Dreidimensionale Halbleiterstrukturen erzeugen

Medienmitteilung der ETH Zürich vom 16.03.2012

Forscher der ETH Zürich und des CSEM Neuchatel haben zusammen mit italienischen Kollegen vom Politecnico di Milano und von der Università di Milano Bicocca eine neue Methode entwickelt, mit der Strukturen von höchster Perfektion aus völlig verschiedenen Halbleitern hergestellt werden. Die ersten Resultate dieses Forschungsprojekts wurden soeben im Fachmagazin „Science“ publiziert.

Die neuartigen Strukturen können fast beliebig dick sein und werden auf kostengünstigen Halbleiterscheiben hergestellt. Diese Strukturen sind überdies nicht durch irgendwelche Verbindungstechniken aneinander gefügt, sondern monolithisch aufgebaut. Das heisst, sie bestehen aus einem Stück, was sich durch Verfahren des Schichtwachstums erreichen lässt, wie sie in der Mikroelektronik geläufig sind.

Dank der neuen Methode gelingt es, die Kristalldefekte, die üblicherweise beim Aufeinanderschichten von Lagen aus Atomen verschiedener Grösse auftreten, weitgehend zu eliminieren. Störende Substratverbiegung, verursacht durch unterschiedliche thermische Ausdehnung verschiedener Materialien, wird weitgehend vermieden. Die neue Methode unterbindet die fatale Bildung von Rissen in den Schichten, die durch thermische Spannungen entstehen.

Wie eine Tafel Schokolade

Dem Verfahren liegt eine bestechend einfache Idee zugrunde: Anstelle von zusammenhängenden Schichten bestehen die Strukturen aus einem raumfüllenden Verband isolierter Kristalle. Mit Hilfe der Photolithographie definieren die Forscher zunächst ein Muster von Flächen auf einer Siliziumscheibe, das einer Schokoladetafel gleicht, im Gegensatz zur Schokolade jedoch nur einige Mikrometer gross ist. Um diese Flächen herum werden danach tiefe Gräben in die Scheibe geätzt. Dadurch entstehen Substratsäulen, deren Höhe grösser ist als ihr Durchmesser. Anschliessend werden dreidimensionale Halbleiterstrukturen derart auf den Säulen erzeugt, dass zwischen benachbarten Kristallen stets ein minimaler Abstand eingehalten wird. Die Wissenschaftler perfektionierten ihre Methode so, dass sie 50 Mikrometer hohe, defektfreie Germaniumstrukturen auf Siliziumscheiben herstellen konnten. Die dabei gewonnenen Erkenntnisse lassen sich zukünftig auf viele andere Materialkombinationen anwenden.

Bisher unerreichte Anwendungsmöglichkeiten

Die Fähigkeit, nahezu defektfreie, monolithische Halbleiterstrukturen herzustellen, eröffnet bisher unerreichte Anwendungsmöglichkeiten. Bei Röntgendetektoren können Absorber, in welchen Röntgenstrahlung in elektrische Signale umgewandelt werden, direkt auf die Ausleselektronik integriert werden. Mit Absorbern aus hohen, defektfreien Germaniumstrukturen lassen sich empfindliche, energie- und ortsauflösende Detektoren herstellen. Möglicherweise könnten dadurch die Strahlenbelastungen bei medizinischen Anwendungen drastisch gesenkt werden. Weiter lassen sich hocheffiziente, gestapelte photovoltaische Zellen aus Halbleitern herstellen, wobei sich jede Zelle für unterschiedliche Wellenlängenbereiche des Sonnenlichts eignet. Diese Art von Photozellen werden schon heute vor allem in der Raumfahrt verwendet. Da sich die Zellen mit dem beschriebenen Konzept auf Siliziumscheiben herstellen liessen, könnten in Zukunft die teuren, zerbrechlichen und schweren Germaniumsubstrate durch billigere, leichtere und mechanisch stabile Siliziumsubstrate ersetzt werden. Ähnliche Kosteneinsparungen liessen sich bei Leistungshalbleitern erzielen, indem sie auf grossflächige Siliziumscheiben aufgewachsen werden.

