschiede im Gewebe kaum sichtbar.

Zusätzlich zum normalen Röntgenbild analysierten die Münchener Wissenschaftler daher auch die vom Gewebe gestreute Strahlung. Aus diesen Daten errechneten sie dann detaillierte Bilder der Lungen der untersuchten Mäuse. Anhand solcher Bilder kann der Arzt nicht nur sehen ob ein Patient erkrankt ist sondern auch, welche Stellen der Lunge wie stark betroffen sind.

„Gerade die frühen Stadien von Erkrankungen besser erkennen, quantifizieren und lokalisieren zu können wäre sehr hilfreich“, sagt Professor Maximilian Reiser, Leiter des Instituts für Klinische Radiologie der Ludwig-Maximilians-Universität München. „Wir erhoffen uns eines Tages mit der neuen Technik eine verbesserte Diagnose und Therapie von COPD und eine geringere Strahlenbelastung als mit hochaufgelöster Computer-Tomografie“.

Entwickelt wurde die Methode im Rahmen der Forschungsarbeit des Exzellenzclusters Munich-Centre for Advanced Photonics (MAP) von Physikern der Technischen Universität München (TUM) und Medizinern der Ludwig-Maximilians-Universität München (LMU) sowie des Comprehensive Pneumology Center (CPC) des Helmholtz Zentrums München.

Für die Versuche nutzten die Wissenschaftler die Compact Light Source der Firma Lyncean Technologies Inc., eine kompakte Synchrotron-Strahlungsquelle. Im Center for Advanced Laser Applications (CALA), einem Gemeinschaftsprojekt der TU München und der LMU München auf dem Forschungscampus Garching, sollen in den nächsten Jahren neue, lasergetriebene Röntgenquellen entwickelt werden.

Parallel dazu arbeitet die Forschungsgruppe um Franz Pfeiffer, Professor für Biomedizinische Physik an der TU München, daran, die Analyse der Streustrahlung so weiter zu entwickeln, dass sie auch mit herkömmlichen Röntgenapparaten eingesetzt werden kann.

Gefördert wurden die Forschungsarbeiten aus Mitteln der Deutschen Forschungsgemeinschaft (DFG) über den Exzellenzcluster Munich-Centre for Advanced Photonics (MAP), des European Research Council (ERC Starting Grant Nr. 240142), des National Institute of General Medical Sciences (USA, Grant R44-GM074437) und des National Center for Research Resources (USA, Grant R43-RR025730). Weitere Kooperationspartner waren das Helmholtz Zentrum NanoMikro am Karlsruher Institut für Technologie, die Universität Lund (Schweden) und die Lyncean Technologies Inc. (USA).

Originalpublikation:
Emphysema diagnosis using X-ray dark-field imaging at a laser-driven compact synchrotron light source. Simone Schleede, Felix G. Meinel, Martin Bech, Julia Herzen, Klaus Achterhold, Guillaume Potdevin, Andreas Malecki, Silvia Adam-Neumair, Sven F. Thieme, Fabian Bamberg, Konstantin Nikolau, Alexander Bohla, Ali Ö. Yildirim, Rod Loewen, Martin Gifford, Ronald Ruth, Oliver Eickelberg, Maximilian Reiser, and Franz Pfeiffer. Proceedings of the National Academy of Sciences, PNAS, Early Edition, 2012, DOI: 10.1073/pnas.1206684109

Externer Link: www.tu-muenchen.de

Bärtierchen funktionieren wie Instantkaffee

Pressemitteilung der Universität Stuttgart vom 15.10.2012

Proteine von Überlebenskünstlern identifiziert

„Einfach Wasser zugeben“ – diese Vorgehensweise ist von Lebensmittelprodukten wie etwa Instantkaffee bekannt, die dann innerhalb kürzester Zeit zu verwenden sind. Doch das Prinzip funktioniert auch, um Zellen zu stabilisieren. Welche Proteine dabei im Spiel sind, hat der Stuttgarter Bärtierchenforscher Dr. Ralph Schill gemeinsam mit Kollegen am Deutschen Krebsforschungszentrum (DKFZ) in Heidelberg, der Molekularbiologie an der Technischen Fachhochschule Wildau und der Bioinformatik an der Universität Würzburg jetzt erstmals umfassend nachgewiesen.

Bärtierchen leben hierzulande zwischen Moosen und sind häufigen Veränderungen des Mikroklimas ausgesetzt, die ihr Überleben direkt beeinflussen. Doch die nur einen Millimeter großen Winzlinge sind echte Überlebenskünstler: Wenn es Bärtierchen zu kalt oder zu trocken wird, ziehen sie ihre Beinchen ein und kugeln sich zu so genannten Tönnchen zusammen. In diesem Stadium trocknen alle Zellen komplett aus und die Tierchen können lange Zeiträume überdauern. Regnet es und die Umgebung wird wieder feucht, dann quellen die Tiere auf und können innerhalb einer knappen halben Stunde wieder aktiv werden, als ob es den Tod auf Zeit nicht gegeben hätte.

Diese Fähigkeiten, die junge und erwachsenen Tiere, aber auch Embryonen zeigen, waren schon Ende des 18. Jahrhunderts bekannt und stehen seither im Mittelpunkt des wissenschaftlichen Interesses – seit knapp zehn Jahren auch an der Universität Stuttgart, wo Dr. Ralph Schill und seine Arbeitsgruppe die faszinierenden Modellorganismen als eine der ganz wenigen Forschergruppen weltweit erfolgreich im Labor halten. Studien über die Gene und Proteine, die für die Austrockungstoleranz eine Rolle spielen, gibt es daher inzwischen eine ganze Reihe. Dagegen fehlte es bisher an einer umfassenden Charakterisierung von Proteinen und entsprechenden Datenbanken. Der Forschergruppe um Dr. Schill gelang es jetzt erstmals, mehr als 3.000 Proteine in Bärtierchen- Embryonen sowie in getrockneten und aktiven Bärtierchen zu identifizieren und zu vergleichen. Dabei wurden eine ganze Reihe neuer Stress-, Transport und Kanalproteine entdeckt, die auch bei anderen, ebenfalls trockentoleranten Organismen vorkommen. Verschiedene Stressproteine können andere Proteine in den Zellen beim eintrocknen stabilieren. Nach dem Rehydrieren kommen vor allem Reparaturproteine zum Einsatz, die beschädigte Stukturen neu falten oder effektiv beseitigen, um diese zu ersetzen.

Diese ausführliche Proteomanalyse ist ein weiterer Schritt, um zu verstehen, wie sich Leben in der Natur selbst über lange Zeiträume konservieren kann. Mit den Erkenntnissen lassen sich neue Methoden entwickeln, um Makromoleküle, Zellen und ganze Organismen besser zu konservieren. Bis sich die Ergebnisse in eine praktische Anwendung, zum Beispiel in Biobanken, umsetzen lassen, müssen Ralph Schill und seine Kollegen allerdings noch einiges von den Bärtierchen lernen.

Originalpublikation:
Schokraie E, Hotz-Wagenblatt A, Warnken U, Mali B, Frohme M, Förster F, Dandekar T, Hengherr S, Schill RO, Schnölzer M (2012) Comparative proteome analysis of Milnesium tardigradum in early embryonic state versus adults in active and anhydrobiotic state.
PLoS ONE 7(9): e45682. doi:10.1371/journal.pone.0045682

Externer Link: www.uni-stuttgart.de