Die an den Forschungsarbeiten beteiligten schweizerischen Gruppen erfahren grosszügige Unterstützung durch das Nano-Tera Projekt «NEXRAY», eines dessen Ziele die Entwicklung neuartiger Röntgendetektoren ist. «Das CSEM ist stolz darauf ein solches interdisziplinäres Projekt mit den Partnern CSEM, EMPA und ETH Zürich zu koordinieren, das zu neuartigen Bauelementen führen wird», sagt Alex Dommann, der Programm Manager für MEMS am CSEM.

Veröffentlichung:
C.V. Falub et al., Scaling hetero-epitaxy from layers to three-dimensional crystals, Science Vol. 335 no. 6074 pp. 1330-1334, doi: 10.1126/science.1217666

Externer Link: www.ethz.ch

Unerschöpflicher Energieträger Wasserstoff

Presseinformation der Universität Innsbruck vom 20.03.2012

Methanol, Wasser und ein Kupfer-Zink-Katalysator: Mit diesen einfachen Zutaten könnte kostengünstig kohlenmonoxidfreier Wasserstoff gewonnen und damit Brennstoffzellen betrieben werden. Mit der Identifizierung jener Kupfer-Zink-Phase, mit der besonders sauberer Wasserstoff entsteht, nahmen Forscher vom Institut für Physikalische Chemie der Universität Innsbruck eine wichtige Hürde auf dem Weg zur zukunftsweisenden Energienutzung. Kürzlich berichteten sie darüber im Fachjournal Angewandte Chemie.

Wasserstoff (H2) als Bestandteil des Wassers und häufigstes Element im Universum würde sich als nahezu unerschöpflicher Energieträger anbieten. Das farb- und geruchlose Gas ist allerdings auch hochentzündlich und bildet unter anderem bei Kontakt mit Sauerstoff ein hochexplosives Gemisch. Um Probleme und Risiken bei Lagerung und Transport zu umgehen, müssen effiziente und nachhaltige Wege gefunden werden, chemisch gebundenen Wasserstoff in der jeweiligen Anwendung verfügbar zu machen. Als vielversprechender Wasserstofflieferant für mobile Anwendungen hat sich in den letzten Jahren Methanol (CH3OH) herauskristallisiert: Aus diesem einfachen Alkohol kann in einem Katalysator durch die sogenannte Methanoldampfreformierung einfach und rasch Wasserstoff erzeugt werden. Der Optimierung dieses Verfahrens, in dem Methanol mit Wasser reagiert, widmet sich im Rahmen eines FWF-Projekts seit 2008 die Arbeitsgruppe rund um Bernhard Klötzer am Institut für Physikalische Chemie der Universität Innsbruck. „Bei der Gewinnung von Wasserstoff aus Methanol wollen wir möglichst viel H2 hoher Reinheit bekommen, müssen dabei aber die Produktion von Kohlenmonoxid vermeiden, da dieses die Elektroden der Brennstoffzellen blockiert, was in der Praxis nicht passieren darf“, schildert Bernhard Klötzer die große Herausforderung, die sich stellt wenn das Reformier-Verfahren in Polymerelektrolytmembran-Brennstoffzellen eingesetzt werden soll. Diese Brennstoffzellen können in mobilen Anwendungen wie etwa in Kraftfahrzeugen, U-Booten, Raumschiffen oder Akkuladegeräten für unterwegs zur Anwendung kommen.

Praxistauglichkeit als Herausforderung

Die idealen Voraussetzungen für die Wasserstoffgewinnung an einem Palladium-Zink-Katalysator konnten die Forscher bereits vor zwei Jahren zeigen. Jetzt haben sie die Reaktion an einem – wesentlich kostengünstigeren – Kupfer-Zink-Katalysator untersucht. „Es gibt viele Systeme, die zur Diskussion stehen. Aus der Sicht der Grundlagenforschung ist der Palladium-Zink-Katalysator aufgrund seiner thermischen Stabilität besonders geeignet, aber andererseits sehr teuer. Wenn es um die reale Anwendung geht, kommen nicht nur technische, sondern auch Kostenfragen ins Spiel“, verdeutlicht Klötzer. Aus diesem Grund gilt sein Interesse aktuell der Methanoldampfreformierung in den kostengünstigeren Kupfer-Zink-Katalysatoren. Diese sind eigentlich für die Umkehrreaktion, also die Methanolsynthese, konzipiert und kommen in der Industrie bereits zum Einsatz. „Was in die eine Richtung gut funktioniert, funktioniert im Prinzip auch in die Gegenrichtung, allerdings erfordert die Reformieranwendung wesentlich höhere Temperaturen und einen erhöhten Wasserdampfdruck. Der industrielle Methanolsynthese-Katalysator ist daher in der Reformieranwendung nicht stabil“, erläutert der Forscher. Mit seiner Arbeitsgruppe klärt er die Grundlagen und Voraussetzungen, unter denen die Reformierung stabil und selektiv funktioniert.

Zinkgehalt entscheidend für Wasserstoffgewinnung

Geforscht wird zu diesem Zweck an einem Modellkatalysator, der aus einer hochreinen Kupferfolie besteht, auf die wenige Atomlagen Zink aufgedampft werden. Das Wichtige ist dabei, dass die exakt richtige Menge Zink verwendet wird. „Wenn zu viel Zink verwendet wird, bildet sich eine flächendeckende Schicht aus Zinkoxid, die inaktiv ist“, erklärt Klötzer. Am Modellkatalysator war es den Forschern in Zusammenarbeit mit dem Fritz-Haber-Institut in Berlin möglich, am Synchrotron BESSY II spektroskopische Analysen der Oberfläche unter Reformierbedingungen durchzuführen – ein entscheidender Vorteil zu realen, technischen Katalysatoren. Auf diese Weise konnten die Wissenschaftler den Oxidationszustand und Verteilung des Zinks „life“ beobachten. „Unter Reaktionsbedingungen hat sich gezeigt, dass sich auf einem Teil der Katalysatoroberfläche Zinkoxid-Inselchen gebildet haben, daneben jedoch immer noch eine Kupfer-Zink-Bimetall-Oberfläche existierte. Genau in diesem Moment der Koexistenz steigt die Aktivität des Katalysators um den Faktor 1000, die Wasserstoffproduktion ist, aufgrund der Fähigkeit der Metall-Oxid-Grenzfläche, Wasser zu spalten, genau in dieser Phase besonders effizient“, hebt er ein zentrales Ergebnis der Forschungsarbeit hervor, die für das Verständnis der Methanoldampfreformierung einen entscheidenden theoretischen, aber auch praktischen Schritt bedeutet. „Die Wasserspaltung ist generell für viele künftige Anwendungen in der Energietechnik ein wichtiges Thema“, ist Klötzer überzeugt.

Publikation:
C. Rameshan, W. Stadlmayr, S. Penner, H. Lorenz, N. Memmel, M. Hävecker, R. Blume, T. Rocha, D. Teschner, D. Zemlyanov, A. Knop-Gericke, R. Schlögl, B. Klötzer,  Hydrogen Production by Methanol Steam Reforming on Copper Boosted by Zinc-Assisted Water Activation, Angew. Chem. Int. Ed. 51 (2012) 3002-3006.

Externer Link: www.uibk.ac.at

Hotspots für die Bildung kleiner RNA-Moleküle in Pflanzenzellen entdeckt

Pressemitteilung der Universität Heidelberg vom 14.03.2012

Heidelberger Wissenschaftler untersuchen die Feinabstimmung der Proteinproduktion

Pflanzen bilden während ihrer Lebensdauer Blätter und seitliche Wurzeln heraus. Die Gemeinsamkeit dieser zwei Arten von Organen besteht darin, dass ihre Entwicklung durch kleine regulatorische RNA-Moleküle, die trans-acting short interfering RNAs (ta-siRNAs) genannt werden, feinabgestimmt wird. Die Wissenschaftler Dr. Alexis Maizel und Virginie Jouannet vom Centre for Organismal Studies der Universität Heidelberg konnten zeigen, wo und wie innerhalb der Pflanzenzelle diese ta-siRNAs gebildet werden. Ihnen ist es gelungen, Hotspots für die Bio­genese dieser speziellen RNA-Moleküle zu identifizieren. Die Ergebnisse ihrer Studie wurden im „EMBO Jour­nal“ veröffentlicht.

Die Bildung von Pflanzenorganen ist gekoppelt an Proteine, die es Zellen erlauben, sich zu teilen und neue Formen und Charakteristika anzunehmen. Der unmittelbare Weg zur Proteinproduktion beginnt, wenn Gene aktiviert und in Botenstoff-RNAs transkribiert werden. Diese Botenstoff-RNAs werden dann in Proteine übersetzt. Die Zellen passen jedoch oft das Vorkommen von Proteinen an, indem sie für die Feinabstimmung der Proteinpopulation kurz eingreifende RNAs produzieren: Diese sogenannten short interfering RNAs (siRNAS) – zu denen die trans-acting short interfering RNAs gehören – sind kleine regulatorische Moleküle, die sich an die Botenstoff-RNAs andocken und bei ihnen bewirken, dass sie abgebaut werden, bevor sie für die Proteinproduktion benutzt werden können. Forscher haben bereits herausgefunden, dass ta-siRNAs die Bildung von Blättern und das Wachstum von seitlichen Wurzeln feinabstimmen, indem sie die Produktion bestimmter Proteine blockieren. Wo genau in der Pflanzenzelle die ta-siRNAs gebildet werden, war jedoch bislang unbekannt.

Die ta-siRNAs werden aus längeren RNA-Molekülen geschaffen, die durch einen Komplex anderer Moleküle ver­kürzt werden. Eine wesentliche Komponente dieser Kürzungsvorrichtung ist ein Protein namens AGO7. Die Heidel­berger Wissenschaftler haben nun entdeckt, dass sich AGO7 in punktartigen Strukturen (foci) ansammelt. Bei diesen foci handelt es sich um die siRNA-Körper, die sich im Zellplasma der Zelle befinden. Dabei enthalten diese siRNA-Körper neben AGO7 alle anderen Enzyme, die erforderlich sind für die Erzeugung von ta-siRNAs. „Daher sind diese foci Hotspots für die Bildung der siRNAs, also kleiner regulatorischer RNA-Moleküle“, erklärt Virginie Jouan­net, Doktorandin in der Arbeitsgruppe von Dr. Maizel. Zusätzlich konnten die Forscher zeigen, dass AGO7 nicht mehr seine Funktionen erfüllt, wenn es von den siRNA-Körpern abgelöst wird, was zu Problemen in der Entwick­lung der Pflanze führt.

Die beiden Forscher haben zwei weitere wichtige Beobachtungen gemacht. Danach sind die siRNA-Körper eng mit dem Netzwerk von Membranen verbunden, die die Zelle benutzt, um Proteine zu transportieren und abzusondern. „Außerdem beherbergen diese punktartigen Strukturen interessanterweise auch Viren, und Pflanzen verteidigen sich mit siRNAs gegen Viren“, erläutert Dr. Maizel. „Diese Ergebnisse verweisen zum einen auf eine bisher unbe­kannte Rolle von Membranen bei der Biogenese von RNA und deuten zum anderen darauf hin, dass die Bildung von siRNA nur in bestimmten Orten in der Zelle stattfinden kann.“

Dr. Maizel leitet eine unabhängige Forschungsgruppe am Centre for Organismal Studies der Universität Heidelberg und ist Mitglied im Exzellenzcluster CellNetworks der Ruperto Carola. Die Forschungsarbeiten wurden zusammen mit Wissenschaftlern des Institut des Sciences du Végétal am Centre National de la Recherche Scientifique (CNRS) in Gif-sur-Yvette sowie des Institut Jean-Pierre Bourgin am Institut National de la Recherche Agronomique (INRA) in Versailles (Frankreich) durchgeführt.

Originalpublikation:
V. Jouannet, A.B. Moreno, T. Elmayan, H. Vaucheret, M.D. Crespi & A. Maizel: Cytoplasmic Arabidopsis AGO7 accu­mulates in membrane-associated siRNA bodies and is required for ta-siRNA biogenesis, The EMBO Journal, 10 February 2012, doi:10.1038/emboj.2012.20

Externer Link: www.uni-heidelberg.de

Elektronen surfen auf der Lichtwelle

Presseinformation der Universität Göttingen vom 07.03.2012

Göttinger Wissenschaftler beschleunigen Elektronen mit Laserpulsen und Nanotechnologie

(pug) Aus einer mit Licht bestrahlten Metalloberfläche treten Elektronen aus – dieses Phänomen ist auch als photoelektrischer Effekt bekannt. In den aktuellen Experimenten von Göttinger Wissenschaftlern schlagen ultrakurze infrarote Laserpulse Elektronen aus Goldspitzen mit wenigen Nanometern Größe heraus, und zwar innerhalb weniger Millionstel einer Milliardstel Sekunde. Nach der Schulbuchbeschreibung des Photoeffekts – für die Albert Einstein den Nobelpreis erhielt – dürften dabei jedoch gar keine Elektronen emittiert werden, weil die Energie eines Infrarot-Photons dafür nicht ausreicht. Die Forscher der Universität Göttingen haben jetzt jedoch gezeigt, dass sich die Elektronen bei sehr starken Laserfeldern und in Nanostrukturen völlig neuartig verhalten. Die Ergebnisse der Studie sind in der Fachzeitschrift Nature erschienen.

Bei ihren Experimenten beobachten die Wissenschaftler vom Courant Forschungszentrum „Nanospektroskopie und Röntgenbildgebung“ der Universität Göttingen ein völlig anderes Verhalten als beim Photoelektrischen Effekt: „Normalerweise absorbiert ein Elektron genau ein Photon. Wir haben aber Elektronen gefunden, die – von der Lichtwelle getrieben – die Energie von über 1000 Photonen aufgenommen haben“, erklärt Georg Herink, wissenschaftlicher Mitarbeiter in der Göttinger Arbeitsgruppe. In den starken infraroten Lichtfeldern an der Spitze der Nanostruktur wächst die Energie der Elektronen mit der Lichtintensität und der Wellenlänge – zwei Abhängigkeiten, die in direktem Gegensatz zum üblichen Photoeffekt stehen. Die Energie der Elektronen wächst dabei auf eine Weise, die stark von der Form der Nanostruktur abhängt.

Wie der Leiter der Studie, Prof. Dr. Claus Ropers, erläutert, schlägt die neu beobachtete Elektronendynamik ein weiteres Kapitel in der hundertjährigen Physik des Photoeffekts auf. „Neben seiner Bedeutung für ein fundamentales Verständnis des Photoeffekts haben die Ergebnisse auch eine praktische Bedeutung: Sie zeigen uns neue Wege für die Realisierung ultraschneller Elektronenmikroskope auf, um mit kontrollierten Elektronenpulsen atomare Vorgänge zeitlich aufzulösen und die Schnappschüsse zu bewegten Bildern verbinden zu können“, sagt Prof. Ropers.

Originalveröffentlichung:
Georg Herink et al. Field-driven photoemission from nanostructures quenches the quiver motion. Nature March 2012. Doi: 10.1038/nature10878.

Externer Link: www.uni-goettingen.de

Bakterien mit sozialer Ader

Presseinformation der LMU München vom 08.03.2012

Kooperation mathematisch auf die Spur kommen

Nach einer etwas naiven Lesart sollte die Darwinsche Evolutionstheorie kooperatives Verhalten nicht erwarten lassen. Schließlich ist soziales Verhalten für das Individuum mit erhöhten Kosten verbunden, während die Gesamtpopulation profitiert. Doch eine soziale Ader lässt sich selbst bei Mikroben finden. So kooperieren etwa manche Bakterien, indem sie Stoffe produzieren, die der gesamten Kolonie zugute kommen – während sich die Kooperatoren selbst langsamer vermehren als ihre „unsozialen“ Artgenossen. Der LMU-Physiker Professor Erwin Frey hat nun mit seinen Mitarbeitern Dr. Jonas Cremer und Dr. Anna Melbinger mithilfe mathematischer Modelle die zugrunde liegenden Mechanismen ergründet. „Kooperation kann durch die Tatsache erklärt werden, dass bakterielle Kolonien stark wachsen und sich immer wieder neu bilden,“ sagt Frey. „Wir haben nun erstmals gezeigt, dass ein einziges kooperatives Bakterium in einer ganzen Population Kooperation etablieren kann.“ Die Studie wurde im Rahmen des Exzellenzclusters „Nanosystems Initiative Munich“ (NIM) durchgeführt. (Scientific Reports online, 21. Februar 2012)

Bestimmte Bakterien können einen Stoff produzieren, der die gesamte Kolonie gegen manche Antibiotika resistent macht. Während sich die Kolonie dann schnell vergrößern kann, vermehren sich die kooperierenden Mikroben langsamer. „Wenn sie aussterben, ist das für die Gesamtpopulation schlecht“, sagt Co-Autorin Anna Melbinger. „Der Nachteil eines Kooperators kann aber durch den evolutionären Vorteil der Kolonie kompensiert werden.“

Auf welchen Mechanismen dieses Gleichgewicht beruht, konnte bislang nicht im Detail geklärt werden. Freys Arbeitsgruppe konstruierte ein mathematisches Modell, um das Wachstum von Bakterien in mehreren Kolonien zu simulieren. Die Mikroben  bilden kleine Kolonien, die abhängig vom Anteil an Kooperatoren wachsen. Aus dieser Population können sich neue Kolonien bilden – und der Zyklus beginnt erneut.

Die Analyse des Models deckte nun zwei Mechanismen auf, die Kooperation ermöglichen. So können sich durch Zufall rein kooperative Kolonien bilden, in denen Kooperatoren ihre Vorteile ausspielen, ohne von nicht kooperierenden Bakterien „ausgenutzt“ zu werden. „Gibt es einen hinreichend großen Anteil an Kooperatoren in der Population, können alle nicht kooperierenden Bakterien sogar aussterben“, so Cremer.

Im zweiten Szenario dagegen vermehren sich Kolonien mit einem großen Anteil an Kooperatoren schneller als solche mit wenig „sozial gesinnten“ Individuen. Dieser Mechanismus kann sogar greifen, wenn anfänglich nur wenige Kooperatoren vorhanden sind. Dann aber kann sich möglicherweise eine einzelne, zufällig entstandene kooperative Mutante durchsetzen.

Insgesamt wurde deutlich, dass sich Kooperation stabil in Populationen halten kann, wenn sich Kolonien immer wieder neu bilden und wachsen können. „Wie wir jetzt erstmals mit Hilfe eines mathematischen Modells erklären können, erhalten einzelne Mikroben, die aufgrund zufälliger genetischer Veränderungen zu Kooperatoren geworden sind, auf diesem Weg die Chance, in der gesamten Population kooperatives Verhalten dauerhaft zu etablieren“, sagt Frey. (CR/suwe)

Publikation:
„Growth dynamics and the evolution of cooperation in microbial populations“
Jonas Cremer, Anna Melbinger & Erwin Frey,
Scientific Reports online, 2, 281 (21. Februar 2012).
doi: 10.1038/srep00281

Externer Link: www.uni-muenchen.de